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Abstract

Read counting and unique molecular identifier (UMI) counting are the principal gene expression quantification
schemes used in single-cell RNA-sequencing (scRNA-seq) analysis. By using multiple scRNA-seq datasets, we reveal
distinct distribution differences between these schemes and conclude that the negative binomial model is a good
approximation for UMI counts, even in heterogeneous populations. We further propose a novel differential
expression analysis algorithm based on a negative binomial model with independent dispersions in each group
(NBID). Our results show that this properly controls the FDR and achieves better power for UMI counts when
compared to other recently developed packages for scRNA-seq analysis.
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Background
Single-cell RNA-sequencing (scRNA-seq) technology pro-
vides transcriptome profiles of individual cells, enabling
the dissection of the heterogeneity of different cell popula-
tions and tissues [1]. Although scRNA-seq protocols share
common principles of single-cell isolation, cell lysis, tran-
script capture, complementary DNA (cDNA) conversion
and amplification, library preparation, and sequencing, the
methodologies differ. Multiple methods for transcript
quantification with differing levels of accuracy and sensi-
tivity have been employed in scRNA-seq analysis [2].
However, the paucity of starting material for reverse tran-
scription remains an inherent limitation of scRNA-seq
protocols and contributes to the relatively low rate at
which messenger RNA (mRNA) molecules in individual
cells are converted to cDNA molecules that can be cap-
tured and sequenced [3, 4]. Coupled with the stochastic
nature of gene expression, scRNA-seq protocols generally
produce single-cell transcriptome measurements with low
signal-to-noise ratios, exemplified by the high abundance
of zeroes in the expression matrix and so-called dropout
events. In this context, dropout refers to a special type of

missing value whereby the expression of a gene is detected
at a moderate or high level in a subset of cells but is not
detected in other cells [5].
Read counts and transcript counts are two categories

of quantification schemes commonly employed in
scRNA-seq. Although the read count-based scheme is
similar to the common approaches used for bulk
RNA-seq, the miniscule quantity of transcripts captured
from a single cell requires cDNA amplification for
library construction; this inevitably results in large amp-
lification bias [6]. To mitigate this bias, several recent
scRNA-seq protocols have employed an additional step
in which individual transcripts are barcoded with unique
molecular identifiers (UMIs) before amplification, result-
ing in a more accurate quantification of the transcript
count [7, 8].
Although the fast-evolving experimental protocols for

scRNA-seq have given rise to numerous studies employ-
ing scRNA-seq techniques, statistical characterizations of
scRNA-seq data continue to lag. Most published studies
have focused primarily on either read counts [5, 9, 10] or
UMI counts [3, 7]. Although a few studies that used both
read-count and UMI-count schemes have suggested that
employing UMIs in expression measurement globally
reduces the technical noises and that the data generally fit
into simpler statistical models compared to read counts
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[3, 11–13], a popular perspective held by the field is that
dropout events result in more zeroes than expected
in scRNA-seq data and these events need to be expli-
citly modeled using zero inflated/bimodality models
[5, 10, 14–17]. This study investigated the necessity
and effectiveness of zero-inflated models in modeling the
UMI-count distribution among cells by directly comparing
the statistical modeling of UMI counts and read counts.
A closely related application of scRNA-seq count model-

ing is single-cell differential expression (DE) analysis.
Several software packages have been developed specifically
for scRNA-seq DE analysis, such as SCDE [5], MAST [9],
ROTS [18], Monocle2 [11], and Seurat [19]. However, there
have been no systematic evaluations of these methods with
respect to UMI count-based scRNA-seq data.
In this study, we first conducted a comprehensive ana-

lysis of the modeling UMI counts and read counts in
scRNA-seq data. Based on that analysis, we proposed a
method using the Negative Binomial model with Inde-
pendent Dispersions (NBID) and compared its false dis-
covery rate (FDR) control and power to those of other
commonly used methods. We also illustrate a practical

application of NBID in biomarker identification after
unsupervised clustering of scRNA-seq data.

Results
Model comparison for UMI counts and read counts
We used a unique dataset produced by Ziegenhain et al.
[12] to determine the difference between read counts
and UMI counts. A homogeneous population of mouse
embryonic stem cells was derived by two inhibitors/
leukemia inhibitory factors and used to evaluate six
different scRNA-seq protocols, including four UMI
count-based protocols and two read count-based proto-
cols. Furthermore, the read counts before conversion to
UMIs were also evaluated for the four UMI based proto-
cols, which provided an excellent opportunity to exam-
ine the differences between the UMI count and read
count for the same data [12]. We first examined scatter
plots for cell pairs with similar total read/UMI counts.
Figure 1 shows the representative pattern for two cells.
This general pattern holds for most cell pairs in the
dataset. A large density mass was focused on at (0, 0)
(the origin point) in all three results (Fig. 1a, c, and e),
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Fig. 1 Scatter plots of two cells with similar read counts or UMI counts. a, b Read counts for Smart−Seq2. c, d Read counts for CEL− Seq2/C1. e, f UMI
counts for CEL − Seq2/C1. a, c, e The scatter plot with color-coded density, the highest density at the origin. The left and middle panels, which are
based on the read counts, show very different patterns from the right panel, which is based on the UMI counts. b, d, f The density plot along the
x- and y-axes of (a), (c), and (e), excluding the origin. For all plots, we kept the genes that were detected in at least five cells among all cells
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which was consistent with the notion that transcripts for
most genes were not captured by either cell in
scRNA-seq protocols (supported by abundance of zeros
in the scRNA-seq data) [10]. Read-count measurements
produced results (Fig. 1a–d) similar to those of Kharchenko
et al. [5], which were used to illustrate dropout events. The
overall UMI-count measurements (Fig. 1e and f) showed
less divergence when compared to their read-count coun-
terparts in the same cell pair (Fig. 1c and d). Specifically,
quantifications for genes with dropout events (i.e. when
transcripts/reads were captured in one cell in the pair but
not the other) showed a distinct bi-modal pattern in the
read counts (Fig. 1b and d) but a unimodal distribution in
the UMI counts (Fig. 1f). Consequently, it is prudent to
model gene expression by using a zero-inflated model (i.e. a
zero-inflated negative binomial [ZINB] model [5] or hurdle
model [9]) for the read counts: one component for the zero
counts and the other component for the non-zero counts.
However, the fast attenuation of density along the axes sug-
gests that a unimodal distribution (e.g. a Poisson or nega-
tive binomial [NB] distribution) may be sufficient for UMI
counts.
To further capture the quantitative difference between

read counts and UMI counts, we modeled them with

different distributions. We employed a backward selection
strategy on three candidate models that are commonly
used in scRNA-seq studies [3, 5, 7]: a Poisson model with
one parameter defining both the mean and the variance; a
NB model with two parameters defining the mean and
variance; and a ZINB model with three parameters, of
which two were the same as those in the NB model. The
additional parameter in the ZINB model defines the prob-
ability of a count being zero or being distributed as an NB
distribution. These three models are nested with increas-
ing complexity, i.e. the Poisson model is a special case of
the NB model and the NB model is a special case of the
ZINB model. Our goal was to decide on the proper
complexity for fitting the scRNA-seq data. We started by
testing whether the ZINB model was significantly better
than the NB model for modeling the counts. Among those
genes that did not reject the NB model, we further tested
whether that model was significantly better than the Pois-
son model. The model selection results are summarized in
Table 1 (see also Additional file 1: Figure S1). We analyzed
both the UMI counts and read counts (before UMI con-
version) form four UMI-based protocols. Although no
genes measured in UMI counts preferred the ZINB model
over the NB model at an FDR level of 0.05, the results for

