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Abstract The immunopathology of chronic obstructive pul-
monary disease (COPD) is based on the innate and adaptive
inflammatory immune responses to the chronic inhalation of
cigarette smoking. In the last quarter of the century, the anal-
ysis of specimens obtained from the lower airways of COPD
patients compared with those from a control group of age-
matched smokers with normal lung function has provided
novel insights on the potential pathogenetic role of the differ-
ent cells of the innate and acquired immune responses and
their pro/anti-inflammatory mediators and intracellular signal-
ling pathways, contributing to a better knowledge of the im-
munopathology of COPD both during its stable phase and
during its exacerbations. This also has provided a scientific
rationale for new drugs discovery and targeting to the lower
airways. This review summarises and discusses the immuno-
pathology of COPD patients, of different severity, compared
with control smokers with normal lung function.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the 3rd lead-
ing cause of morbidity and mortality worldwide [1]. It is defined
as “a common preventable and treatable disease, characterised
by persistent airflow limitation that is usually progressive and
associated with an enhanced chronic inflammatory response in
the airways and the lung to noxious particles or gases.
Exacerbations and comorbidities contribute to the overall sever-
ity in individual patients” [1]. The etiology of COPD is due to
complex interactions between environmental factors (particular-
ly cigarette smoking) and genetic factors. Long-term cigarette
smoking is currently the cause of more than 90 % of COPD in
Westernised countries (Fig. 1) whereas other factors, such as
burning biomass fuels for cooking and heating, may be impor-
tant causes of COPD in developing countries [1, 2]. Only ~25 %
of chronic smokers develop symptomatic COPD by the age of
80 years, suggesting a genetic component, but the influence of
single gene polymorphisms is weak [3] and the only clearly
established, albeit rare, genetic risk factor for COPD is «-
antitrypsin deficiency (o¢;-AT) [4].

There are, so far, very few studies comparing the pathology
between cigarette-smoking-associated COPD and other
causes of disease [5, 6]; for this reason, our review of the
literature will be limited to the immunopathology in
cigarette-smoking-associated COPD. The progressive chronic
airflow limitation in COPD is due to two major pathological
processes: remodelling and narrowing of small airways and
destruction of the lung parenchyma with consequent loss of
the alveolar attachments of these airways as a result of pulmo-
nary emphysema. This results in diminished lung recoil,
higher resistance to flow and closure of small airways at
higher lung volumes during expiration, with consequent air
trapping in the lung. This leads to the characteristic hyperin-
flation of the lungs, which gives rise to the sensation of
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Fig. 1 In the Western world,
COPD is mainly related to
cigarette smoking. The cigarette
smoke activates macrophages,
dendritic cells and airway
epithelial cells in response to toxic
particles in the smoke. Once
activated, these cells release
mediators that recruit and activate
CD8+ T-lymphocytes (CD8+ Tc
cells) and neutrophils. The
inflammatory process also
mediates small airway fibrosis.
The activation of these and other
cell types and the activation of
inflammatory and remodelling
processes lead to small airway
fibrosis, obstructive bronchiolitis,
pulmonary emphysema and
mucus hypersecretion
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dyspnea and decrease exercise tolerance [7]. Both the small-
airway remodelling and narrowing and the pulmonary emphy-
sema are likely to be the results of chronic inflammation in the
lung periphery [8].

The major site of increased resistance is localised to the
small airways less than 2 mm in internal diameter, which are
located from the 4th to the 12th generation of airway
branching in the lung] [9-11] and was confirmed using 3-D
computed tomography [12]. Around 80 % of the conducting
airways beyond this point are nonrespiratory bronchioles, and
the remaining 20 % are smaller bronchi identified by the pres-
ence of cartilage plaques in their walls [13]. Bronchioles differ
from bronchi by having no cartilage and submucosal glands, a
relatively greater proportion of smooth muscle and fewer
mucus-secreting cells in the epithelial layer. In normal sub-
jects the small airways have a much larger collective cross-
sectional area compared with the central airways so that phys-
iologically they contribute only around 20 % of total airflow
resistance. This is the reason why more of 80 % of the small
airways need to be occluded before there is any demonstrable
airflow impairment and why many cigarette smokers develop
a progressive small-airway disease long before airflow ob-
struction is detected [14].

