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Abstract

Species distribution modelling (SDM) gained importance on biodiversity distribution and

conservation studies worldwide, including prioritizing areas for public policies and interna-

tional treaties. Useful for large-scale approaches and species distribution estimates, it is a

plus considering that a minor fraction of the planet is adequately sampled. However, mini-

mizing errors is challenging, but essential, considering the uses and consequences of such

models. In situ validation of the SDM outputs should be a key-step—in some cases, urgent.

Bioacoustics can be used to validate and refine those outputs, especially if the focal species’

vocalizations are conspicuous and species-specific. This is the case of echolocating bats.

Here, we used extensive acoustic monitoring (>120 validation points over an area of

>758,000 km2, and producing >300,000 sound files) to validate MaxEnt outputs for six neo-

tropical bat species in a poorly-sampled region of Brazil. Based on in situ validation, we eval-

uated four threshold-dependent theoretical evaluation metrics’ ability in predicting models’

performance. We also assessed the performance of three widely used thresholds to convert

continuous SDMs into presence/absence maps. We demonstrated that MaxEnt produces

very different outputs, requiring a careful choice on thresholds and modeling parameters.

Although all theoretical evaluation metrics studied were positively correlated with accuracy,

we empirically demonstrated that metrics based on specificity-sensitivity and sensitivity-pre-

cision are better for testing models, considering that most SDMs are based on unbalanced

data. Without independent field validation, we found that using an arbitrary threshold for

modelling can be a precarious approach with many possible outcomes, even after getting

good evaluation scores. Bioacoustics proved to be important for validating SDMs for the six

bat species analyzed, allowing a better refinement of SDMs in large and under-sampled

regions, with relatively low sampling effort. Regardless of the species assessing method

used, our research highlighted the vital necessity of in situ validation for SDMs.
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Introduction

Species distribution modelling (SDM) gained importance worldwide in the development of

studies on biodiversity distribution and conservation [1, 2]. These distribution models can be

produced and refined by crossing species presence records with biological and non-biological

variables and environmental data [e.g., 3]. This is an advantage for large-scale approaches and

species distribution estimates since few parts of our planet have been adequately sampled [4,

5]. Moreover, SDM has been used to support decision-making processes, including prioritiz-

ing areas and regions in public policies and international treaties [2, 5].

For biodiversity conservation purposes, imprecise models can undermine the calculation/

estimate of a species’ occupancy, a criterion used to assess its conservation status, for example

[6]. Depending on the quality of the input data and modelling parameters chosen, the predic-

tions created may not forecast precisely the species’ distribution [7, 8]. Known as commission

(false positives) and omission (false negatives) errors, they can inflate or reduce the potential

distribution of a given taxon. Minimizing such errors is a challenge for spatial modelling [4, 7,

9], but essential considering the uses and consequences such models may have [10]. Therefore,

in situ validation of the SDM outputs should be a critical step—in some cases, urgent [10, 11]

since unvalidated species potential distribution maps can influence and hinder species assess-

ments and the decision-making for species conservation.

Certifying that a species is present in a given area is not always straightforward, and differ-

ent and innovative approaches have been proposed for such tasks [e.g., e-DNA [12] or satellite

images [13]]. Bioacoustics is one of such techniques and has been used for a long time to

record species presence/absence for amphibians, birds, and cetaceans [14]. Bats are a wide-

spread group, using many habitats and resources, and most of the 1400 known species depend

on echolocation for navigation and food acquisition [15]. The bats’ echolocation system is

based on ultrasonic signals which, although above the human hearing capacity, can be easily

recorded thanks to recent electronics advances [16]. Moreover, with the exception of the Phyl-

lostomidae family, most bats have conspicuous and species-specific calls, allowing precise

identification of the emitter’s identity and making the record of its presence accurate [16, 17].

Therefore, bioacoustics can be a useful technique applied to the in situ validation and refine-

ment of SDM outputs for echolocating bats.

Here, we used an extensive in situ monitoring (>120 validation points over an area of

>758,000 km2, and producing >300,000 sound files) of echolocation calls to validate the out-

puts of the most used SDM algorithm [MaxEnt; 3] for six neotropical bat species in a poorly-

sampled part of Brazil; aiming to the evaluate SDM’s performance of using different thresholds

given the validation dataset obtained with bioacoustics. Using independent acoustic data col-

lected, we (a) evaluated the ability of four threshold-dependent theoretical evaluation metrics

in predicting models’ performance, and (b) assessed the ability of three widely used thresholds

to convert continuous species habitat suitability models into binary (presence/absence) maps.

This methodological procedure enabled us to assess of the role of validation methods in SDM

outputs and acoustic samplings as rapid validation method.

