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Abstract

Background: The purpose of this study was to develop and validate a radiomics nomogram for preoperative
differentiating focal nodular hyperplasia (FNH) from hepatocellular carcinoma (HCC) in the non-cirrhotic liver.

Methods: A total of 156 patients with FNH (n = 55) and HCC (n = 101) were divided into a training set (n = 119) and
a validation set (n = 37). Radiomics features were extracted from triphasic contrast CT images. A radiomics signature
was constructed with the least absolute shrinkage and selection operator algorithm, and a radiomics score (Rad-
score) was calculated. Clinical data and CT findings were assessed to build a clinical factors model. Combined with
the Rad-score and independent clinical factors, a radiomics nomogram was constructed by multivariate logistic
regression analysis. Nomogram performance was assessed with respect to discrimination and clinical usefulness.

Results: Four thousand two hundred twenty-seven features were extracted and reduced to 10 features as the most
important discriminators to build the radiomics signature. The radiomics signature showed good discrimination in
the training set (AUC [area under the curve], 0.964; 95% confidence interval [CI], 0.934–0.995) and the validation set
(AUC, 0.865; 95% CI, 0.725–1.000). Age, Hepatitis B virus infection, and enhancement pattern were the independent
clinical factors. The radiomics nomogram, which incorporated the Rad-score and clinical factors, showed good
discrimination in the training set (AUC, 0.979; 95% CI, 0.959–0.998) and the validation set (AUC, 0.917; 95% CI, 0.800–
1.000), and showed better discrimination capability (P < 0.001) compared with the clinical factors model (AUC, 0.799;
95% CI, 0.719–0.879) in the training set. Decision curve analysis showed the nomogram outperformed the clinical
factors model in terms of clinical usefulness.

Conclusions: The CT-based radiomics nomogram, a noninvasive preoperative prediction tool that incorporates the
Rad-score and clinical factors, shows favorable predictive efficacy for differentiating FNH from HCC in the non-
cirrhotic liver, which might facilitate clinical decision-making process.
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Background
Hepatocellular carcinoma (HCC) is the most common
primary liver cancer and the third most common cause
of cancer death worldwide [1, 2]. Approximately 80% of
cases of HCC occur in patients with liver cirrhosis,
arising from hepatitis B and C infections or alcoholism
[2, 3]. In patients with liver cirrhosis, noninvasive diag-
nosis of HCC can be established by a characteristic fea-
ture of arterial phase hyperenhancement followed by
portal venous or delayed phase washout on multiphasic
contrast CT or MRI. However, an increasing number of
HCC arises in a non-cirrhotic liver [3], probably due to
transient hepatitis B infection or due to diffuse liver
damage caused by non-alcoholic fatty liver disease. In
such non-cirrhotic cases, other benign hypervascular
liver lesions (hepatocellular adenoma [HCA] and focal
nodular hyperplasia [FNH]) should be taken into the
differential diagnosis.
FNH is the second most common benign liver tumour

in the non-cirrhotic liver, characterized by nodular
hyperplasia of the hepatic parenchyma around a central
stellate area of fibrosis associated with a congenital vas-
cular malformation [4–7]. Typical FNH can be diag-
nosed with confidence by using multiphasic contrast CT
or MRI. Atypical FNH may show less intense enhance-
ment, absence of a central scar, pseudocapsular en-
hancement on delayed images, as well as the presence of
hemorrhage, calcification, or necrosis [8, 9], making the
differential diagnosis between atypical FNH and HCC
rather difficult. The distinction between HCC and FNH
is critical as the management differs considerably.
Various imaging modalities have been applied in the dis-