Table 1 Number of genes with selected models for different protocols from Ziegenhain et al. [12]

NB vs ZINB Poisson vs NB

Protocol Cells used (n) Genes detected (n) Genes tested (n) Genes converged (n) ZINB NB Poisson Poisson (%)

UMI count

CEL-Seq2/C1(A) 34 16,690 11,345 11,345 0 2968 8377 73.84

CEL-Seq2/C1(B) 37 17,229 12,190 12,189 0 3794 8395 68.87

Drop-Seq(A) 42 16,579 10,702 10,702 0 4277 6425 60.04

Drop-Seq(B) 34 15,469 9288 9288 0 3659 5629 60.61

MARS-Seq(A) 29 14,551 8266 8266 0 4592 3674 44.45

MARS-Seq(B) 36 15,406 9644 9644 0 5848 3796 39.36

SCRB-Seq(A) 39 16,411 12,955 12,955 0 1214 11,741 90.63

SCRB-Seq(B) 45 16,944 13,212 13,212 0 2115 11,097 83.99

CEL-Seq2/C1(A) 34 16,690 11,345 10,679 3679 6385 615 5.76

CEL-Seq2/C1(B) 37 17,229 12,190 12,155 1174 10,443 538 4.43

Drop-Seq(A) 42 16,579 10,702 10,690 121 9601 968 9.06

Drop-Seq(B) 34 15,469 9288 9278 91 8329 858 9.25

MARS-Seq(A) 29 14,551 8266 8132 761 7161 210 2.58

MARS-Seq(B) 36 15,406 9644 9531 1333 7974 224 2.35

SCRB-Seq(A) 39 16,411 12,955 12,954 0 11,814 1140 8.80

SCRB-Seq(B) 45 16,944 13,212 13,212 0 11,964 1248 9.45

Read count

Smart-Seq2(A) 80 21,076 15,294 15,098 7905 5795 1398 9.26

Smart-Seq2(B) 77 20,861 15,224 15,152 6456 7244 1452 9.58

Smart-Seq/C1(A) 69 19,699 13,518 13,513 16 12,761 736 5.45

Smart-Seq/C1(B) 61 19,100 12,949 12,947 0 11,888 1059 8.18
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CEL-Seq2/C1 and MARS-Seq showed a significant per-
centage of genes (9.4–34.5%) rejecting the NB model in
favor of the ZINB model when measured in read counts.
Moreover, for UMI counts, a large proportion of genes
(39.4–84.0%) selected the simple Poisson distribution. By
contrast, read-count measurements resulted in a sharp
drop in the proportions of Poisson models (2.4–9.5%,
p = 0.0078, the Wilcoxon signed rank test) across all
platforms evaluated. Read-count only protocols (Smart--
Seq and Smart-Seq2) show comparable patterns to the
read counts from UMI protocols. Overall, our analysis im-
plies that while ZINB is necessary for a significant fraction
of read counts, it is not needed for UMI counts.

Negative binomial model for UMI counts
A model selection strategy always selects a “best” model
among the specified candidates even though the chosen
model may fit the underlying data poorly. Therefore, we
evaluated the goodness of fit for these selected models.
Because a Poisson model can be modeled as a special
scenario of the NB model, we began by measuring the
goodness of fit of the NB model for various datasets

reported by Ziegenhain et al. [12] (Table 2). At an FDR
level of 0.05, only 0.1% (range = 0–0.4%) of converged
genes rejected the NB model for UMI counts. This per-
centage was significantly increased to 14.2% (range =
1.1–35.3%, p = 0.0078, the Wilcoxon signed rank test)
for read counts from the same datasets, indicating that a
high-level noise was introduced by cDNA amplification.
We further examined the proportion of genes that could
be modeled by a Poisson model. As expected, the percent-
age of genes with an adequate Poisson fit (FDR > 0.05)
dropped sharply from 80.2% (range = 65.7–95.1%) for
UMI counts to 2.6% (range = 1.0–4.1%, p = 0.0078, the
Wilcoxon signed rank test) for read counts measured in
the same datasets. The goodness of fit of both the Poisson
and NB models supports the conclusion that UMI counts
can be modeled by simpler models when compared to
read counts.

Modeling and goodness of fit for UMI counts in large scale
scRNA-seq datasets
Although the datasets of Ziegenhain et al. [12] provided
an unparalleled opportunity to evaluate the difference

Table 2 Goodness of fit test for the Poisson and NB models for different protocols from Ziegenhain et al. [12]

Protocol Cells Used (n) Genes tested (n) Genes reject Poisson (n) Genes reject NB (n) Accept Poisson (%) Reject NB (%)

UMI count

CEL-Seq2/C1(A) 30 3357 660 1 80.34 0.03

CEL-Seq2/C1(B) 33 5601 1082 3 80.68 0.05

Drop-Seq(A) 37 2311 548 2 76.29 0.09

Drop-Seq(B) 30 1690 414 0 75.50 0.00

MARS-Seq(A) 26 1162 317 2 72.72 0.17

MARS-Seq(B) 32 2184 750 8 65.66 0.37

SCRB-Seq(A) 35 4218 214 1 94.93 0.02

SCRB-Seq(B) 40 4360 213 0 95.11 0.00

Read count before converting to UMI

CEL-Seq2/C1(A) 30 6012 5954 622 0.96 10.35

CEL-Seq2/C1(B) 33 7993 7897 90 1.20 1.13

Drop-Seq(A) 37 4574 4386 430 4.11 9.40

Drop-Seq(B) 30 2867 2781 512 3.00 17.86

MARS-Seq(A) 26 2830 2743 152 3.07 5.37

MARS-Seq(B) 32 4248 4168 265 1.88 6.24

SCRB-Seq(A) 35 7392 7194 2065 2.68 27.94

SCRB-Seq(B) 40 7112 6855 2507 3.61 35.25

Read count

Smart-Seq2(A) 72 10,880 10,692 2696 1.73 24.78

Smart-Seq2(B) 69 10,684 10,469 1790 2.01 16.75

Smart-Seq/C1(A) 62 9342 9249 87 1.00 0.93

Smart-Seq/C1(B) 55 7990 7893 75 1.21 0.94

A model is rejected if FDR < 0.05 among all genes tested; otherwise it is accepted
NB negative binomial
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between read counts and UMI counts, the number of
cells captured was relatively small (range = 29–80). We
extended our analysis to additional datasets generated by
different platforms [7, 20–23] to evaluate whether the
same pattern generally held for other datasets. Despite
technical differences among protocols and heterogeneity
within cell populations, overall, the model selection and
goodness-of-fit analysis for these datasets supported our
conclusion that UMI counts can be modeled by simpler
models when compared to read counts (Additional file 2:
Tables S1A and S1B).
Since 2016, several Drop-seq UMI based platforms have