Materials and methods

Historical species records

We selected six neotropical bat species whose echolocation calls are well-known, species-spe-

cific and unequivocally identifiable: Noctilio leporinus, Promops centralis, Promops nasutus,
Pteronotus gymnonotus, Pteronotus personatus, and Saccopteryx leptura [18–20]. We gathered

distribution records for these species from a bibliographic revision using the following online
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databases and search engines: the Vertebrate Zoology Database of the American Museum of

Natural History (https://sci-web-002.amnh.org/db/emuwebamnh/index.php); the database of

the Division of Mammals Collections of the Smithsonian National Museum of Natural History

(https://collections.nmnh.si.edu/search/mammals/); the Global Biodiversity Information

Facility (www.gbif.org); the SpeciesLink network (http://www.splink.org.br); Google Scholar

(scholar.google.com); the Web of Science (www.webofknowledge.com); Scopus (www.scopus.

com); the Periódicos CAPES (www.periodicos.capes.gov.br); and the Scientific Electronic

Library Online (www.scielo.br). For that review, we searched for publications using keywords

in the search engines such as: “neotropical bats”, “Pteronotus”, “Noctilio”, “Promops”, “Sac-

copteryx”, “Pteronotus personatus”, “P. personatus” and so on. We did not refined the

searches by any specific field areas nor geographical areas. We also reviewed occurrences in

studies available online such as Barquez, Ojeda [21] and Gardner [22]. We only selected bat

records from peer-reviewed literature, books, or online databases supported by voucher speci-

mens. Each record was checked for duplication of localities and, eventually, to correct location

or taxonomy problems [23]. For example, following Gardner [22], we treated P. nasutus as a

monotypic species (considering Promops nasutus ancilla, P. nasutus pamana, P. nasutus fosteri,
or P. nasutus downsi as simply Promops nasutus). Overall, we gathered a total of 1277 single

records for the six studied bat species: 590 records for Noctilio leporinus, 70 for Promops cen-
tralis, 71 for Promops nasutus, 120 for Pteronotus gymnonotus, 95 for Pteronotus personatus,
and 331 for Saccopteryx leptura (Fig 1, and S1 Table).

Distribution modelling procedure

We used SDMtoolbox 2.4 for ArcGIS [24] to create an environmental heterogeneity map with

all bioclimatic variables from WorldClim 2.0 [25]. To reduce the potential bias caused by auto-

correlation, we then used the Spatial Rarefy Occurrence Data tool of the SDMtoolbox 2.4 pack-

age to delete records under the same environmental conditions within 25 km from each other

[26]. Other studies usually use a 10km distance between points [e.g. 27–29], but given the

topographic and environmental heterogeneity of the studied region, we chose 25 km as a spa-

tial filter to avoid eventual spatial bias on historical records [30]. This process ensured that all

historical records gathered in our revision corresponded to a unique spatial sample, reducing

occurrence data from 1277 to 899 single localities: 375 localities for Noctilio leporinus, 61 for

Promops centralis, 65 for Promops nasutus, 87 for Pteronotus gymnonotus, 66 for Pteronotus
personatus, and 245 for Saccopteryx leptura.

We used MaxEnt 3.4 [3] to generate potential species distribution models for the six

selected species based on a set of variables at a 5 km2 resolution. Due to the shortfalls and con-

straints of absences and pseudo-absences in the species distribution knowledge, and conse-

quently, in species distribution models, we chosen MaxEnt as it uses presence-only input data,

can include both categorical and continuous covariables, and create a spatially explicit suitabil-

ity map for the focal species. We used the 19 bioclimatic variables plus elevation available at

the Worldclim data website [25], and Globcover 2009 [31] as a categorical variable for land

cover. To reduce the multicollinearity among the predictor variables, we performed a prelimi-

nary model with all variables and checked the weight of each according to their contributions,

using Jackknife tests. Next, using the Correlations and Summary Stats tool of the SDMtool-

box 2.4 package, we obtained the correlation and covariances matrices and removed highly

correlated variables (i.e., those with the lowest value when the pairwise correlation was> 0.7)

[32]. Therefore, we used different variables for each modelled species (S2 Table).

We used a logistic output to produce our models and obtain continuous suitability values

for species habitat suitability, which varies from 0 (lowest suitability) to 1 (highest suitability)
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[3, 33]. Since default regularization values lead to overfitted models when using spatial filtering

[29, 34], we calibrated the models with different regularization multiplier values (default 1.0,

2.0, 3.0, and 4.0) [29, 35]. The regularization multiplier is a ‘tunning’ parameter used to

smooth the distribution prediction of the model, making it more regular and less overfitted

[29, 34]. To generate overall predictive distribution models, we used 75% of the data for cali-

bration and 25% for internal evaluation (testing data).