tinction between HCC and FNH, such as CT [1, 9, 10],
Doppler ultrasound [11, 12] and MRI [1, 3, 5, 13–15]. In
previous studies, the gadoxetic acid-enhanced MRI is
being increasingly used in differentiating focal liver le-
sions. HCC generally shows definite hypointensity on the
hepatobiliary phase (HBP) because of decreased or absent
uptake of gadoxetic acid. On the other hand, FNH com-
monly shows iso- or hyperintensity on the HBP because
of their preserved ability to take up gadoxetic acid.
However, 10–15% of HCCs show iso- or hyperintensity
on the HBP because of overexpression of organic anion-
transporting polypeptide (OATP) 1B3, which is one of the
uptake transporters of gadoxetic acid into hepatocytes [1].
Approximately 10–12% of FNHs may not show iso- or
hyperintensity on the HBP [7]. The paradoxical uptake or
lack of uptake may make the differential diagnosis of HCC
from FNH rather difficult.
Radiomics, as an emerging field involved with the

extraction of high-throughput data from quantitative
imaging features and the subsequent combination of this
information with clinical data, has the potential to pro-
vide diagnostic, prognostic, and predictive information

and improve clinical decision making [16, 17]. Successful
applications of radiomics in liver tumours have been
reported in prediction of histologic grade, recurrence,
liver failure and survival after curative treatment or
chemotherapy in HCC patients [18–33], in preoperative
prediction of HCC microvascular invasion [34–36], in
differentiating benign hepatic lesions (including hepatic
haemangioma [HH], HCA, FNH, and hepatic abscess)
from malignant tumours (including HCC and metasta-
ses) [37–41] and in discriminating different benign
(HCA and FNH) [42, 43] or malignant liver tumours
(HCC, intrahepatic cholangiocarcinoma [ICC] and com-
bined HCC-ICC) [44]. To the best of our knowledge,
few studies focused on radiomics in differentiating HCC
from FNH in non-cirrhotic patients.
The purpose of this study was to construct and valid-

ate a CT based radiomics nomogram that would incorp-
orate a radiomics signature and clinical factors for the
preoperative differentiation between HCC and FNH in
the non-cirrhotic liver.

Methods
Patients
The institutional review board of our hospital approved
this retrospective study with a waiver of obtaining in-
formed consent.
Patients were identified by searching the pathology

database from one institution (The Affiliated Hospital of
Qingdao University) between June 2008 and February
2019 for the diagnosis of FNH or HCC on surgically
resected specimens. A total of 156 patients with FNH
(n = 55, 32 men and 23 women; mean age, 31.82 ± 12.55
years) and HCC (n = 101, 85 men and 16 women; mean
age, 57.10 ± 9.89 years) were enrolled in this study ac-
cording to the following inclusion criteria: (1) patients
with pathologically proven of either FNH or HCC; (2)
patients underwent contrast-enhanced CT less than 15
days before surgery; (3) patients with complete clinical
and pathologic data. The exclusion criteria were as
follows: (1) HCC patients with CT features of liver cir-
rhosis (The cirrhotic liver may demonstrate a nodular
surface, widened fissures between lobes, an atrophied
right lobe, hypertrophy of left lobe and/or caudate lobe
and other features including portal vein dilation, porto-
systemic shunts, splenomegaly, and ascites, etc.); (2)
HCC patients received chemotherapy or radiotherapy
before surgery; (3) Image quality was unsatisfactory for
analysis. The patients were divided into two independent
sets: 119 patients treated between June 2008 and January
2017 constituted the training set, whereas 37 patients
treated between February 2017 and February 2019 con-
stituted the validation set.
Clinical information including age, gender, hepatitis B

and C virus (HBV and HCV) infection and serum alpha
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fetoprotein (AFP) level (> 400 ng/mL; ≤ 400 ng/mL) were
derived from medical records.

