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ABSTRACT Methylococcus capsulatus MIR is an aerobic methanotroph that was isolated
from an activated sludge sample and is capable of growth on methanol. The finished
genome of strain MIR is 3.2 Mb in size. It encodes both MxaFI and XoxF methanol dehydro-
genases, as well as three different isozymes of formate dehydrogenase.

The species Methylococcus capsulatus represents aerobic thermotolerant methanotrophic
bacteria that are widely distributed in various habitats (1, 2) and possess high biotechno-

logical potential. With very few exceptions, characterized strains of this species display only
trace growth on methanol (3). Here, we report the complete genome sequence of a new
M. capsulatus isolate, strain MIR, which is capable of growth on methanol in the range of
concentrations of 0.05 to 3.5% (vol/vol) in a mineral medium (3) during incubation at 42°C
(Fig. 1). Strain MIR was isolated from the upper oxic layer of activated sludge from the Irkutsk
municipal wastewater treatment plant using a mineral medium with 20% (vol/vol) methane
and the previously described isolation procedure (3). Genomic DNA was extracted from a liq-
uid culture of strain MIR grown with methane (3) using the standard cetyltrimethyl ammo-
nium bromide (CTAB) and phenol-chloroform protocol (4). The 16S rRNA gene of strain MIR
was PCR amplified using the primers 9f and 1492r (5) and displayed greatest similarity
(99.93%) to that ofM. capsulatus Bath (GenBank accession number AE017282.2).

The same DNA extract was used for genome sequencing by means of Illumina and
Oxford Nanopore Technologies platforms. The shotgun genome library was prepared using
the NEBNext Ultra II DNA library preparation kit (New England BioLabs, USA). The sequencing
of this library on a MiSeq instrument (Illumina, San Diego, CA) generated 1,871,556 read
pairs (2 � 300-nucleotide mode). Adapter removal and trimming of low-quality sequen-
ces (Q scores of ,30) were performed using Cutadapt v3.4 (6) and Sickle v1.33 (https://
github.com/najoshi/sickle), respectively. For Nanopore sequencing, the library was prepared
using the 1D ligation sequencing kit (SQK-LSK109; Oxford Nanopore Technologies, UK).
Sequencing of this library in an R9.4 flow cell (FLO-MIN106) using a MinION system yielded
230,762 reads, with a total length of 1,756 Mb. The raw read N50 value was 11,777 bp,
the average read length was 7,609 bp, and the maximum read length was 114,186 bp.
The Nanopore reads were demultiplexed and base called using Guppy v1.1. Hybrid assembly
of short and long reads was performed using Unicycler v0.4.8 (7). Assemblies were evaluated
with QUAST v5.0 (8) and BUSCO v5.1.2 (9). The final assembly represented the complete circular
3,187,097-bp genome, with 905� coverage. The assembled chromosome was annotated using
the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (10) and Prokka (11). The default
settings were used for all software.

In total, 2,859 protein-coding genes were predicted in the MIR genome. The genome con-
tains two copies of the gene cluster encoding particulate methane monooxygenase (MMO)
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and one copy of the soluble MMO gene cluster. Both MxaFI and XoxF methanol dehydroge-
nases (12), as well as three different isozymes of formate dehydrogenase, are also encoded.
Since C1 assimilation pathways are common among all Methylococcus species (2, 3), strain
MIR may serve as a model organism for studying the metabolic basis of methanol tolerance.

Data availability. The whole-genome assembly of strain MIR has been deposited in
DDBJ/ENA/GenBank under BioProject accession number PRJNA835301, BioSample accession
number SAMN28099229, and SRA accession numbers SRX15161674 and SRX15161675. The
version described in this paper is the first version, CP097161.1.
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FIG 1 Growth of strain MIR on 20% (vol/vol) methane (filled circles) or 0.05% (vol/vol) methanol (empty
circles). The inset shows specific growth rates being dependent on the methanol concentration (values
calculated for a 3-h incubation period). All data are means of triplicates 6 1 standard error of the mean
(shown by bars). Where error bars are not seen, they are contained within the symbol.
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