We used ten cross-validation replications to test all models and calculate confidence inter-

vals, resulting in 40 models for each species, and a total of 240 continuous suitability models

for all species. Since we aimed to use bioacoustical data to validate binary maps (presence-

absence), we used three widely used thresholds to convert the continuous suitability values of

each model into binary maps: lowest presence threshold (hereafter LPT) [28]; 10th percentile

of the predicted values (hereafter P10) [28]; and maximum sum of sensitivity and specificity

(hereafter maxSSS) [36, 37]. LPT is considered the least conservative threshold, whereas

maxSSS the most [36, 38]. We produced a total of 720 binary models (i.e., 120 binary models

for each species: 6 species x 120 binary models).

Using MaxEnt’s background and sample predictions for each model, we then evaluated

each 120 species binary models for their predicting performance using four threshold-depen-

dent theoretical evaluation metrics: (1) overall accuracy (hereafter OAcc) [39, 40]; (2) Cohen’s

maximized kappa statistics (hereafter P-kappa) [41, 42]; (3) True Skill Statistics (hereafter TSS)

[40, 43]; and, (4) Symmetric Extremal Dependence Index (hereafter SEDI) [44]. OAcc mea-

sures the model predicted accuracy using the rate of correct classifications (true positive + true

negative) and ranges from 0 to 1; while P-kappa, TSS, and SEDI measure the model predicted

Fig 1. Historical distribution records assembled from the literature review and the 129 acoustic sampling points used for the validation of SDM of six

neotropical bat species (Noctilio leporinus, Promops centralis, Promops nasutus, Pteronutus gymnonotus, Pteronotus personatus, and Saccopteryx
leptura). Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0248797.g001
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accuracy taking into account the predicted accuracy of a by-chance model [40, 44]. P-kappa,

TSS, and SEDI range from -1 to +1, where values� 0 suggest a performance equal or worse

than random, and as close the values get to +1, the better the prediction [40, 44]. For the math

behind each theoretical evaluation metrics calculation, please consult Allouche, Tsoar [40],

Cohen [41], Peirce [43], and Wunderlich, Lin [44].

As expected, the theoretical metrics did not converge on the same best models, therefore we

selected the two best-scored binary models based on each metric (i.e., the two best-scored

based on OAcc, the two best-scored based on P-kappa, and so on. . .) for each of the thresholds

used (LPT, P10, and maxSSS). Then, we validated in the field the resulting 24 theoretical best

binary models for each species, 144 binary models for the six studied species.

Acoustic monitoring and species identification

For the selection of the sampling points for field validation, we summed the MaxEnt’s given

average potential distribution outputs of the six species to identify regions with the highest and

lowest suitability of species occurrence, but without historical records. Considering those spe-

cies’ potential distribution covered extensive areas, we focused our field validation on 129 ran-

domly-selected sampling points along an area of 758,193 km2, in the Northeastern part of

Brazil (Fig 1, and S3 Table). Since some Northeastern Brazil areas are not easily accessed, we

pre-imposed the point selection near roads or paths accessible by, at least, an off-road vehicle.

Between March 2014 and January 2020, we employed passive acoustic monitoring to sam-

ple bat echolocation calls in the 129 sampling points (Fig 1, and S3 Table), using a combination

of two SM2Bat+, two SM3BAT, and two SM4BAT-FS ultrasound recorders (Wildlife Acous-

tics Inc., Massachusetts, USA). We set the microphones at 45º to the ground, avoiding highly

cluttered areas [16, 45, 46]. Since the highest frequency used by the studied species is ~60 kHz

(Noctilio leporinus) [19], we configured the bat detectors with a minimum sampling rate of 384

kHz and 16 bit audio depth, enough to detect and record our focal species without distortions

(e.g., aliasing). Each sampling point was acoustically monitored for at least two nights (from 2

to 15 nights), recording continuously from 30 minutes before sunset until 30 minutes after

sunrise. The recordings were stored automatically in mono.wav format in the SD cards with a

preset maximum duration of 1 minute if any sound above 7 kHz exceeded at least 6 dB. Since

bat activity and the reception of the calls can be affected by weather and local conditions, we

sampled only during nights with temperature > 15ºC, without strong winds (< 5 m/s) or rain

[16, 45, 46].

We used Raven Pro 1.5 (The Cornell Lab of Ornithology 2014) for the acoustic analysis. To

ease the acoustic analysis, we were divided the raw 1-minute sound files into 15-sec files and,

subsequently, we visually inspected all files for the desired bat species calls after configuring

the spectrograms to DFT equals 1024, 96% overlap, window length to 1 ms, using Hamming

windows. We only analyzed sequences containing a minimum of three search calls with a

good signal-to-noise ratio (> 15 dB) [47, 48]. We performed manual acoustic identification

using qualitative (e.g., call structure and modulation) and quantitative parameters (e.g., fre-

quency of maximum energy, maximum and minimum frequency, call duration, etc.), follow-

ing previously published studies on neotropical bat acoustic identification [e.g., 18–20, 48–50].