COPD immunopathology in stable patients

Inflammatory cells in the wall of lower airways of stable
COPD patients

Inflammation is a central feature of stable COPD causing ac-

tivation and alteration in the structural cells of the airways and
lungs (lower airways and lung remodelling) and the activation
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and/or recruitment of infiltrating inflammatory cells [15-18].
The chronic airflow obstruction in smoking-induced COPD
results from a combination of small-airway inflammation and
remodelling and loss of lung elasticity due to lung parenchy-
mal destruction. Although pulmonary emphysema usually on-
ly appears with increasing disease severity, it can also occur in
subjects without airflow obstruction [17, 19-21]. Lesions in
the small airways are a major determinant of COPD progres-
sion and severity, and there is a strong inverse association
between total small airway wall thickness and FEV; [8].

Lower airways and lung inflammation in stable COPD pa-
tients is characterised by increased numbers of macrophages,
neutrophils, T and B lymphocytes and dendritic cells (Fig. 2).
However, the predominant inflammatory cell type varies with
disease severity; increased numbers of neutrophils and B lym-
phocytes are present in the most severe (grades III and IV)
disease [8, 16—18]. The functional role of these inflammatory
cells, including their subsets, is still largely unknown but the
interaction between lymphocytes and macrophages may or-
chestrate the onset, progression and severity of lower airways
inflammation and there is mounting evidence that innate im-
munity, but not inflammasome activation, correlates with the
progression of the severity of stable COPD [22].

Analysis of inflammatory cell infiltration in bronchial biop-
sies of patients with stable mild/moderate COPD shows an in-
creased inflammatory cell infiltration in comparison with control
nonsmokers [15, 17, 18]. In smokers, the development of air-
flow obstruction is associated with more pronounced small-
airway inflammation and appearance of increased thickness of
their wall due to fibrosis and smooth muscle hypertrophy [15,
17, 18]. There is a regional distribution of the inflammatory
process in the small airways of patients with COPD. Smokers
with COPD have a greater density of leukocytes (CD45+ cells)
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Fig. 2 Representative
immunohistochemical staining
for CD68 (DAB; brown) of
alveolar macrophages (a, b) and
for neutrophil elastase (alkaline
phosphatase, red) (¢, d) in
paraffin sections of the small
airways of stable moderate COPD
patients (b, d) and of control
smokers with normal lung
function (a, ¢). Pictures total
magnification = x200;

bar=50 um

in the submucosa (which extends from the distal edge of the
basement membrane to the internal edge of the smooth muscle)
compared with the adventitia (which extends from the outer
edge of the smooth muscle to the alveolar attachments) [23].

Hogg and colleagues assessed the small airways (inner di-
ameter less of 2 mm) in surgically resected lung tissue from
159 patients (39 with stage 0 (smokers with normal lung func-
tion and chronic bronchitis), 39 with stage 1 (mild), 22 with
stage 2 (moderate), 16 with stage 3 (severe) and 43 with stage
4 (very severe) COPD, according to the 2004 GOLD classifi-
cation [1, 8, 11]. This study clearly demonstrated that lesions
in the small airways are a major determinant of the progres-
sion and severity of COPD. In fact, there is a strong inverse
association between total wall thickness, measured as the ratio
of the volume to the surface area (V/SA), in the small airways
and FEV| [8, 11].

Progression of COPD is also associated with the accumula-
tion of inflammatory mucous exudates in the lumen and infil-
tration of the wall by innate and adaptive inflammatory immune
cells that form lymphoid follicles [8, 11]. The percentage of the
small airways that contain CD4+ cells, CD8+ cells, B cells,
lymphoid aggregates containing follicles, macrophages and
neutrophils, also increased as the severity of COPD progressed
compared with control smokers with normal lung function [8,
11]. For this reason, the inflammatory response present in the
small airways of the patients with stable COPD is considered an
amplification of the inflammatory response to irritants that is
seen in smokers with normal lung function [10, 24].