appeared with the capability to process thousands of cells
in a single experiment [2, 8]. Consequently, we studied
whether the same pattern held for such large-scale data-
sets. We applied the described model-selection strategy
and goodness-of-fit test to the following datasets: (1) CD4
+ naïve T cells (9850 cells); and (2) CD4+ memory T cells
(9578 cells), both of which were generated on the Gem-
Code platform (10× Genomics, Pleasanton, CA, USA) [8],
and 3) Rh41 cells, a human PAX3-FOXO1 positive alveolar
rhabdomyosarcoma (ARMS) cell line (6875 cells) prepared
in-house on the Chromium platform (10× Genomics).
Rh41 cells contained two distinct subpopulations based
on unsupervised clustering analysis (Additional file 1:
Figure S2) and were included to evaluate the effects of
strong heterogeneity on model selection and fitting
(Table 3). Although few genes (4–7, 0.04–0.06%) preferred
the ZINB model in the relatively homogeneous T-cell pop-
ulations, the percentage of genes selecting the ZINB
model in Rh41 cells was slightly elevated, albeit still low
(39 genes, 0.21%). The expression of these genes differed
significantly between the two clusters (FDR < 0.05, the
Wilcoxon rank sum test; see also Additional file 2: Table
S2), suggesting that the fraction of genes preferring the
ZINB model correlates with the level of heterogeneity.
Compared to the datasets of Ziegenhain et al. [12], the T

and Rh41 datasets displayed a lack of statistical fit for sim-
pler models (Table 4). Specifically, the genes modeled by
the Poisson model dropped to 61.1% (range = 51.9–67.6%)
and the percentage of genes that rejected the NB model
increased to 5.3% (range = 3.4–8.4%). In addition to ele-
vated heterogeneity in the Rh41 cells, the sample size of
these datasets (range = 6875–9850) also played an import-
ant role in the increased lack of model fitness. It has been
documented that very large samples invariably produce

statistically significant lack of fit, even though the departure
from the specified distributions may be very small and un-
important [24]. Therefore, we compared the empirical
probability mass function (pmf) and the cumulative distri-
bution function (cdf) with the fitted negative binomial
model to evaluate visually the difference between them for
genes rejecting the NB model (Fig. 2, Additional file 1:
Figures S3 and S4). Even though these genes rejected the
NB model at an FDR level of 0.05, the fitted pmf and cdf
curves were good approximations of their empirical coun-
terparts. Importantly, among the 23 to 282 genes that
rejected the NB model, only few (3–17) were ad-
equately approximated by the ZINB model (Additional
file 2: Table S3). Therefore, we conclude that the NB
model is a good approximation model for UMI counts,
even for large-scale scRNA-seq data with evidence of
heterogeneity.

scRNA-seq differential expression analysis
A direct consequence of properly modeling scRNA-seq
counts is the power to accurately conduct differential
expression analyses. Based on the knowledge derived
from UMI-count modeling, we proposed a NB-based al-
gorithm for differential expression analysis of large-scale
UMI-based scRNA-seq data. We extended the general
NB-based models by allowing independent dispersion
parameters in each biological condition, resulting in the
NBID method. This approach is analogous to the t-test,
which allows different variances between groups when
testing the equivalence of means. The rationale stems
from the apparent variations in dispersion even at the
same average expression level [3, 7]. Because the number
of cells in each condition is generally sufficient in
large-scale datasets, we derive separate dispersion esti-
mates for each condition; these are used in the subse-
quent NB-based test against the null hypothesis that
different conditions have the same average expression.
We compared the proposed method with other com-
monly used methods (Additional file 2: Table S4):
Monocle2 [11]; SCDE [5]; ROTS [18]; MAST [9]; and
Seurat [19]. Although both SCDE and MAST were
developed for read counts, their authors claim that they
can be applied to UMI data. To handle the apparent
zero inflation, SCDE employs a mixture of a NB model
and a Poisson model, while MAST uses a hurdle model
with the non-zero component modeled with a Gaussian

Table 3 Number of genes with selected models for large-scale datasets on the GemCode and Chromium platforms

NB vs ZINB Poisson vs NB

Data Cells used (n) Genes detected (n) Genes tested (n) Genes converged (n) ZINB NB Poisson Poisson (%)

Naive T cells (Gemcode) 9850 32,738 11,978 11,977 7 5336 6634 55.39

Memory T cells (Gemcode) 9578 32,738 12,569 12,567 4 6336 6227 49.55

Rh41 (Chromium) 6875 33,416 18,435 18,435 39 9387 9009 48.87
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Table 4 Goodness of fit test for the Poisson and NB models for large-scale datasets on the GemCode and Chromium platforms

Data Cells used (n) Genes tested (n) Genes reject Poisson (n) Genes reject NB (n) Accept Poisson (%) Reject NB (%)

Naive T cells (Gemcode) 7332 776 403 65 48.07 8.38

Memory T cells (Gemcode) 8622 836 533 28 36.24 3.35

Rh41 (Chromium) 6187 6853 4630 295 32.44 4.30

A model is rejected if FDR < 0.05 among all genes tested; otherwise it is accepted
NB negative binomial
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distribution. Monocle2 [11] and Seurat [19] provide
NB-based differential expression analysis (among other
models) for UMI counts. We also included ROTS based
on a recent comparison of scRNA-seq differential expres-
sion analysis [18]. Recently, several scRNA-seq-tailored
normalization schemes have been proposed [16]. We
evaluate their contributions by integrating NBID with
scran, a state-of-the-art generic normalization method
[25], by using the cell-specific size factor estimated by
scran in NBID (NBID_scran).