CT image acquisition
CT scans were obtained with two 64-slice CT scanners
(Somatom Sensation 64, Siemens Healthcare, Erlangen,
Germany; Discovery 750, GE Healthcare, Milwaukee,
USA) using the following parameters: 120 kVp tube volt-
age, 200 mAs or 250–400 mA (using automatic tube
current modulation) tube current, 64 × 0.6 mm or 64 ×
0.625 mm detector collimation, a matrix of 512 × 512, a
pitch of 1 or 1.375, a gantry rotation time of 0.5 s and a
slice thickness of 5 mm. The scanning area covered the
entire liver. An 80–90mL volume of nonionic contrast
agent (Iopromide, Ultravist 370; Bayer, Germany) was
administered into the antecubital vein by a power in-
jector at a rate of 2.5 mL/s. Pre-contrast CT was first ob-
tained, followed by three post-contrast CT scans of the
liver obtained in arterial phase (AP, 30 s), portal venous
phase (PVP, 60 s), and delayed phase (DP, 90–120 s).

CT features analysis
The CT images were analyzed in our Picture Archiving
and Communication System (PACS, Version 3.2.8, GE
Healthcare, Milwaukee, USA) by two radiologists
(Reader 1, P.N; Reader 2, G.Y) with eight and 6 years of
abdominal imaging experience, respectively. Blinded to
the clinic-pathologic data, the two readers interpreted
the following subjective CT features by consensus: the
diameter of the tumour on the axial CT image; shape
(round or not round); a central scar (present or absent, a
“central scar” was defined as a central stellate structure
showing low attenuation on unenhanced CT images, hypo-
vascular enhancement on AP and PVP phases and delayed
enhancement on DP phase); degeneration (present or ab-
sent, “degeneration” was considered as a non-enhancing
area on dynamic study due to necrosis or hemorrhage. We
supposed that low attenuation on unenhanced CT images
corresponded to necrosis, whereas high attenuation on
unenhanced CT images indicated hemorrhage); fat depos-
ition (present or absent, “fat deposition” was defined as an
area showing fat attenuation on unenhanced CT images);
calcification (present or absent); a capsule-like rim (present
or absent, “a capsule-like rim” was defined as tumour rim
showing low attenuation on unenhanced CT images and
hypovascular-delayed enhancement on dynamic studies);
dysmorphic vessels (present or absent, “dysmorphic ves-
sels” were regarded as prominent or enlarged vessels in or
around the tumour); and enhancement pattern (The en-
hancement pattern on dynamic CT was classified into early
enhancement with a washout pattern, early enhancement
with no washout pattern and other patterns. Early en-
hancement was defined as showing higher attenuation than
the background liver on AP. Washout was defined as a

nodule showing lower attenuation than the background
liver on PVP to DP. No washout pattern indicated that the
nodule showed equivalent or higher attenuation than the
background liver on PVP to DP. Other patterns referred to
the enhancement patterns not mentioned above).

Construction of the clinical factors model
Univariate analysis was applied to compare the differ-
ences of the clinical factors (including clinical informa-
tion and CT features) between the two groups, and a
multiple logistic regression analysis was used to build
the clinical factors model using the significant variables
from the univariate analysis as inputs. Odds ratios (OR)
as estimates of relative risk with 95% confidence inter-
vals (CI) were obtained for each risk factor.

Tumour segmentation and radiomics feature extraction
Tumor regions of interest (ROIs) were manually seg-
mented in the largest cross-sectional area using ITK-
SNAP software (Version 3.8.0). Contouring was drawn
slightly within the borders of the tumours on AP, PVP,
and DP, but avoiding covering the adjacent hepatic par-
enchyma and perinephric fat.
Feature extraction was performed using the Radcloud

platform (Huiying Medical Technology Co., Ltd). A total
of 4227 radiomics features were extracted from the
ROIs. The radiomics features are divided into four
groups: (1) intensity statistics features, which consists of
19 features that quantitatively delineate the distribution
of voxel intensities within the ROI through commonly
used and basic metrics; (2) shape features, including 10
two-dimensional features, are used to reflect the shape
and size of the ROI; (3) texture features, composed 59
features calculated by gray level co-occurrence matrix
(GLCM), gray level run length matrix (GLRLM) and
gray level size zone matrix (GLSZM), quantify the het-
erogeneity differences of ROI; and (4) filter and wavelet
features, which include the intensity and texture features
derived from filter transformation and wavelet trans-
formation of the original image, obtained by applying
filters such exponential, logarithm, square, square root
and wavelet (wavelet-LHL, wavelet-LHH, wavelet-HLL,
wavelet-LLH, wavelet-HLH, wavelet-HHH, wavelet-HHL,
and wavelet-LLL).
Inter- and intra- class correlation coefficients (ICCs)