T lymphocytes and COPD immunopathology in stable
patients

Most studies have found an increased number of CD8+ T
lymphocytes, in the blood and lower airway tissues of patients
with mild/moderate stable COPD; these cells are also in-
creased in the sputum and BAL, but in these secretions, the
number of lymphocytes is negligible and very difficult to
count. Smoking status, smoking history, degree of airflow
obstruction and pulmonary emphysema are all related to in-
creased CD8+ cells and/or CD8+/CD4+ ratio [15, 18]. The
number of these activated CD4+, CD8+ cells expressing nu-
clear factor-kappa B (NF-kB), STAT-4, interferon (IFN)-gam-
ma and perforin was also increased [18]. The functional role
of CD3+ (and their subsets CD4+ and CD8+) T lymphocytes
in the immunopathogenesis of COPD is scarcely known, and
it is an area of active research.

The number of sputum CD8+ cells is also increased in
stable COPD patients compared with control smokers with
normal lung function and nonsmoking subjects [25], and these
are highly activated, expressing high levels of perforin [26].
Sputum CD8+-interleukin (IL)-4 cells are reduced both in
stable COPD patients and in control smokers with normal
lung function compared with control nonsmoking subjects,
while CD8+-IFN-gamma cells are significantly reduced only
in COPD as compared with controls. A significant relation-
ship between the CD8+-IL-4/CD8+-IFN-gamma ratio and
FEV1 (% pred) is found only in COPD patients [25].
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T lymphocytes, mainly CD8+ cells, predominate in the
bronchial mucosa of stable COPD patients [15, 17, 18].
However, when mild/moderate COPD patients are compared
with control smokers with normal lung function, matched for
age and smoking habit, there are no differences in the numbers
of CD3+ and CD8+ cells in the submucosa [27]. Smokers
with normal lung function also showed, though to a lesser
extent, increased numbers of CD3+ and CD8+ cells compared
with control nonsmokers [27, 28]. These data suggest that the
T lymphocyte increases may be an effect of smoking [29].

Most studies initially reported no significant changes in the
number of CD4+ and CD8+ T lymphocytes (or in their ratio)
in the small-airway wall of patients with mild/moderate stable
COPD compared with control smokers with normal lung
function. More recently, however, Hogg and co-workers re-
ported that the number of CD4+ and CD8+ in the small air-
ways increases as the severity of COPD progress compared
with control smokers with normal lung function [8] (Fig. 3).

B
Fig. 3 Representative immunohistochemical staining showing the
expression and localisation of CD4+ T cells (a—¢), CD8+ T cells (d—f)
and CD68+ macrophages (g—i) in the airways. The differences in
expression between smokers with normal lung function (CS; a, d and
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COPD

The reduced apoptosis of CD8+ T lymphocytes may be an
important mechanism that contributes to the accumulation of
these cells in the airway submucosa in smokers with mild/
moderate COPD [30]. These cells are active and more mature
since 30 % of CD4+ and CD8&+ T lymphocytes co-expressed the
nuclear p65 NF-kB subunit in the bronchial biopsies of COPD
patients [27], and in patients with stable COPD, BAL CD8+
CD45RA+ and lower CD8+CD45R0+ number are seen than
in smokers with normal lung function [31]. Mature T cells have
a greater propensity to cause tissue damage [31].

Th/Tcl, Th2/Tc2, Th17, and y& T cells lymphocyte subsets
and COPD immunopathology in stable patients

The chemokine receptor CCRS5, preferentially expressed by
Th1/Tcl cells producing IFN-y, was reported to be increased
in mild/moderate disease in comparison with control smokers
[28], suggesting that, at variance with asthma, a prevalent
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g), mild/moderate COPD subjects (COPD; b, e and h) and in severe
COPD patients (S-COPD) are also shown. Arrows indicate the positively
stained cells
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Th1/Tcl immunosurveillance develops in mild/moderate
COPD patients in stable conditions (Fig. 4). This was support-
ed by the enhanced expression of the transcription factor sig-
nal transducer and activators of transcription (STAT)4 in the
bronchial epithelium and submucosa of mild/moderate COPD
patients in comparison with both control smokers and non-
smokers [18]. STAT4 nuclear expression correlated signifi-
cantly with the number of IFN-y+, CD3+ and CD4+ cells
but not with CD8+ cells in the submucosa of smokers: 50 %
of CD4+, one third of CD8+ and one third of CD68+ cells in
the bronchial submucosa co-expressed the STAT4 protein
nonsmokers [18]. These data reinforce the notion of a preva-
lent Th1/Tc1l immunological response in mild/moderate dis-
ease. At the same time, STAT4 will release the hold on T cell
effector function as a result of CTLA-4 allowing the T cells to
become aggressive effectors with the full potential of causing
lung injury [32].