We did not use feeding-buzzes (and calls immediately before and after) or social-calls for iden-

tification purposes. Although the chosen species have different natural histories, all are consid-

ered as common in the sampled region and can be easily detected and identified by their calls.

All fieldwork procedures complied with the American Society of Mammalogists´ guidelines

for the use of wild mammals in research and education [51] and were previously approved by

the Brazilian Ministry of the Environment (SISBIO n.º 59743–1).
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Field validation of the models

We evaluated the total 144 selected binary models for the six focal species against the results

from the acoustic monitoring performed in the field. We used a confusion matrix to compare

the accuracy of the binary maps, where the observed presence and absence cases from the

acoustic monitoring were compared against the predicted presence and absence of the models.

This procedure allowed us to quantify true positives (TP), true negatives (TN), false positives

(FP; commission errors, type I errors), and false negatives (FN; omission errors, type II

errors).

We used six metrics for the model performance evaluation: (1) Accuracy, to quantify how

often the model is correct in the overall prediction [Accuracy = (TP + TN) / total cases]; (2)

Precision, to quantify how often is the model correct when it predicts the occurrence of the

species [Precision = TP / (TP + FP)]; (3) Sensitivity (true positive rate, or recall), to quantify

the ability of the model to predict species occurrence [Sensitivity = TP / (TP + FN)]; (4) Speci-

ficity (true negative rate), which quantifies the ability of the model to predict species absence

[Specificity = TN / (FP + TN)]; (5) geometric mean of sensitivity and specificity (g-mean) is a

performance metric for imbalanced classifications, with high g-mean indicating a right balance

between sensitivity and specificity [g-mean =
p

(Sensitivity � Specificity)]. If the species pres-

ence classification performance is weak, the g-mean will be low even with an excellent species

absence classification performance [52]; and (6) harmonic mean of precision and sensitivity

[f-score = (2 � Precision � Sensitivity) / (Precision + Sensitivity)], gives the same importance to

precision and sensitivity, i.e., high F-score indicates excellent model performance on the

minority class [52, 53]. The commission error rate is inversely proportional to sensitivity (= 1

—sensitivity), whereas the omission error rate is inversely proportional to specificity (= 1—

specificity). The Fig 2 presents a flowchart summarizing the methodology applied for the

modeling and model validation presented in this study.

To assess the overall performance of the theoretical evaluation metrics (OAcc, P-kappa,

TSS, and SEDI), we used the R package ‘lmerTest’ [54] to perform a mixed-effects linear mod-

els to evaluate the correlations between those scores and the post-validation performance met-

rics scores obtained using acoustic monitoring (accuracy, precision, sensitivity, specificity, g-

mean, and f-score). Species were treated as random effect factor. To test differences in the pre-

diction performances (using the post-validation performance metrics scores) between the

thresholds used (LPT, maxSSS, and P10), we employed the Kruskal-Wallis test with Mann-

Whitney pairwise post hoc test. The thresholds were tested with both all species together and

separately.

Results

SDMs and acoustic field validation

The acoustic sampling performed in this study resulted in more than 1.5 TB of raw 1-minute

sound files. Those raw sound files were divided in 15-sec files and subsequently found that

more than 300,000 of those 15-sec sound files contained bat calls. As shown in the Fig 3, the

calls of the six studied species are very conspicuous and easily to identify. We identified echo-

location calls of Noctilio leporinus in 38 points (29,4%), of Promops centralis in 23 (17,8%), Pro-
mops nasutus in 44 (34,1%), Pteronotus gymnonotus in 53 (41,1%), Pteronotus personatus in 21

(16,3%), and Saccopteryx leptura in 24 of the 129 sampled points (18,6%) (S3 Table). Before

validation, and as expected, we found that the threshold choice on the models have a great

influence on the predicted species occurrence areas as the Fig 4 exemplifies for one of the mod-

els generated for species Promops nasutus.
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Fig 2. Flowchart summarizing the methodology applied for the modeling and model validation for the six neotropical bat species presented in this

study.

https://doi.org/10.1371/journal.pone.0248797.g002

Fig 3. Spectrogram of the echolocation calls from six neotropical bat species of this study (Noctilio leporinus, Promops centralis, Promops nasutus,
Pteronotus gymnonotus, Pteronotus personatus, and Saccopteryx leptura). Time scale (20 ms) in the upper right corner of the figure.

https://doi.org/10.1371/journal.pone.0248797.g003
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After field validation, the performance scores varied considerably between the 144 binary

models: accuracy varied from 0.16 to 0.81, precision varied between 0.09 and 0.59, sensitivity

varied from 0.17 to 1, specificity from 0 to 0.86, g-mean from 0 to 0.75, and f-score from 0.12

to 0.60 (S4 Table). We registered the highest accuracy score (0.81) in a maxSSS thresholded

map of Saccopteryx leptura, the highest precision score (0.59) in a maxSSS thresholded map of

Noctilio leporinus, and the highest sensitivity score (= 1) in LPT thresholded maps of four spe-

cies (Noctilio leporinus, Pteronotus gymnonotus, Promops nasutus, and Pteronotus personatus)
(S4 Table and S1 File). The highest specificity score (0.86) was recorded in maxSSS thresholded

maps of two species (Noctilio leporinus and Saccopteryx leptura), the highest g-mean score

(0.75) in a P10 thresholded map of Saccopteryx leptura, and the highest f-score score (0.60) in a

maxSSS thresholded maps of Pteronotus gymnonotus (S4 Table and S1 File).