were used to evaluate the inter-observer reliability and
intra-observer reproducibility of feature extraction. We
randomly chose 30 cases of CT images (10 FNHs and 20
HCCs), and ROI segmentation was performed by Reader
1 and Reader 2. Reader 1 then repeated the same pro-
cedure 1 week later to evaluate the agreement of feature
extraction. An ICC greater than 0.75 suggests good
agreement of the feature extraction. The remaining
image segmentation was conducted by Reader 1.
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Construction of the radiomics signature
The radiomics features, which met the criteria of having
inter- and intraobserver ICCs greater than 0.75 and be-
ing significantly different between the two groups evalu-
ated by one-way analysis of variance (ANOVA), were
entered into the least absolute shrinkage and selection
operator (LASSO) regression model to select the most
valuable features in the training set. The selected fea-
tures were then combined into a radiomics signature. A
radiomics score (Rad-score) was calculated for each pa-
tient through a linear combination of selected features
weighted by their respective LASSO coefficients.

Development of a radiomics nomogram and assessment
of the performance of different models
A radiomics nomogram was developed by incorporating
the significant variables of the clinical factors as well as
the Rad-score. The diagnostic performance of the clin-
ical factors model, the radiomics signature and the
radiomics nomogram for differentiating FNH from HCC
was assessed by using the area under the receiver oper-
ator characteristic (ROC) curve (AUC) in both the train-
ing and validation sets. A radiomics nomogram-defined
score (Nomo-score) for each patient was calculated in
the training and validation sets. To estimate the clinical
utility of the nomogram, decision curve analysis (DCA)
was performed by calculating the net benefits for a range
of threshold probabilities in the training set.

Statistics
Statistical analysis was performed using SPSS (Version
25.0, IBM) and R statistical software (Version 3.3.3,
https://www.r-project.org). Univariate analysis was used
to compare the differences of the clinical factors be-
tween the two groups by using the chi-square test or
Fisher exact test for categoric variables, and Mann-
Whitney U test for continuous variables, where appro-
priate. One-way ANOVA was used to compare the value
of radiomics features for differentiation of FNH and
HCC. The “glmnet” package was used to perform the
LASSO regression model analysis. The ROC curves were
plotted using the “pROC” package. Nomogram construc-
tion was performed using the “rms” package. Differences
in the AUC values between these models were analyzed
using the Delong test. DCA was performed using the
“dca. R.” package. P < 0.05 was considered statistically
significant.

Results
Clinical factors of the patients and the construction of the
clinical factors model
The clinical factors of the patients in the training and val-
idation sets are shown in Table 1. There was significant
difference in age, gender, HBV infection, AFP level, central
scar, degeneration, capsule-like rim and enhancement pat-
tern between the two groups (P < 0.05), whereas diameter,
shape, fat deposition, calcification, and dysmorphic vessels

Table 1 Clinical factors of the training and validation sets

Clinical factors Training set (n = 119) Validation set (n = 37)

FNH (n = 42) HCC (n = 77) P FNH (n = 13) HCC (n = 24) P

Gender (Male/Female) 22/20 63/14 0.001 10/3 22/2 0.321

Age (Median [range]), year 32(2–62) 58(33–78) 0.000 28(10–69) 59(36–78) 0.000

HbsAg (Positive/Negative) 1/41 60/17 0.000 1/12 19/5 0.000

HcsAg (Positive/Negative) 0/42 0/77 – 0/13 0/24 –

AFP (> 400 ng/mL/≤ 400 ng/mL) 0/42 22/55 0.000 1/12 5/19 0.394

Diameter (Median [range]), milimetre 42(12–87) 44 (11–164) 0.982 39(16–134) 39(21–204) 0.888