The demonstration that the production of IL-4 in the glands
of chronic bronchitics is independent of CD8+ lymphocytes
[33], again suggests that CD4+ lymphocytes could be mainly
involved in the Th2 cytokine response associated with hyper-
secretion by mucous glands in smokers. These data highlight
the importance of activation status over cell presence.

The T lymphocyte subset Th17, producing IL-17A and/or
IL-17F plays a role in regulating neutrophilic and macrophage
inflammation, modulating activation of the lower airway
structural cells in COPD and may drive autoimmune re-
sponses [34, 35]. IL-17 is also expressed by other cells includ-
ing IL-17-producing yd T (yd T-17) cells, natural killer T-17
cells and IL-17-producing lymphoid tissue-induced cells [36].
The expression of both IL-17A and IL-17F is increased by
cigarette smoke exposure in lung explants from both non-
COPD and COPD subjects, supporting that local lung cells
contribute IL-17 production. Finally, sputum IL-17A levels
are increased in stable COPD patients compared with control

Fig. 4 Interleukin 12 (IL-12) acts
on IL-12R localised on ThO to
drive Thl polarisation in
conjunction with activation of the
IL-18R and the T cell receptor
(TCR). IL-12 and IL-27 can also
act on their receptors on Th1 cells
to elicit the expression of 2
interferon (IFN)-y via STAT
activation. The activation status of
Thl cells is also regulated by the \
CCLS5/CCRS5 and CXCL9, =y, ThO
CXCL10 and CXCL11/CXCR3 i

axis

IL-12R

/‘~70Q

TCR
/4

subjects [37]. Elevated IL-17A/F expression is dependent on
NF-kB and PI3K pathways [38].

The number of IL-17A+ and IL-22+ immunoreactive cells
is increased in the bronchial submucosa of stable COPD com-
pared with control nonsmokers [39] although the expression
of IL-17F and IL-21 is not significant different among subject
groups [39]. IL-17A and IL-17F staining was observed in
endothelial cells and in inflammatory cells and fibroblasts
[39]. Interestingly, in this study, we observed that <5 % of
IL-17+ cells were T cells and >90 % of IL-17A+ cells were
CD31+ endothelial cells. Furthermore, in IL-22, <10 % of IL-
22+ cells were T cells and >80 % of IL-22+ cells were CD31+
endothelial cells [39].

In addition, the number of IL-22+ and IL-23+ immunore-
active cells is increased in the bronchial epithelium of stable
COPD compared with control groups. In all smokers, with and
without disease, and in patients with COPD alone, the number
of IL-22+ cells correlated significantly with the number of
both CD4+ and CD8+ cells in the bronchial mucosa.
RORC2 messenger RNA (mRNA) expression in the bronchial
mucosa was not significantly different between smokers with
normal lung function and COPD [39].

The number of inflammatory cells expressing IL-17A in
the small airway subepithelium is higher in patients with
COPD than in control. IL-17A was expressed by lympho-
cytes, neutrophils and macrophages [40]. The expression of
IL-17F is greater than IL-17A in epithelial cells and lymphoid
follicles but without significant differences among subject
groups, whereas IL-17A expression is higher than IL-17F in
the subepithelium [40].

IL-17A expression is significantly elevated in severe to
very severe stable COPD (GOLD III/IV) compared with both
smokers and never smokers without COPD. Although CD3+
T cells express IL-17A in very severe COPD, most IL-17A+
cells are tryptase-positive mast cells [41]. CXCL12 is highly
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expressed in lymphoid follicles in COPD lungs, and the pul-
monary expression was significantly elevated in end-stage
COPD [41]. This suggests that IL-17A in the peripheral lung
of patients with severe to very severe COPD may contribute to
disease progression and development of lymphoid follicles via
activation of CXCL12 [41].