Model evaluation vs. field validation

All theoretical model evaluation metrics analyzed exhibited a significant monotonic positive

correlation with accuracy and specificity (Table 1). However, the evaluation metrics exhibited

an overall significant negative correlation with sensitivity. We also found weak positive

Fig 4. Maps from a model (Pnasutus_Cross_Reg1_Mod5) generated for species Promops nasutus. (A) continuous suitability model; (B) LPT-

thresholded binary map (predicted presence-absence); (C) P10- thresholded binary map (predicted presence-absence); (D) maxSSS-thresholded binary

map (predicted presence-absence). Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0248797.g004
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correlation between P-kappa and precision, and a very weak negative correlation between

SEDI and precision. Although negative, the correlations between the majority of theoretical

evaluation metrics and f-score were not significant, except for SEDI that displayed a significa-

tive moderate negative correlation with f-score. Only TSS and overall accuracy exhibited sig-

nificant moderate or strong positive correlations with g-mean.

Thresholds vs. validation

Based on the output maps of all species together, LPT thresholded predictions exhibited signif-

icantly the lowest overall averaged accuracy, precision, specificity, and g-mean scores of the

three thresholds tested (Fig 5, and S5 Table). While P10-based models exhibited a significantly

higher averaged f-score than maxSSS-based, we found no significant differences in f-score

between P10 and LPT, and between maxSSS and LPT-based models (Fig 5, and S5 Table).

P10-based models obtained overall averaged sensitivity scores higher than maxSSS but lower

than LPT-based models and specificity scores higher than LPT but lower than maxSSS-based

models (Fig 5, and S5 Table). LPT-based predictions scored the highest averaged sensitivity

but also presented low average specificity scores. Note that while LPT’s sensitivity scores near

one, its specificity scores are also near zero (Fig 5). We found this same behaviour on LPT and

maxSSS-based models when we analyzed all species separately (Fig 5, and S5 Table). One LPT

prediction for N. leporinus (Fig 6) exemplifies this odd behavior, where omission errors are

Table 1. Mixed-effects linear models results of the theoretical evaluation metrics and the post-validation performance metric scores for the distribution modelling

of six neotropical bats based on bioacoustic field validation in northeastern Brazil.

Theoretical evaluation metric Validation performance metric Estimate Std. Dev. df t-value p-value

TSS Accuracy 0.57591 0.08081 141 7.127 < 0.001

Precision 0.71321 0.19701 106 3.62 < 0.001

Sensitivity -0.39601 0.05979 138 -6.623 < 0.001

Specificity 0.36451 0.04473 139 8.15 < 0.001

G-mean 0.50775 0.06001 139 8.46 < 0.001

F-score -0.06236 0.15176 71 -0.411 n.s.

OAcc Accuracy 0.94031 0.06659 139 14.122 < 0.001

Precision 1.22879 0.20580 129 5.971 < 0.001

Sensitivity -0.74413 0.04034 139 -18.45 < 0.001

Specificity 0.62894 0.02697 137 23.32 < 0.001

G-mean 0.72251 0.05290 139 13.659 < 0.001

F-score -0.29126 0.14502 29 -2.008 n.s.

P-kappa Accuracy 0.18566 0.04241 141 4.378 < 0.001

Precision 0.22173 0.09465 81 2.343 < 0.05

Sensitivity -0.11143 0.03156 138 -3.53 < 0.001

Specificity 0.11323 0.02429 140 4.662 < 0.001

G-mean 0.18451 0.03183 140 5.797 < 0.001

F-score 0.02633 0.07437 86 0.354 n.s.

SEDI Accuracy 0.24738 0.10510 94 2.354 < 0.05

Precision -0.006723 0.222993 73 -0.03 n.s.