Shape (Round/Not round) 30/12 55/22 1.000 9/4 20/4 0.413

Central scar (Present/Absent) 19/23 8/69 0.000 2/11 2/22 0.602

Degeneration (Present/Absent) 5/37 48/29 0.000 3/10 14/10 0.082

Fat deposition (Present/Absent) 0/42 1/76 1.000 0/13 0/24 –

Calcification (Present/Absent) 0/42 2/75 0.539 0/13 0/24 –

Capsule-like rim (Present/Absent) 1/41 21/56 0.000 0/13 5/19 0.140

Dysmorphic vessels (Present/Absent) 23/19 30/47 0.123 5/8 10/14 1.000

Enhancement pattern 0.000 0.000

Early enhancement + washout 4 69 – 4 22 –

Early enhancement + no washout 37 2 – 9 0 –

Other patterns 1 6 – 0 2 –

Note: FNH (Focal nodular hyperplasia); HCC (Hepatocellular carcinoma); HbsAg (Hepatitis B surface antigen); HcsAg (Hepatitis C surface antigen); AFP
(Alpha fetoprotein)
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were not significantly different between the two groups
(P > 0.05) in the training set.
The multiple logistic regression analysis showed that

only age (P < 0.001), HBV infection (P = 0.001), and en-
hancement pattern (P = 0.019) remained as independent
predictors in the clinical factors model. Tumours with
older age (Odds ratio [OR], 0.818; 95% CI, 0.736–0.909),
HBV infection (OR, 68.580; 95% CI, 5.154–912.560) or
early enhancement with a washout pattern (OR, 4.905;
95% CI, 1.305–18.431) were likely to be HCCs.

Feature extraction, selection and radiomics signature
construction
Of the 4227 radiomics features extracted from AP, PVP
and DP CT images, 3441 were shown to have a good in-
ter- and intra-observer agreement, with ICCs from 0.750
to 1.000. 764 radiomics features having significant differ-
ences between FNH and HCC (P = 0.001–0.050) were
entered into the LASSO logistic regression model to
select the most valuable features (Fig.1). Finally, the
radiomics signature was built by using 10 features. The
Rad-score was calculated using the following formula:
Rad-score = 0.0522 × GrayLevelNonUniformityNorm

alized.glrlm.logarithm. AP-0.3125 × Imc2.glcm.wavele
t_LLL.DP-0.1885 × JointAverage.glcm.wavelet_
LHH.DP-0.2271 × Mean.firstorder.wavelet_HLL.DP +
0.3989 × Median.firstorder.wavelet_LLL.DP-0.2055 ×
Skewness.firstorder.wavelet_LLL.AP + 0.0700 × Uni-
formity.firstorder.logarithm. PVP + 0.1703 × Uniformi
ty.firstorder.squareroot. PVP + 0.5864 × X10Percentil
e.firstorder.exponential. AP-0.0404 × X10Percentile.-
firstorder.wavelet_HLL.DP. (AP [arterial phase], PVP
[portal venous phase], and DP [delayed phase]).
The Rad-score showed statistically significant differ-

ences between FNH and HCC (median Rad-score of
FNH: 1.580, range: [− 0.543, 4.326]; median Rad-score of
HCC: − 0.834, range: [− 3.073, 1.022]; P < 0.001 in the
training set and median Rad-score of FNH: 0.837, range:

[− 1.460, 3.987]; median Rad-score of HCC: − 0.763,
range: [− 2.643, 1.498]; P < 0.001 in the validation set).