In contrast, the COPD patients had significantly lower rel-
ative and absolute numbers of yo T cells in induced sputum
and in BAL compared with those from healthy nonsmoking
subjects as well as of blood Th10 cells [42]. The quantity of
v6 T cells negatively correlated with FEV1 and pack-years of
smoking only in COPD group [43].

Aberrant lung CD4+ T cells polarisation do not only
appear to be common in advanced COPD but also ex-
ists in some smokers with normal lung function and
may contribute to development and progression of spe-
cific COPD phenotypes [44].

Analysis of unstimulated lung CD4+ T cells of all subjects
identified a molecular phenotype, mainly in COPD,
characterised by markedly reduced mRNA transcripts for tran-
scription factors controlling Th1, Th2, Th17 and FOXP3+ T
regulatory subsets and their signature cytokines. As a group,
these subjects had significantly worse spirometry but not
DLCO. Unbiased analysis of unstimulated lung CD4+ T cell
signatures identified two distinct molecular phenotypes which
correlated with clinical features: IL-10 expression correlated
independently and inversely with emphysema but not with
spirometry and IFN-y expression correlated independently
and inversely with reduced spirometry but not with reduced
DLCO or emphysema [44]. Stimulation of COPD cells in-
duced minimal IFN-y or other inflammatory mediators, al-
though many patients produced more CCL2, and the T effec-
tor memory subset was less uniformly predominant and did
not correlate with decreased IFN-y production [44].

T regulatory lymphocytes in the COPD immunopathology
of stable patients

A deficiency in CD4+CD25+FOXP3 regulatory T cells
(Tregs) can impair the immune system’s tolerance for
autoantigens and thereby lead to immune disease [45, 46].
Tregs represent between 1 and 3 % of total CD4+ T cells
and accumulate at tissue sites of antigen invasion where they
exert site-localised immune suppression by producing IL-10
and transforming growth factor (TGF)-f1. The intracellular
expression of FOXP3 is currently considered as the most spe-
cific marker for human Treg cells [47].

In patients with stable COPD there is decreased blood
number of CD25++ CD45RA+ resting Tregs (rTregs) and
CD25+++CD45RA- activated Tregs (aTregs), which are sup-
pressive, and a significantly increased number CD25++
CD45RA-cytokine-secreting (Fr IIT) Tregs compared with
control smokers with normal lung function [48]. In addition,
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Tregs from patients with stable COPD suppress T cell prolif-
eration to a greater extent than Tregs from healthy subjects
contributing to effector T cell dysfunction in COPD [49].
Sputum FOXP3 mRNA levels are decreased in stable COPD
patients compared with control smokers with normal lung
function [50] and Treg numbers are decreased in the BAL of
stable COPD compared with control smokers with normal
lung function [31].

There is debate over Treg numbers in COPD tissue. The
number of CD4+CD25+FOXP3 Tregs in the bronchial biop-
sies [51] or lungs [52] of patients with stable COPD is not
significantly different compared with healthy controls but is
decreased in the small airways of COPD patients, and this
negatively correlates with the degree of airflow obstruction
[47]. Another study has also demonstrated decreased CD4+
CD25+ Treg cell number in lung tissue from emphysema
patients, which in turn correlated with FOXP3 mRNA expres-
sion [53].

B lymphocytes, lymphoid follicles, autoimmunity
and COPD immunopathology in stable patients

There is mounting evidence that autoimmunity has a role in
the pathogenesis of COPD [45, 46]. The role of B lympho-
cytes in the pathogenesis of stable COPD is unknown, but
they may secrete autoantibodies directed against oxidised ex-
tracellular matrix proteins or against endothelial cells (Fig. 5).
Carbonyl-modified proteins, arising as a result of oxidative
stress, promote auto-antibody production [54]. The serum an-
tibody titer against carbonyl-modified self-protein significant-
ly increases in patients with severe COPD compared with
control subjects. Antibody levels correlate inversely with dis-
ease severity and are predominantly IgG1 in type. Deposition
of activated complement in the vessels of peripheral COPD
lung as well as autoantibodies against endothelial cells is also
seen [54].