FDR and power comparison for differential expression
analysis of UMI-based scRNA-seq data
We first evaluated the FDR control for all methods by
using simulated data. Instead of generating artificial
datasets from a theoretical distribution, we simulated
groups of cells with differentially expressed genes from
publicly available datasets collected from different
protocols (data from memory T cells obtained by Gem-
Code [8], from whole-intestinal organoids obtained by
CEL-Seq [20], and from heterogeneous dendritic cells
obtained by MARS-Seq [21]). We began with randomly
generating two distinct groups of cells by swapping the
UMI counts for two sets of genes in the second group.
Here, the first group represented cells collected under a
reference condition and the second group contained
cells under the testing condition with simulated differen-
tial expressions. The two equal-sized sets of genes had
different average expression levels in the full dataset
before swapping. This strategy generated artificially
separated groups of cells while retaining specific charac-
teristics of the scRNA-seq counts for each cell. The dis-
tribution of the total number of UMIs captured in a cell
is an important characteristic for UMI-based scRNA-seq
experiments. Although biological differences (such as
the physical cell size, proliferation status, and cell-cycle
stages) may affect the absolute number of transcripts in
the cells, technical (non-biological) variations, such as
the cell-to-cell variations in the conversion factor be-
tween transcripts and captured UMIs and variations in
the sequencing depth, have substantial influence on the
number of UMIs captured for each cell. Moreover, the
effects of total UMI variations are disproportionally
biased towards the gene with lower expression [17, 26]
and the disparity in the number of UMIs is further exac-
erbated in scenarios in which two groups of cells being
compared are captured and sequenced separately. To
evaluate the robustness of performance against the com-
monly observed difference in the total UMIs captured
per cell, we simulated three scenarios in terms of ex-
pected group difference in the total UMIs captured by
sub-sampling UMIs in the second group of cells: no dif-
ference (100% UMIs retained); mild difference (80–90%
UMIs retained); and intermediate difference (50–60%

UMIs retained). Because NBID assumes a sufficiently large
number of cells in each group, we evaluate its robustness
in common scenarios for scRNA-Seq experiments with
different number of cells (60, 300, or 1000 cells, approxi-
mating samples collected from 96-well plates, 384-well
plates, and by droplet methods, respectively).
In extensive simulations of 300 or 1000 cells (two

groups combined) with different simulated fold change
from multiple datasets obtained by different protocols,
Monocle2, SCDE, and Seurat consistently inflated the
FDR and the number of false positives increased with
the level of expected UMI difference between groups
(Table 5, Additional file 2: Tables S5–S8). Similar to the
comparisons result derived from read counts [27], SCDE
generally detected fewer DE genes compared to other
methods in UMI-count scRNA-seq data. However, it
often produced relatively high number of false positives,
which resulted in severely inflated FDRs in the simula-
tions. Due to the severely inflated FDRs (with or without
expected group difference in the total UMI counts) in
many scenarios, both SCDE and Seurat were excluded
from subsequent analyses. ROTS controlled FDR with-
out UMI difference, but severely inflated the FDR in
scenarios with expected group differences in UMIs.
While MAST controlled the FDR without and with mild
group difference in UMIs, it also shows inflated the FDR
with intermediate differences in total UMIs. NBID and
NBID_scran were the only methods to achieve proper
FDR control under all three scenarios (Table 5).
In the simulation of 60 cells combined, all the methods

except for MAST yielded various degrees of FDR infla-
tion (Additional file 2: Table S9), indicating that > 60
cells are needed for a robust DE analysis in scRNA-seq.
Nevertheless, when we focused on genes with high ex-
pression (with TPM ≥ 50 in at least one group, similar to
the threshold employed in reference [28]), NBID and
NBID_scran approached the desired FDR control in all
three scenarios.
We used precision-recall curves to evaluate the power

of the methods (Fig. 3 and Additional file 1: Figures S5–
S9). Measured by the area under the curve (AUC), NBID
and NBID_scran robustly outperformed other methods
in different simulation scenarios. Although ROTS had a
slight edge without group difference in UMIs, it was
highly sensitive to the group difference: even a mild dif-
ference dropped the AUC to 0 in simulations with 1000
cells. NBID and NBID_scran achieved similar results,
suggesting that the total UMI count is a good estimator
for the cell-specific size factor in the simulations.

Differential expression analysis of naive T cells and memory
T cells
We evaluated three algorithms (MAST, ROTS, and NBID)
for their ability to identify DE genes in naïve T cells and

Chen et al. Genome Biology  (2018) 19:70 Page 7 of 17



memory T cells (Fig. 4 and Additional file 2: Tables S10
and S11). NBID detected more DE genes than did MAST
or ROTS (Fig. 4a), consistent with the simulation results
showing better power with NBID. Because the true DE
genes in the groups were unknown, we compared the in-
ferred DE genes against a published list of DE genes for
naïve T cells and memory T cells (Table 1 in reference
[29]). Since both T-cell datasets were derived from the
CD4+ population [8], CD8+ specific genes were ignored.
Of the 37 true positives, NBID, MAST, and ROTS recov-
ered 34 (92%), 30 (81%), and 24 (65%), respectively. The

three genes missed by NBID (LY96, STAM, and TOX) had
very low expression in the dataset (average UMI count
from the large group: 0.002, 0.007, and 0.007, and TPM:
2.7, 9.4 and 10.7, with an average of approximately 850
UMIs being captured per cell), leading to insufficient de-
tection power for DE genes. Consequently, none of the
evaluated algorithms classified the three genes as DE
genes. Additional file 1: Figure S10 shows density plots of
selected genes.
We carried out additional in-silico validation of pre-

dicted DE genes by NBID and MAST. We assumed that

Table 5 FDRs of evaluated methods

1a 0.8–0.9b 0.5–0.6c

Method FDR False (n) DE (n) FDR False (n) DE (n) FDR False (n) DE (n)

Monocle2 0.069 5.9 83.9 0.089 7 79.1 0.276 22.1 79

SCDE 0.299 2.6 8.3 0.34 3.7 9.5 0.848 123.5 145.2

MAST 0.001 0 29.5 0.003 0.1 28.2 0.193 3.4 19.5

ROTS 0.045 4.4 97.5 0.497 71.6 145.9 0.835 272.4 323.9

Seurat_ttest 0.244 31.5 128.3 0.441 69.6 156.1 0.927 653.6 704.5

Seurat_bimod 0.154 17.6 112.5 0.655 172 258.7 0.928 924.5 996.3

Seurat_tobit 0.248 32.2 129 0.45 72 158.5 0.873 351.7 402.8

Seurat_poisson 0.208 25.7 122.6 0.188 20.1 106.1 0.573 67.4 116.2

Seurat_negbinom 0.197 23.9 120.7 0.164 16.9 102.4 0.5 47.7 93.8

NBID_scran 0.038 3.4 86.9 0.035 2.8 80.1 0.039 2.5 62.4

NBID 0.033 2.8 85.7 0.032 2.7 81.4 0.03 1.8 58.9
aNo sub-sampling
bThe sub-sampling ratio in Group 2 was 0.8–0.9
cThe sub-sampling ratio in Group 2 was 0.5–0.6.
Bold values indicate FDR > 0.05. Bold and underlined values indicate FDR > 0.1. The nominal FDR was 0.05. Simulation based on the Memory T-cell data [8], 500
cells in each group, results are averaged over 96 replicates (see Additional file 2: Tables S5–S9 for results for other simulation scenarios). NBID_scran used the size
factor computed by scran as the offset instead of the total UMI counts
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the DE genes detected by both algorithms were true posi-
tive and that genes not detected as DE genes by either
algorithm were true negatives. We then randomly sam-
pled subsets of cells from each population (1000, 2000, or
5000 cells) and compared the recovery of these genes in
ten subsampled replicates. NBID outperformed MAST,
having a higher AUC in all three settings (Fig. 4b–d).
In this real-data analysis, NBID_scran again achieved

similar results as NBID. Specifically, 5728 DE genes were
detected by both methods, accounting for 95.5% and 94.3%
of all DE genes by NBID (5997) and NBID_scran (6076),
respectively. Together with additional evidences from simu-
lation studies, we conclude that the default normalization
scheme employed by NBID generally achieved comparable
performance with scran, a state-of-the-art normalization
scheme.