The radiomics nomogram building and assessment of the
performance of different models
The age, HBV infection, enhancement pattern, and Rad-
score were incorporated into the radiomics nomogram
building (Fig. 2). The diagnostic performance for the
clinical factors model, the radiomics signature and the
radiomics nomogram is summarized in Table 2. ROC
curves of the three models are shown in Fig. 3. In the
training set, the AUCs of the radiomics nomogram and
the radiomics signature were significantly higher than
that of the clinical factors model (both P < 0.001); how-
ever, no significant difference in AUC was found be-
tween the radiomics nomogram and the radiomics
signature (P = 0.253). In the validation set, there were no
significant differences in AUC among these three models
(the clinical factors model vs. the radiomics signature,
P = 0.376; the clinical factors model vs. the radiomics
nomogram, P = 0.055; the radiomics signature vs. the
radiomics nomogram, P = 0.345). The Nomo-scores for
each patient in the training and validation sets are
shown in Fig. 4. The DCA (Fig. 5) showed the radiomics
nomogram had a higher overall net benefit in differenti-
ating FNH from HCC than the clinical factors model
across the majority of the range of reasonable threshold
probabilities.

Discussion
The present study shows that the enhanced CT-based
radiomics nomogram, which incorporates the radiomics
signature and clinical factors, has favorable predictive
value for differentiating HCC from FNH in the non-
cirrhotic liver with the AUC of 0.979 and 0.917, respect-
ively in the training set and validation set.

Fig. 1 Radiomics feature selection using logistic regression with the least absolute shrinkage and selection operator (LASSO) regularization. (a)
Ten-fold cross-validation via minimum criteria was used to select the tuning parameter (λ) in LASSO model. The optimal values of the LASSO
tuning parameter (λ) are indicated by the dotted vertical lines. An optimal λ value of 0.0714, with log(λ) = − 2.6394 was chosen (b) LASSO
coefficient profiles of the 764 raidomics features. A coefficient profile plot was generated versus the selected log (λ) value using ten-fold cross
validation, the vertical line was plotted with 10 selected radiomics features
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Differentiating HCC from FNH is important to select
appropriate treatment and avoid unnecessary interven-
tions. Sufficient clinical and imaging information facili-
tates the correct distinction of the two lesions. FNH
occurs more frequently in young women (male:female
ratio = 1:8) [4, 7, 45]. HCC is often associated with hepa-
titis virus infection and a higher level of AFP. Five clin-
ical data including age, gender, hepatitis B and C virus
infection and serum AFP level were analyzed in this
study; and we found that FNH patients had a signifi-
cantly younger age and female predominance compared
with the HCC counterpart, while in the HCC group,
there were more hepatitis B virus infectors associated
with a higher AFP level. Age and HBV infection were
proven as independent predictors by using the multiple
logistic regression analysis, which was consistent with
previous studies.
Contrast-enhanced CT (CECT) is the first-line im-

aging modality for the characterization of liver lesions.
However, distinguishing an FNH from an HCC on
CECT remains a challenge, especially when they lack
typical imaging characteristics such as a central scar,
suggestive of FNH (reported in about 65% of FNHs lar-
ger than 3 cm [6]) or liver cirrhosis, suggestive of HCC.
HCC shares overlapping imaging features with FNH in
the non-cirrhotic liver. The classic radiological hallmark
of HCC is a hyperenhancement on AP and PVP or DP
washout. FNH may also present as a hypervascular le-
sion with intense enhancement and washout on PVP
and DP. Therefore, CECT has a limited diagnostic value
in the non-cirrhotic liver for the distinction of HCC and
atypical FNH.
Various strategies have been proposed to differentiate

benign from malignant liver tumours with conventional
CT and MR imaging characteristics. Yu et al. [9] en-
rolled 42 HCCs and 16 FNHs to identify the value of CT