An infiltration of B lymphocytes into the adventitia of the
small airways of COPD patients has been reported and the per-
centage of the small airways that contain B cells and lymphoid
aggregates containing well-demarcated follicles with germinal
centres increases as the severity of COPD progresses [8, 11].
These lymphoid collections are rarely observed in the small
airways of nonsmokers, are present in the small airways of
~5 % of smokers with normal lung function, as well as in
smokers with mild to moderate COPD and increasing to 25—
30 % of airways in severe and very severe COPD [§, 11]. A
more recent study has observed an increased number of B cells
in the connective tissue (but not in the epithelium or smooth
muscle) only in the small airways of patients with very severe
COPD compared with the other control group of subjects [55].

The lymphoid follicles in the small airways of COPD pa-
tients are composed of large aggregates of B lymphocytes
with interspersed CD21+ and CD35+ follicular dendritic cells
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Fig. 5 Autoimmunity develops
in COPD when environmental
triggers transform the production
of benign autoantibodies to
pathogenic antibodies in
susceptible subjects. Small
airways remodelling and
emphysema develops with the
deposition of immune complexes
within the alveoli

Clinical disease
(COPD)

[56] surrounded by lower numbers of CD4+ (80-90 %) and
few CD8+ T lymphocytes [8, 11, 57]. The B lymphocytes are
mainly IgM-bearing but IgD negative, which suggests that
they may have been activated to some extent. Moreover, a
predominant part of the infiltrate is CD27+, a marker for
memory B lymphocytes [56].

The B lymphocytes are oligoclonal [57] suggesting that
they play a role in local antigen-specific immune responses.
It is not known whether microbial antigens, cigarette smoke-
derived antigens or antigens from extracellular matrix break-
down products are important or if this response is beneficial or
detrimental [56].

The presence of B cell-activating factor belonging to the
tumour necrosis factor (TNF) family (BAFF) is increased
within follicles in severe and very severe COPD patients
[58, 59], around CD4+ cells, dendritic cells, follicular dendrit-
ic cells and fibroblastic reticular cells [60] as well as in patients
with emphysema [61]. BAFF is responsible for B cell
survival and maturation and is a Thl response-
promoting cytokine [58].

In the National Emphysema Treatment Trial (NETT) study,
there was a strong trend toward a reduction in the number of
airways containing lymphoid follicles in severe and very se-
vere COPD patients receiving oral and/or inhaled glucocorti-
coids [62]. This may account for the increased risk of pneu-
monias in patients on high-dose inhaled glucocorticoids ob-
served in long-term controlled clinical trials, such as the
TORCH study [63].

CD57+ expression in T lymphocytes is a marker of in vitro
replicative senescence [64]. The density of CD57" cells within
lymphoid follicles of COPD patients is significantly increased
compared with nonsmokers and smokers without COPD. In
support of this, telomere-associated DNA damage foci in-
creased in small-airway epithelial cells from patients with
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Susceptible host

Benign autoreactivity (serum

autoantibodies without lower
airways damage)

Pathogenic autoantibodies
epito| srreadin?,
heavy chain class switching
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Small airways remodelling and
pulmonary emphysema v

COPD without significant telomere shortening detected [65].
Moreover, the percentage of lymphoid follicles with cell apo-
ptosis is also significantly higher in COPD patients supporting
the hypothesis of a local immune dysfunction in COPD [66].

Alunwuwolne
Jo uoissaibolid

Macrophages and COPD immunopathology in stable
patients

CD68+ macrophages are increased in the bronchial mucosa of
mild/to moderate stable COPD patients compared with control
subjects [15, 17, 18]. There was originally some controversy
as to the expression of CD68+ cells in the small airways, but it
is now evident that the number of macrophages in the small
airways increases as the severity of COPD progresses com-
pared with control smokers with normal lung function [8, 11].

Macrophages may play an important role in orchestrating
the inflammation in COPD lungs through their release of mul-
tiple pro-inflammatory mediators including proteases, such as
matrix metalloprotease-12, cytokines, chemokines and oxi-
dants [15-18] and also have a reduced phagocytic ability
which may drive the persistence of inflammation and impair
the clearance of infectious pathogens and apoptotic cells [35].