Differential expression analysis for biomarker identifications
scRNA-seq has been widely used to reveal the subpopu-
lation structure in heterogeneous cell populations
through unsupervised clustering approaches [1]. Differ-
ential expression analysis of identified cell subpopula-
tions can further characterize their functional differences
and identify potential biomarkers for experimental valid-
ation and subpopulation separation. Consequently, we
applied NBID and MAST to detect DE genes in the two
subpopulations inferred to be present in Rh41 cells.
Among the expressed genes (with TPM ≥ 3 in at least
one group [30]), NBID and MAST revealed 1019 and
448 DE genes between the two clusters with a fold
change > 2 between the two clusters (Additional file 2:
Tables S12, S13), respectively. We ranked the potential
of DE genes to be robust biomarkers based on the test
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Fig. 4 Comparison of detected genes in naïve T cells and memory T cells. a The Venn diagram of DE genes detected by NBID, ROTS, and MAST.
b The precision-recall curves obtained using a subset of 1000 cells of each cell type. For the power calculation, we chose the DE genes detected
in both NBID and MAST as the true DE genes and the genes not detected as DE genes in either NBID or MAST as the true non-DE genes. c, d
The same as (b) except using subsets of 2000 and 5000 cells, respectively
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FDR values, their relative fold changes, and their overall
expression levels. The CD44 gene, which encodes a
commonly used cell surface marker, appeared at the top
of the list (Fig. 5a). FACS sorting confirmed the presence
of two subpopulations with different CD44 protein levels
(CD44high and CD44low) in Rh41 cells (Fig. 5b). Being
both a receptor for extracellular matrix components and
a co-factor for growth factors and cytokines, CD44 is a
well-established cancer stem cell marker with great
prognostic and therapeutic potentials [31, 32].
We performed three replicates of FACS sorting on Rh41

cells and collected both CD44high and CD44low subpopula-
tions for bulk RNA-seq. Of the 1019 DE genes identified
by NBID in the inferred clusters in scRNA-seq, 699
(68.6%) were also detected as DE genes with the same
direction in the two subpopulations from the bulk
RNA-seq analysis, thus validating CD44 as a cell-surface
marker that could be used to separate the two endogenous
Rh41 subpopulations. Although MAST identified fewer
(448) DE genes, a lower percentage of DE genes (226,
50.4%) were validated in the bulk DE analysis (Additional
file 2: Table S13), which demonstrated the superior accur-
acy and power of NBID in revealing true DE genes. More-
over, among the four established surrogate molecular
markers for fusion status in rhabdomyosarcoma samples,
namely the upregulation of TFAP2B, MYOG, and NOS1,
coupled with the repression of HMGA2 in fusion positive
ARMS [33], both bulk DE analysis of sorted subpopula-
tions and NBID analysis of subpopulations inferred from
scRNA-seq revealed repression of TFAP2B and MYOG as
well as upregulation of HMGA2 in the CD44high subpopu-
lation (Additional file 2: Table S12), suggesting that the
CD44high subpopulation represents a less differentiated,
stem-like cell subpopulation. The exact mechanism by
which the distinct subpopulations develop warrants fur-
ther investigation.

Evaluation and control of batch effects
Differential gene expression analysis of scRNA-seq data fre-
quently involves data generated in separate batches (e.g. in
different lanes or plates in single-cell library construction).
This can introduce batch effects (systematic inter-group
technical variations that are not relevant to the biological
hypothesis being evaluated), which pose a major challenge
in high-throughput data analyses [34]. Controlling the
batch effects is, therefore, important in order to distinguish
true biological differences from technical artifacts [26, 35].
We evaluated batch effects in the two replicates of the four
UMI-based protocols used by Ziegenhain et al. [12] (Fig. 6).
Although various numbers of DE genes (596–5156, Fig.
6a–d) were detected by these protocols, only seven were
common across all protocols (Fig. 6e), consistent with the
hypothesis that most apparent DE genes were the result of
technical noise. Among the four protocols, CEL-Seq2 and
SCRB-Seq had relatively stronger batch effects when com-
pared to DROP-Seq and MARS-Seq; these stronger effects
were potentially associated with the higher UMIs captured
per cell.
All the evaluated methods except for ROTS allow explicit

modeling of technical variations (such as differences in
cell-cycle stage and batch effects) as covariates. We evalu-
ated the performance of batch-effect removal by simulating
group differences mixed with apparent differences arising
from the batch composition, using data generated from
CEL-Seq2 (Table 6, Fig. 7) and SCRB-Seq (Additional file 1:
Figure S11, Additional file 2: Table S14) by Ziegenhain et al.
[12]. Because of the limited sample size in these two data-
sets, we focused on highly expressed genes (with TPM ≥ 50
in at least one group). Without explicitly modeling the
batch effects, all methods showed various levels of FDR
inflation. Most of the tested methods (except MAST)
reduced the FDR after modeling batch information as a
covariate. NBID outperformed Monocle2 and MAST by
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Fig. 5 Differential expression of CD44 in two clusters in the Rh41 cell line. a Violin plot of the gene expression among cells in the two clusters,
the TPM is in log10 scale after adding a small value 1. b The CD44 count distribution when using CD44 to sort single cells, indicating two clusters
of cells with different levels of CD44 expression
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demonstrating better recovery of true positives with prop-
erly controlled FDR.

Discussion
In the present study, we performed extensive model se-
lection and goodness-of-fit analyses using multiple
scRNA-seq datasets and revealed intrinsic distributional

differences between the read counts and the UMI counts
for the scRNA-seq data. Our analysis suggests that, com-
pared to read counts, UMI counts can be modeled by a
simpler distribution. Specifically, the NB model is an ad-
equate model for UMI-count data in the absence of an
explicit need to account for dropout events by using
zero-inflated models. Data derived from the Smart-Seq
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protocol in reference [12] deviated slightly from other
read-based data, with fewer genes preferring the ZINB
model and a lower proportion of NB rejection in the
goodness-of-fit test. Although the exact cause of the ob-
servation is unknown, our analysis of a different
Smart-Seq dataset [23] (Additional file 2: Table S1) re-
sulted in a pattern similar to that seen with other read
count-based protocols.
Based on the result of our analysis, we propose a hypo-

thetical model linking the UMI counts and read counts (see
Additional file 1: Supplementary methods and Figure S12)