Sensitivity -0.39010 0.07094 90 -5.488 < 0.001

Specificity 0.23899 0.05936 92 4.026 < 0.001

G-mean 0.22122 0.09098 93 2.431 < 0.05

F-score -0.51451 0.17516 94 -2.937 < 0.001

df, degreeds of freedom; n.s., not significative.

https://doi.org/10.1371/journal.pone.0248797.t001
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minimal, but commission errors are maximum (sensitivity = 1, specificity = 0, and g-

mean = 0). Even the LPT prediction with the highest g-mean score (P. nasutus, Fig 7) repre-

sented a commission error rate of ~81% and an omission error rate of ~7% (sensitivity = 0.93,

specificity = 0.19, and g-mean = 0.42). While maxSSS-based models scored the highest overall

averaged accuracy and specificity, it also exhibited the lowest averaged sensitivity scores (S5

Table). Nevertheless, in contrast to LPT, maxSSS-based models’ sensitivity and specificity aver-

aged scores are similar, thus presenting higher g-mean scores than LPT (Fig 5, and S5 Table).

This was clear when the maxSSS-based models with the highest g-mean (Fig 8) represented an

omission error of ~29% and a commission error of ~25% (sensitivity = 0.71, specificity = 0.75,

and g-mean = 0.73). All thresholds significantly presented different specificity and specificity

scores, but we found no significant differences between the overall accuracy, precision, and g-

mean scores of maxSSS and P10 thresholded predictions (Fig 5, and S5 Table).

Analyzing species by species, LPT-based predictions once again significantly exhibited the

highest averaged sensitivity scores. However, it also showed significantly the lowest averaged

accuracy, specificity, and g-mean scores for all six species studied (Fig 5, and S5 Table). In the

Fig 5. Box-plots of the accuracy, precision, sensitivity, specificity, g-mean, and f-score scores of LPT, maxSSS, and P10 thresholded maps. Lower and

top box boundaries represent the 25th and 75th percentile, respectively. The point inside the box represents the average, while the line represents the

median. Error lines represent 1.5�interquartile range, and any asterisk outside the error lines represent outliers. Different letters indicate significant

differences between groups (p < 0.05).

https://doi.org/10.1371/journal.pone.0248797.g005
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cases of N. leporinus and S. leptura (Figs 5–8), LPT-based predictions also significantly exhib-

ited the lowest averaged precision and f-score, and the lowest averaged precision scores for P.

nasutus and P. personatus among the three thresholds tested (Figs 5 and 7 and S5 Table). Thre-

sholded predictions based on maxSSS significantly exhibited the lowest averaged sensitivity

scores among the three thresholds tested for N. leporinus and P. gymnonotus (Fig 5, and S5

Table). Still, maxSSS-based predictions also showed significantly the highest averaged specific-

ity and g-mean scores for the same species. The maxSSS-based predictions also presented the

highest averaged accuracy for N. leporinus and P. personatus, and the highest averaged g-mean

for S. leptura among the three thresholds tested (Fig 5, and S5 Table). Saccopteryx leptura’s P10

predictions significantly exhibited the highest averaged g-mean of the three thresholds tested

(Fig 5, and S5 Table). We found no differences between the performance scores based on

maxSSS and P10 in all P. centralis and P. nasutus predictions (Fig 5). We also found no differ-

ences between the three thresholds in precision and f-score for P. centralis and P. personatus, f-

score of P. nasutus, and precision scores of P. gymnonotus maps (Fig 5). See S1 File for the best

performing binary predictions for the six species.

Discussion

This study evaluated and validated species binary distribution models using a combination of

acoustic data collected in the field and simple performance metrics. We proved that

Fig 6. Field validation results for the LPT binary map with the highest accuracy score (= 1) for Noctilio leporinus in northeastern Brazil. Omission

errors are minimal but commission errors are maximum (sensitivity = 1, specificity = 0, and g-mean = 0). ‘Omission’ points represent locations where the

model did not predict the species occurrence, but the species was detected during the acoustics monitoring; ‘Validated’ points represent locations where the

model predict the species occurrence and the species was detected during the acoustics monitoring or locations where the model did not predict the species

occurrence, and the species was detected during the acoustics monitoring; ‘commission’ points represent locations where the model predict the species

occurrence but the species was not detected during the acoustics monitoring. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.

com.

https://doi.org/10.1371/journal.pone.0248797.g006
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bioacoustics are a very effective method for the in situ validation of SDM, here we tested it for

six neotropical bat species in a large and poorly-sampled area in Brazil. Species distribution

modeling is subject to interpretation and depends on many factors, such as tuning parameters

and thresholds [7, 8, 29, 35, 36, 38]. After using field validation, we urge modelers to explore

their modelling approaches effects on result models since predictions might be very variable

even when applying optimal practices.

After modelling the distribution of six bat species, we used acoustical samplings to confirm

the predicted occurrence and absences forecasted by 144 distribution potential models. For

species with conspicuous vocalizations—like most bat families—the acoustical samplings we

employed showed the potential to better refine SDMs in large and under-sampled regions,

with relatively low sampling effort. This is quite useful in tropical areas, usually rich in bat spe-

cies, but frequently understudied [55, 56]. Using bioacoustics as a validation method, we also

demonstrated that a careful decision on the modelling parameters and thresholds used is piv-

otal since, depending on the combination, they can produce very different outputs. Our obser-

vations highlight the importance and necessity of in situ validation of SDM outputs.