spectral imaging in differentiating HCC from FNH dur-
ing the AP and PVP, and found that the lesion-normal
parenchyma iodine concentration ratio in AP had the
highest sensitivity (100%) and specificity (100%) in differ-
entiating HCC from FNH. Boas et al. [10] developed and
validated a simplified triphasic CT-based model of
tumor blood supply that combined hepatic artery and
portal vein blood supply coefficients to distinguish be-
nign (n = 32) and malignant (n = 46) liver lesions. In
addition to traditional relative enhancement criteria
(such as washout), hepatic artery and portal vein blood
supply coefficients could be used to classify hypervascu-
lar liver lesions, achieving high specificity (97%) and high
sensitivity (76%) for malignancy. Fischer et al. [3] in-
cluded 55 HCCs, 28 FNHs, and 24 HCAs to identify the
key MRI features that can potentially be used to differ-
entiate between HCC and benign hepatocellular tumors
in the non-cirrhotic liver. Multivariate analysis revealed
T1-hypointensity, T2-hypo- or hyperintensity, lack of cen-
tral tumor-enhancement, presence of satellite-lesions, and
lack of liver-specific contrast media uptake were inde-
pendent MRI features indicating HCC. Kitao et al. [1]
tried to identify points useful in the imaging differenti-
ation of HCC, showing hyperintensity on the HBP of
gadoxetic acid-enhanced MRI and FNH and FNH-like
nodules. The CT and MRI features of 51 HCCs, 10 FNHs,
and 16 FNH-like nodules were analyzed. Multivariate lo-
gistic regression analysis showed that arterial phase en-
hancement and washout pattern at dynamic CT and
decrease of ADC ratio would be important findings for
the diagnosis of hyperintense HCC differentiated from
FNH and FNH-like nodule. In the present study, a clinical
factors model was developed combining clinical data with
subjective CT features by using multivariate logistic re-
gression analysis, and age, HBV infection, and enhance-
ment pattern were found as significant predictors for

Fig. 2 The radiomics nomogram, combining age, HBV infection, enhancement pattern, and Radiomics score (Rad-score), developed in the
training set. Enhancement pattern 1, 2, and 3 represented early enhancement with a washout pattern, early enhancement with no washout
pattern, and other enhancement patterns, respectively
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differential diagnosis. By using this clinical factors
model, high AUC (0.799 in training set; 0.769 in the
validation set) for differential diagnosis of HCC from
FNH were achieved.
Radiomics enables the noninvasive profiling of tumor

heterogeneity by extracting high throughput of quantita-
tive descriptors from routinely acquired CT and MRI
studies. Previous investigations have shown that CT/
MRI-based radiomics can be used for differentiating sev-
eral hypervascular liver tumours. Raman et al. [41] dem-
onstrated that CT texture analysis could be used to
distinguish different hypervascular liver lesions using a

random-forest model. Seventeen FNHs, 19 HCAs, 25
HCCs, and 19 cases of normal liver parenchyma were
analyzed, and the texture model successfully distin-
guished the three lesion types and normal liver with pre-
dicted classification performance accuracy for 91.2% for
HCA, 94.4% for FNH, and 98.6% for HCC. Wu et al.
[37] developed and validated an MRI-based radiomics
signature to distinguish HCC and HH using four feature
classifiers, and found that the logistic regression classi-
fier showed better predictive ability, achieving an AUC
of 0.89 for differentiating HCC from HH. Stocker et al.
[38] enrolled 55 cases of HCC and 45 cases of benign

Fig. 3 The ROC curves of the clinical factors model (a, b), the radiomics signature (c, d) and the radiomics nomogram (e, f) in the training and
validation sets, respectively

Nie et al. Cancer Imaging           (2020) 20:20 Page 8 of 12



hepatocellular tumors (including 24 HCAs and 29
FNHs) in the non-cirrhotic liver to assess the accuracy
of MRI texture features in differentiating benign from
malignant liver tumours. One gray-level histogram
(skewness) and four run-length matrix features extracted
from AP images were regarded as the significant texture
predictors aiding distinguishing HCC from benign hepa-
tocellular tumors in the non-cirrhotic liver with an ac-
curacy of 84.5% and an AUC of 0.92. Cannella et al. [43]
investigated the texture and subjective MRI features of
32 FHNs and 51 HCAs and found that MRI TA parame-
ters combined with hypointensity on HBP imaging
yielded an AUC of 0.979 and an accuracy of 96.4% for

the diagnosis of HCA. A similar CT-based texture model
was built by Cannella et al. [42] for the distinction of
HCA and FNH. The mean, mpp, and entropy of
medium-level and coarse-level filtered images on AP
were found as independent predictors for the diagnosis
of HCA and the model based on all these parameters re-
sulted in the largest AUC of 0.824. In this study, a radio-
mics nomogram was constructed by combining age,
HBV infection, enhancement pattern, and Rad-score.
The multiple logistic regression analysis showed that the
Rad-score made a major contribution to differential
diagnosis. In these independent clinical predictors, age
provided much more weightage than enhancement