that also explains the differences between UMI-count- and
read-count-based scatter plots (Fig. 1). The PCR amplifica-
tion step produces a sharp contrast between the read
counts and UMI counts. Whereas the UMI counts follow a
Poisson/NB distribution, the read counts—even with a con-
stant multiplication factor (i.e. with no amplification
biases)—no longer follow the same Poisson/NB model (see
the “Methods” section for more details). The uneven ampli-
fication bias (i.e. with transcripts being amplified at differ-
ent levels) introduces extra deviations from the underneath
(simpler) distribution of the UMI counts. Consistent with
the hypothesized model, recent studies have shown that in-
ferring approximate transcript counts from the read-count
data can significantly improve the analysis efficiency [11].
A few published studies have suggested that NB models

are often to be preferred for UMI-based scRNA-seq data
[3, 13]. Although we reached the same conclusion, we be-
lieve that our design controlled potential technical noises
and allowed us to draw a stronger and more valuable con-
clusion from the extensive evaluation. Grun et al. evalu-
ated the technical noise in the read counts and UMI
counts in a relatively small dataset (74 cells) generated by
CEL-Seq and concluded that, when compared to the nor-
mal and log-normal models, a NB model explained the
distribution of more genes [3]. However, the captured
UMIs were converted to theoretical transcript-counts
(based on the estimated conversion rate) before model
fitting. This process could be approximated by the sce-
nario of amplification without biases in our hypothetical
model (Additional file 1: Figure S12) and converted
transcript counts (in theory) no longer follow a NB model.
Consequently, although a NB model explained the distri-
bution of more genes than did the normal and log-normal
models, it only accounted for a small fraction of the 11,555
genes analyzed. Recently, Vieth et al. [13] carried out a

Table 6 FDRs with and without controlling batch covariates

No filtering TPM≥ 50

Method FDR False (n) DE (n) FDR False (n) DE (n)

Monocle2 0.279 37.7 132.4 0.202 24.3 118.65

Monocle2_plateCov 0.100 10.25 101.3 0.054 5.3 96.2

MAST 0.264 28.75 74.65 0.264 28.75 74.65

MAST_plateCov 0.268 28.65 72.85 0.268 28.65 72.85

ROTS 0.258 36.2 132.1 0.206 26.75 122.1

NBID 0.326 50.35 146.85 0.183 22.9 119.05

NBID_scran 0.328 50.45 146.95 0.200 25.3 121.45

NBID_plateCov 0.124 13.5 108.1 0.048 4.75 99.05

NBID_scran_plateCov 0.124 13.45 108 0.048 4.75 98.9

Simulation based on data: CEL-Seq2 (both batch A and batch B) from Ziegenhain et al. [12]. Sample size was 60 (30 cells in each group). In total, Replicate A had
30 cells and Replicate B had 35 cells after QC. Group 1 had 9 cells from Replicate A and 21 cells from Replicate B. Group 2 had 18 cells from Replicate A and 12
cells from Replicate B. Method names with plateCov indicate adjusting the batch covariates. NBID_scran and NBID_scran_plateCov used the size factor computed
by scran as the offset instead of the total UMI counts
Bold values indicate FDR > 0.05
Bold and underlined values indicate FDR > 0.1
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study that estimated characteristics in 18 UMI-based and
20 read-based scRNA-seq datasets, including those of Zie-
genhain et al. [12], that were extensively evaluated in the
present study. However, the evaluation of Vieth et al. was
based on modeling read counts and UMI counts collected
in separate experiments, which inevitably introduced un-
controlled differences between the experiments.
Our design directly compared read counts (before

conversion to UMIs) and corresponding UMI counts
collected from the same set of cells, enabling us to dir-
ectly evaluate the effects of PCR amplification in statis-
tical modeling. Moreover, our analysis revealed the
necessity of controlling batch differences. Combining the
knowledge derived from the extensive modeling with the
expected large sample size, we proposed NBID, a novel
differential expression analysis algorithm designed for
use with UMI-based scRNA-seq data. NBID is based on
the negative binomial generalized linear regression
(GLM) framework, thus shared similarities with those
employed in bulk RNA-seq analysis [36, 37]. The major
difference compared to those originally proposed in bulk
RNA-seq analysis is that we allow independent
group-specific dispersions for each gene based on obser-
vations that genes of the same expression level might
have different dispersion parameters [3, 7]. Because of
the sample size limitation, algorithms proposed in bulk
RNA-seq analysis [36, 37] typically pool genes with simi-
lar expressions for a robust and smooth estimate of dis-
persions and assume identical dispersion between
groups. NBID exploits the direct benefit of the large
sample size in scRNA-seq, which allows group-specific
estimates of dispersion for each gene. This difference is
analogous to the difference between a t-test assuming
equal variance and an unequal variance t-test. Several
studies have shown that an unequal variance t-test per-
forms equally well when the underlying group variances
are identical but outperforms a t-test assuming equal
variance when the group variance are different [38, 39].
Although we focused on comparison to algorithms de-
signed for scRNA-seq in this study, we believe that it
will inspire future in-depth evaluations (under various
technical scenarios) with additional methods, including
those originally proposed for bulk RNA-seq analysis.
Technical variations (e.g. batch effects and variations

in the total UMIs captured) are common in scRNA-seq
experiments; accounting for these variations is critical to
revealing true biological differences in differential ex-
pression analysis. As shown in our simulation, many
scRNA-seq analysis packages yielded inflated FDRs with
technical variations (such as small differences in the
total UMIs for the groups), which might result in ele-
vated false positives and/or true positives being masked.
In contrast, our analysis indicates that NBID achieved
both proper FDR control and better power in revealing

real DE genes when compared to previously developed
methods for single-cell analysis. Even though only pairwise
analyses were considered in the current study, the general
form of NBID allows multiple groups to be tested simul-
taneously, as in the generalized linear model framework.
Differential expression analysis can be used to reveal

differences among samples run on separate lanes or
plates. However, it should be pointed out that batch ef-
fects are expected to overlap with biological differences
in this setting. It is better to account for batch effects by
proper experimental design, such as by including multiple
biological replicates for each group. Another typical appli-
cation of differential expression analysis is to identify poten-
tial biomarkers for inferred cell subpopulations. One
potential caveat in this setting is that cells are usually clus-
tered from the same data. Therefore, p values or FDR
values derived from the differential expression analysis
might be overly optimistic. However, the result is still useful
for prioritizing potential biomarkers for further validation.

Conclusions
We have conducted an extensive analysis of multiple
scRNA-seq datasets and have concluded that, unlike
read counts, UMI counts can be modeled appropriately
with the negative binomial model. More complex
models, such as zero-inflated negative binomial models,
provide no extra gain. Based on the above conclusion,
we have proposed a differential expression analysis algo-
rithm that allows independent estimations of dispersion
for individual genes within each group. Compared to
other recently developed methods, our proposed algo-
rithm achieves proper FDR control and better power for
detecting differentially expressed genes in large-scale
UMI-count scRNA-seq datasets.