Field validation of SDM is unusual [e.g., 57, 58], and very rare for bats [e.g., 10, 59, 60]. Still,

we empirically demonstrated that independent field surveys are the best approach to corrobo-

rate the predictions made by modelling, especially in subsampled regions with high biodiver-

sity like the Neotropics. We demonstrated that only using pre-existing data subsets and

theoretical evaluation metrics (TSS, overall accuracy, P-kappa, and SEDI), our model evalua-

tion may be restricted to its particularities and constraints. Simply selecting the model with the

highest score may not mean that we are choosing the model that best represents reality. For

Fig 7. Field validation results for the LPT binary map with the highest g-mean score (= 0.42) for Promops nasutus in northeastern Brazil. Omission

errors are low but commission errors are very high (sensitivity = 0.93, specificity = 0.19). See Fig 12 caption for the explanation on omission, validation and

commission points. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0248797.g007

PLOS ONE Using bioacoustics for field validation of bats’ SDMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0248797 October 20, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0248797.g007
https://doi.org/10.1371/journal.pone.0248797


example, a maxSSS-based model (Nleporinus_Cross_Reg1_Mod4_maxSSS) obtained the best

TSS score for Noctilio leporinus but also displayed very high omission errors (>30%) after we

validated it on the field. Although all theoretical evaluation metrics correlated positively with

specificity (true negative rate) and g-mean (good balance between specificity and sensitivity),

they also correlated negatively with sensitivity (true positive rate). Thus, high theoretical evalu-

ation metric’ scores such as the widely used TSS may guarantee reliable models but could not

provide the best model for our purposes and may also tend to score higher for the most over-

fitted models. This problem can be exacerbated when dealing with species with fewer existing

data records, such as Promops centralis, and highlights how crucial in situ validation of SDMs

may be.

We are aware that in situ validation of SDM is not always possible, as that will depend on

the focal species, its extension of occurrence, survey methods, and the type and accessibility of

the potential area modelled. In case of the echolocating bats, acoustic surveys can provide a

reliable and fast validation method for distribution models. However, field validation of SDM

—in smaller or focally-selected parts of the predicted distribution, or randomly selected

regions—should be imperative. This is especially important in a conservation-focused scenario

dealing with such high habitat changes due to anthropogenic causes. Modelling species distri-

butions without proper in situ validation may result in inaccurate outputs, compromising the

implementation of better conservation policies or species management plans, for example [5,

9, 60, 61]. This can be particularly serious in the case of models with actual low sensibility

(high omission errors).

Fig 8. Field validation results for the maxSSS binary map with the highest g-mean score (= 0.73) for Saccopteryx leptura in northeastern Brazil.

Omission errors and commission errors are balanced (sensitivity = 0.71, specificity = 0.75). See Fig 12 caption for the explanation on omission, validation

and commission points. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0248797.g008
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Theoretical model evaluation metrics and thresholds vs. validation

We found that all theoretical model evaluation metrics studied here correlated positively with

accuracy. However, caution is necessary, since the most detected species (P. gymnonotus) was

recorded in only 41% of the sampled points (meaning an unbalanced class data, i.e., in this

case, absences are higher than presences). In situations like this, any random model predicting

more absences than presences would be benefited by an evaluation metric that does not take

into account results by chance—this is the case of accuracy [62]. Therefore, accuracy should

not be used when data used to train and/or test the models is unbalanced. Here, we empirically

demonstrated that sensitivity-specificity and precision-sensitivity metrics, as g-mean and f-

score, are better performance measures for the SDMs evaluation than accuracy [52, 62]. For

example, the Pteronotus gymnonotus’ distribution output with the highest accuracy also had

the third-highest omission rate. In opposition, the model with the highest g-mean and f-score

also presented low omission scores. These results were not threshold-related since they

occurred in two different maxSSS models, evidencing the unbalanced nature of our SDM out-

puts and the problem of using accuracy to measure model performance. Considering the

majority of SDMs are based on unbalanced data, instead of accuracy, the use of sensitivity-

specificity and precision-sensitivity metrics should be mandatory to test the models as they are

not affected by unbalanced class data sets [52, 62].

Surprisingly, we also found that all theoretical threshold-dependent evaluation metrics

tested here exhibited an overall significant negative correlation with sensitivity and a signifi-

cant positive correlation with specificity. This means that models with higher evaluation scores

predicted better locations with actual species absence than species presence. West, Kumar [63]

reported similar findings after field validation of MaxEnt’s invasive cheatgrass species models.