Fig. 4 The radiomics nomogram-defined scores for each patient in the training and validation sets. Orange bars represent the scores for HCC
patients, while green bars represent the scores for FNH patients

Fig. 5 Decision curve analysis for the radiomics nomogram and the clinical factors model. The y-axis indicates the net benefit; x-axis indicates
threshold probability. The horizontal black line represents the assumption of all HCC patients, while the grey line represents the assumption of all
FNH patients. Based on the threshold probabilities obtained, our findings indicated that the radiomics nomogram (green line) provided a greater
net benefit than the clinical factors model (red line)
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pattern. The result was consistent with previous studies
that HCC occurred more frequently in older patients
compared with FNH [4, 7, 45]. Although their enhance-
ment patterns are significantly different, the two entities
share overlapping enhancement features [6]. The en-
hancement pattern has a limited impact on the distinc-
tion between HCC and FNH in the non-cirrhotic liver.
Compared to the above radiomics investigations on

discrimination of different hepatic tumours, our study
had several improvements. First, we chose to focus on
the distinction of FNH and HCC in the non-cirrhotic
liver, because these tumours are the most difficult to dif-
ferentiate in routine clinical practice and are often the
cause of diagnostic errors. Second, previous studies were
mainly based on texture analysis associated with only
dozens of texture features. Nowadays, radiomics with
much more statistic features are available to provide a
more comprehensive description of the tumour. In this
study, a total of 4227 radiomics features were extracted
and analyzed from the triphasic CT images, and finally,
10 features were selected as the significant predictors to
construct the radiomics signature. All the selected fea-
tures were high-order filter and wavelet features that
could not be acquired by using conventional texture
analysis. Furthermore, both AP, PVP, and DP CT images
were used for feature selection, and 5/10 of selected fea-
tures were obtained from DP images, indicating a trend
toward better lesion classification with DP images for
FNH and HCC. In addition, FNH is not associated with
any malignant potential, and most lesions are managed
conservatively. The FNH confirmed with surgical path-
ology only accounts for a small portion of the whole co-
hort. The cases of FNH enrolled in the present study
were relatively more than those in previous studies.
We acknowledge the following limitations in our

study. First, because of its retrospective character, poten-
tial selection bias may hamper the reproducibility and
comparability of the results. Thus, the clinical usefulness
of this nomogram still needs improvement and inde-
pendent validation in further studies. Second, this study
was a single-center experience limited to our institute,
multi-center studies for further validation of its reprodu-
cibility with a larger sample are required. Third, the
two-dimensional largest tumorous ROIs were delineated
for the extraction of radiomics features. Whole tumour
analysis appears more indicative of tumour heterogeneity
than the largest cross-sectional area [46]. In addition,
manual ROI segmentation is time-consuming and com-
plicated, especially for the tumour without a well-
defined boundary, the automatic segmentation technique
with favorable reliability and reproducibility is needed.
Fourth, it is reported that slice thickness can affect the
diagnostic performance of radiomics signature, and the
thin slice may be more informative [47]. A slice

thickness of 5 mm was used in this study, which is usu-
ally thick for CT radiomics analysis. The difference of
the performance in radiomics analysis between the thin
and thick slice thickness images will be assessed in our
future study.

Conclusions
In conclusion, the CT-based radiomics nomogram devel-
oped and validated for preoperative differentiation of
FNH from HCC in the non-cirrhotic liver can potentially
supplement conventional imaging modalities. However,
the clinical use of this tool remains to be tested.
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