Methods
Model selection and testing
We first checked whether the ZINB model was neces-
sary for the UMI counts. This was done by a statistical
test comparing the NB and ZINB models for each gene
with the null hypothesis that NB fitted the data well.
The likelihood ratio statistic was used. We used an FDR
level of 0.05 to control the false positives because of the
large number of genes tested. For those genes that ac-
cepted the NB model, we then checked whether the NB
model was necessary by testing the Poisson model ver-
sus the NB model, with an FDR level of 0.05. For both
NB versus ZINB and Poisson versus NB comparisons,
the parameter being tested was on the boundary, and
the log likelihood-ratio test statistic follows an equal
mixture of 0 mass and a chi-square distribution with 1
degree of freedom under the null hypothesis [40, 41].
The p value was calculated based on this mixture distri-
bution, and the FDR was calculated using the Benjamini
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and Hochberg’s method [42] . To ensure the conver-
gence of fitted NB and ZINB models, we keep only those
genes that satisfy L(Poisson) ≤ L(NB) + δ and L(NB) ≤
L(ZINB) + δ, where L(M) is the log likelihood of fitted
model M, and we set δ to 0.5 to allow some numerical
variations in likelihood maximizing. The Poisson model
was fitted using the glm function in R. Two methods
were used to fit a NB model and the one with the higher
likelihood was used in the model comparison. The first
method was implemented using glm.nb in the R package
MASS [43]. A grid of initial values 10[−8, −7,…, 4] for θ
(the reciprocal of the dispersion) was tried, and the lar-
gest likelihood was used. The second method was to first
fit other parameters related to the mean with an initial
dispersion, and then search for the optimal dispersion
value to maximize the likelihood given the estimated
mean. That method iterated between these two steps
until a maximal number of iteration was reached or the
change in likelihood was small enough. The ZINB model
was fitted using the function zeroinf from the R package
pscl [44]. To increase the convergence rate, we first fit-
ted a NB model and then used parameters from the NB
model as the initial values. For all model comparison, we
restricted the comparisons to genes with at least five
non-zero cells among all the cells to ensure meaningful
expression pattern.

Goodness-of-fit test
We first down-sampled each cell to the 10% quantile of
the total UMI among all the cells so that the gene-count
values for each gene would be comparable among cells.
The cells corresponding to the lower 10% quantile were
not used. The down-sampling was performed by sampling
the transcript without replacement, which follows a multi-
variate hypergeometric distribution. After down-sampling,
only genes with a nonzero count in more than five cells
were kept. Then the count values were assigned to differ-
ent intervals (bins). First each unique count value itself
forms its own bin and the number of cells falling into each
bin was recorded. Staring from the bin of the largest count
value, bins with no more than five cells were combined
with next bin. The degree of freedom for the Chi-square
goodness-of-fit test is k − p − 1, where k is the number of
bins and p is the number of parameters of the model used.
For example, the degree of freedom for the NB model is k
– 3 and that for the Poisson model is k – 2. This proced-
ure filters out genes with expression levels that are too
low. For example, genes with count values of only 0 or 1
(two bins) will not be included for testing. However, for
these genes, the Poisson or NB model will often result in a
very good fit due to the simplicity of the data. In this
study, the maximum likelihood estimate of the model pa-
rameters were estimated first and then the theoretical
counts for individual bins were calculated. We used the R

package fitdistrplus to plot the empirical pmf/cdf versus
the theoretical ones [45].

Differential expression analysis using the NB model with
independent dispersions (NBID)
To simplify the notation, we focus here on one gene. Let
us denote the count in cell i by yi; then yi � NBðniμi;ϕgi

Þ,
where ni is the total number of counts for cell i and μi is
the proportion of the gene counts in cell i. ϕgi

is the

dispersion for cell i with group label gi, for example, gi =
0 or 1 for two groups. As in generalized linear models, we
link the mean proportion to explanatory variables such as
group labels; and other potential covariates. Specifically,
for two groups, the full model is:

log niμið Þ ¼ β0 þ β1gi þ γTxi;

where β0 is the intercept, β1 is the group effect size in
the log scale, and γ is a vector of coefficient for the other
covariate vector xi. The likelihood of the observed data
under the full model is

L ¼
Ym

i¼1

f yijniμi;ϕgi

� �
;

where m is the number of cells and f ðyijniμi;ϕgi
Þ is the

probability of yi assuming a NB distribution with mean

niμi and dispersion ϕgi
. Specifically, f ðyjμ;ϕÞ ¼ Γðϕ−1þyÞ

y!Γðϕ−1Þ

ð μ
ϕ−1þμ

Þyð ϕ−1

ϕ−1þμ
Þϕ

−1

:

We note that, here, ni serves as a normalization factor
or size factor, similar to those used in edgeR [36] and
DESeq [37]. Alternatively, NBID can accept size factors
estimated by other methods, such as scran [25].
We compute the maximum likelihood estimate of the

dispersion parameters ϕgi
and the coefficients related to

the mean by using the R package nloptr. To test whether
there is a difference between groups, we also fit the null
model log(niμi) = β0 + γTx with dispersions estimated
from the full model. Finally, a likelihood ratio test is
used to compare the reduced model and the full model,
which follows a chi-square distribution with one degree
of freedom.

Computing time for NBID in large scale datasets
NBID took 7.5 h in the analysis of naïve T cells versus
memory T cell datasets (9850 and 9578 cells, respect-
ively) on an Intel Xeon processor (E5-2670) running Red
Hat Enterprise Linux 6 operating system and R 3.3.1.

Methods evaluated
The methods evaluated and additional details are listed
in Additional file 2: Table S4; unless specifically stated
otherwise, the default options for each method were
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used in the evaluation. When there was a need to con-
vert a count value x to the log2 scale, log2(x + 1) was
used for the conversion. The FDR was calculated based
on p values by Benjamini and Hochberg’s method [42],
except for SCDE and ROTS. For SCDE, an adjusted p
value was used based on the output corrected z-score
and assuming a standard normal distribution. For ROTS,
we used the FDR output from the package, which was
calculated based on the bootstrap resampling.

Data simulation
To simulate data for differentially expressed analysis, we
sampled 1000, 300, or 60 cells from the real UMI-count
matrix from memory T cells obtained by GemCode [8],
from heterogeneous dendritic cells obtained by
MARS-Seq [21], and from whole-intestinal organoids
obtained by CEL-Seq [20], respectively. Cells were ran-
domly split into two groups. To create differentially
expressed genes, we first ranked genes based on the
average count in the second group and chose 50 genes
starting with the one having an average UMI count just
above t. Denoting the fold change by FC, we selected
another 50 genes starting with the average count just
above FC × t. We then swapped these two sets of genes
in their count matrix in the second group. This simula-
tion kept the distribution pattern of the UMI counts un-
changed and created differentially expressed genes with
certain fold-change levels. In our simulation, we set FC
and t so that the precision-recall curves (power) were in
a good range.
To simulate datasets with known batch variables, we

sampled different proportions of cells in each replicate
to form two groups. Specifically, we sampled nine cells
from replicate A and 21 cells from replicate B to form
the reference group, 18 cells from replicate A and 22
cells from replicate B to form the other group. We se-
lected DE genes which were not influenced by the ap-
parent difference between replicates. Therefore, when
these true DE genes were detected, it was not due to the
detection of simulated batch effects. Specifically, we se-
lected DE genes with p value > 0.5 from the DE analysis
results between the two replicates. We used two plat-
forms in this simulation: CEL-Seq2 and SCRB-Seq,
which showed strong batch effects in the DE analysis be-
tween two replicates.