This is probably because bioclimatic variables’ values are more homogeneous in species pres-

ence locations than in absence. Nevertheless, this ’issue’ will be less a concern if the modeler’s

goal is to balance actual presences and absences, as we found positive correlations between

evaluation metrics and g-mean or f-score. So, how about the ability of four threshold-depen-

dent theoretical evaluation metrics in predicting models’ performance? In conclusion, the four

theoretical model evaluation metrics studied here presented different performances about

their capacity to predict the performance of models. Given the accuracy drawbacks when

unbalanced data is in the game, metrics such as g-mean and f-score gain greater relevance

than accuracy itself. Thus, TSS and overall accuracy (OAcc) obtained a higher ability to predict

the performance of models regarding the balance between sensitivity and specificity (g-mean),

however OAcc was the second-worst in terms of f-score. Still, given the strong positive correla-

tion of most theoretical model evaluation metrics concerning specificity and negative concern-

ing sensitivity, there is a great tendency of these metrics to better evaluate models with high

omission rates. In conclusion, the choice of theoretical evaluation metrics to evaluate the mod-

els’ performance might have a great impact on its selection, and it needs to be chosen carefully

towards the proposed objective.

And how about the ability of the three studied thresholds to convert continuous species

habitat suitability models into presence-absence maps? We found that threshold performances

varied largely. Despite having almost no omission errors, the LPT models exhibited higher

commission error rates and lower accuracy, g-mean, and precision scores. Thus, at least for

the six widespread neotropical bat species studied here, we were able to empirically confirm

Liu, White [37]’s findings: maps based on the LPT threshold are unsuitable for species distri-

bution modelling. In our study, LPT-thresholded maps of the two species with the most histor-

ical records (N. leporinus and S. leptura) also had a worse performance than the other four

LPT-modeled scores. Although widespread and common, N. leporinus is a piscivorous bat
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species, strongly related to water bodies, and S. leptura is a forest-dwelling species that forage

next to edges [64, 65]. Thus, these two species as less generalist than the other four we ana-

lyzed, and the use of a less conservative threshold can be detrimental in those cases. Therefore,

knowledge of the species’ natural history and the use of land cover data in the models might be

fundamental for best SDM practices and better output results [66]. But contrary to Liu, White

[37], we also found that some maxSSS maps with high accuracy scores were highly overfitted

(exhibiting low sensitivity/high omission rates), sometimes excluding historical locations for

some species. Nevertheless, we also found that some maxSSS and P10 thresholded maps per-

formed reasonably well, exhibiting balanced results between sensitivity and specificity (dis-

playing high g-mean scores). In conclusion, we believe LPT is unsuitable for species

distribution modelling, because although it reduces the omission errors of the presence-

absence maps to almost zero, it does so at the expense of high commission errors. However,

even showing higher omission errors than LPT, P10 thresholded models performed best in

predicting actual species occurrences, while maxSSS models performed best in predicting

where we did not record the species in the field. Several authors agree that threshold selection

(as other parameters) has a high impact on the binary map (presence/absence) outputs and the

models’ predictive capacity [e.g., 6, 8]. Several thresholds have been proposed and evaluated;

however, most of those evaluations are based on theoretical evaluation metrics without inde-

pendent field validation data. After using in situ validation in our study, we are cautionary

about some studies still proposing to model species distribution using a single threshold.

Finally, we found that using arbitrary thresholds and theoretical evaluation metrics for

modelling and evaluate the models’ performance can be a precarious approach with many pos-

sible outcomes, even if getting good evaluation scores. Validating the models using a subset of

the historical occurrence points is undoubtedly faster and less laborious than using indepen-

dent data collected in the field. However, one cannot guarantee if the species are still present in

historical points in databases such as GBIF [67]. Hence, using independent field data is the saf-

est way to validate the species´ presence in the modelled region and should not be overlooked.
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61. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, et al. The impor-

tance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib. 2013; 19

(11):1366–79. https://doi.org/10.1111/ddi.12096

62. Ferri C, Hernández-Orallo J, Modroiu R. An experimental comparison of performance measures for

classification. Pattern Recognition Letters. 2009; 30(1):27–38. https://doi.org/10.1016/j.patrec.2008.08.

010

63. West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J. Field validation of an invasive species Max-

ent model. Ecological Informatics. 2016; 36:126–34. https://doi.org/10.1016/j.ecoinf.2016.11.001

64. Hood CS, Jones JK. Noctilio leporinus. Mamm Species. 1984;( 216):1–7.

65. Yancey FD II, Goetze JR, Jones C. Saccopteryx leptura. Mamm Species. 1998;( 582):1–3. https://doi.

org/10.2307/3504379

66. Wilson JW, Sexton JO, Todd Jobe R, Haddad NM. The relative contribution of terrain, land cover, and

vegetation structure indices to species distribution models. Biol Conserv. 2013; 164:170–6. https://doi.

org/10.1016/j.biocon.2013.04.021
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