Evaluating FDR and power by using the precision-recall
curve
We simulated 100 or 20 replicates for each down-sampling
setting. The FDR was calculated for each replicate and then
averaged across the replicates to generate the mean FDR.
Because a few datasets had running problems with selected
competitive methods, replicates on which all methods ran
successfully were used in the final analysis. To obtain

the power for detecting DE genes, we plotted the
precision-recall curve and used the area under the
curve (AUC) as the criterion; this was calculated based
on all the applicable replicates. Because only the top
genes with relatively small estimated FDRs are of
interest in a real data analysis, we restricted the com-
parison to the region where the precision was above
0.8, i.e. the region with FDR ≤ 0.2. This approach was
more reasonable than using the full range of the
precision-recall curve, even though the result patterns
were often similar. This method is also better than
using the receiver operating characteristic (ROC)
curve as used in some published papers for power
comparison because the true negative genes are often
the majority; therefore, only the region with very high
specificity (so that the FDR can be low) is of interest
but the cut-off is not easy to determine with the ROC
curve because the specificity is not directly related to
the FDR.

Rh41 single-cell dataset
The human alveolar rhabdomyosarcoma cell line, Rh41,
was cultured in a 5% CO2 incubator in a 75-cm2 vented
flask containing DMEM media supplemented with 10%
FBS and 2× glutamine until the cells reached 75% con-
fluence at approximately 3.6×106 cells. The cells were
detached from the flask with 7 mL of 1× citrate saline to
which 7 mL of DPBS was added followed by centrifuga-
tion at 300×G for 7 min. The cells pellet was resus-
pended in 300 uL of blocking buffer (Rat IgG/PBS) and
incubated on ice for 30 min. A total of 50 uL of the cells
in blocking buffer were transferred to a separate tube for
the isotype control. The cells were washed with 1 mL of
staining buffer (5% BSA/PBS) and centrifuged at 300×G
for 5 min. The pellet containing approximately 3×106

cells was incubated with Rat IgG2B anti-CD44-Alexa
488 antibody (R&D systems) in staining buffer (15 uL
antibody + 135 uL of staining buffer) for 30 min on ice.
For the isotype control ~ 600,000 cells were incubated
with 5 uL of Rat IgG2B-Alexa488 (R&D systems) + 45
uL of staining buffer for 30 min on ices. After the incu-
bation, both sets of cells were pelleted and washed with
1 mL of staining buffer as described above and resus-
pended in staining buffer, followed by flow cytometric
analysis to identify the fraction of CD44 positive and
negative populations.
For the single cell experiment, Rh41 cells were cultured

and harvested and washed in DPBS, as described above,
and resuspended in PBS/0.2%BSA at a concentration of
1×106 cells/mL. The 10× Genomics single-cell platform
performs 3′ gene expression profiling by poly-A selection
of mRNA within a single cell, which utilizes a cell barcode
and UMIs for each transcript. Single-cell suspensions were
loaded onto the Chromium Controller according to their
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respective cell counts to generate approximately 6000 par-
titioned single-cell GEMs (Gel Bead-In-EMulsions). The
library was prepared using the Chromium Single Cell 3′
v2 Library and Gel Bead Kit (10× Genomics) according to
the manufacturers protocol. The cDNA content of each
sample after cDNA amplification of 12 cycles was quanti-
fied and quality checked by High-Sensitivity DNA chip on
a 2100 Bioanalyzer (Agilent Technologies) at a dilution of
1:6. This quantification was used to determine final library
amplification cycles in the protocol, which was calculated
at 12 cycles. After library quantification and quality check
by DNA 1000 chip (Agilent Technologies), samples were
diluted to 3.5 nM for loading onto the HiSeq 4000 (Illu-
mina) with a 2 × 75 Paired-end kit using the following
read length: 26 bp Read1 (10× cell barcode and UMI),
8 bp i7 Index (sample index), and 98 bp Read2 (insert).
An average of 400,000,000 reads per sample was obtained,
which translated to roughly 80,000 mean reads per cell,
per sample. The Cell Ranger 2.0.1 Single-Cell Software
Suite (10× Genomics) was implemented to process the
raw sequencing data from the Illumina HiSeq run. This
pipeline performed de-multiplexing, alignment (GRCh38/
STAR), and barcode processing to generate gene-cell
matrices used for downstream analysis.
After matrix generation the ribosomal and mitochon-

drial related genes were filtered. The subpopulation
structure in Rh41 cells was inferred using a novel clus-
tering algorithm developed in house for analyzing
large-scale scRNA-seq data (manuscript in preparation).
Briefly, it first used singular value decomposition (SVD)
to derive latent cellular states from the expression
matrix for individual cells. The number of significant
cellular states was determined using the Tracy-Widom
test on eigenvalues. A modified version of spectral clus-
tering was performed on the significant cellular states of
individual cells (cellular states explained by total UMIs
were ignored) with a different number of clusters (2–
30). The final two-subpopulation structure was deter-
mined by the silhouette measure for solutions with dif-
ferent number of clusters.
NBID was used to identify DE genes in the two sub-

populations. We further filtered the DE genes by using
two thresholds: the average expression level with TPM ≥
3 in at least one cluster [30], and log2 fold-change ≥ 1.

Rh41 bulk RNA-seq dataset
RNA was isolated from the sorted subpopulations using
Trizol (Thermo Fisher Scientific) following the manufac-
ture recommendations. RNA libraries were prepared using
the Kapa RNA HyperPrep with Riboerase RNA kit (Roche)
using the recommended conditions. Briefly, 200 ng of total
RNA was used as input for fragmentation, reverse tran-
scription, and second strand synthesis. After clean up, end
repair, and A tailing, Nextflex adapters (Bioo Scientific)

were ligated to the fragments followed by 12 cycles of PCR
amplification on a C1000 (bio-rad). Paired end sequencing
was performed (151 bases per read) on a HiSeq 4000 (Illu-
mina). Three replicates were generated. HTSeq [46] was
used to produce the count data. edgeR [36] was used for
the DE analysis with TMM normalization. Each repli-
cate was coded as a pair of CD44high and CD44low in
the analysis.

Additional files

Additional file 1: This file includes: (1) supplementary methods
describing details in single cell quality control and preprocessing,
application details of other DE methods, and a statistical model linking
UMI and read counts; (2) all supplementary figures. (PDF 2338 kb)

Additional file 2: This file includes all supplementary tables. (XLSX 1530 kb)
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