Macrophages constitute a heterogeneous cell population,
and there is no clear evidence for a predominance of classical
M1 or M2 macrophages in COPD, and an intermediate phe-
notype may be present [67] including a glucocorticoid insen-
sitive phenotype [68]. Indeed, using transcriptomic signatures
quite distinct from macrophage phenotypes have been associ-
ated with smoking, which are absent in COPD [69] suggesting
that the surrounding pulmonary environment in COPD may
generate a specific phenotype that is permanently altered com-
pared with that seen in smokers. Other studies show that the
numbers and percentages of CD163+, CD204+ or CD206+
alveolar macrophages in patients with COPD at GOLD stages
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III and IV are significantly higher than in those at GOLD
stages I and II and those in smokers and nonsmokers with a
significant negative correlation between the number of
CD163+, CD204+ or CD206+ alveolar macrophages and
the predicted FEV1 [70].

Dendritic cells and COPD immunopathology in stable
patients

The number and the functional subsets of dendritic cells (DCs)
in the lower airways of COPD patients compared with control
subjects is still controversial. This is an area of active research
in COPD immunopathology [71]. Mature CD83+ DCs are
decreased in sputum of stable COPD patients compared with
never smokers and smokers with normal lung function after
smoking cessation [72]. Using transmission electron micros-
copy (TEM), DC numbers were significantly decreased both
in the epithelium and subepithelium of current smokers with
COPD compared with ex-smokers with COPD and healthy
controls [73]. Furthermore, patients with moderate/severe sta-
ble COPD had significantly fewer mature CD83+ DCs and an
increased CD207/CD83 DC ratio in their bronchial mucosa
compared with nonsmoking subjects [74].

BAL mDCs of current smokers, but not ex-smokers, with
stable COPD have an increased expression of receptors for
antigen recognition such as CDl1c or Langerin but reduced
CD83 expression, as compared with never-smoking controls
status [75]. The chemokine receptor CCR5 on myeloid DCs,
which is important for the uptake and procession of microbial
antigens, is strongly reduced in all patients with stable COPD,
independently of the smoking status [75].

The volume density (i.e. the volume of DCs as the percent-
age volume of the airway wall) comprising CD83+ (mature)
DC:s is also significantly reduced in the small airways of pa-
tients with stable COPD vs smokers with normal lung func-
tion and never smokers [76]. In contrast, a more recent study
found reduced numbers of CD83+ and CCR7+ DCs and an
increased number of CD1a+ DCs in the small airways of pa-
tients with stable COPD vs smokers with normal lung func-
tion [77] although other studies show no increase in CDla+
DCs was found [78] and an increase in the total number of
CD83+ DCs in the peripheral lung of patients with stable
COPD vs smokers with normal lung function [79]. Overall,
it is likely that cigarette smoke may stimulate immune re-
sponses by impairing the homing of airway immature DCs
to the lymph nodes and reduce the migratory potential of
immature DCs [77].

A higher number of Langerhans-type DCs (LDCs) was
reported in the small airways of current smokers without
COPD and in COPD patients compared with never smokers
and ex-smokers without COPD, but there was no difference in
the number of LDCs between current and ex-smoking COPD
patients. In contrast, the number of interstitial-type DCs
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(intDCs) did not differ between study groups [80].
Interestingly, the number of CD1c+ DCs is significantly de-
creased in the lower airways of stable COPD patients com-
pared with never smokers and further decrease with the sever-
ity of the disease.

Neutrophil granulocytes and COPD immunopathology
in stable patients

Neutrophils accumulate in the sputum and BAL of stable
COPD npatients [15, 17, 18, 81, 82] in response to the in-
creased expression of macrophage inflammatory protein-1
(MIP-1) in the bronchial epithelium of severe stable COPD
patients in comparison with subjects with mild/moderate dis-
ease and control smokers [15, 17, 18]. Increased
myeloperoxidase (MPO) immunoreactivity in comparison
with mild/moderate disease and both control groups is also
seen [15, 17, 18]. In the submucosa, we reported a further
increase of neutrophils and macrophages (CD68+) in compar-
ison with control smokers [15, 17, 18] and decreased numbers
of T lymphocytes (CD3+ cells) and of CD3+ cells co-
expressing the CCRS5 receptor (CCR5+CD3+ cells) in com-
parison with both mild/moderate COPD patients and control
smokers [28].

We have also shown increased MPO+ and nitrotyrosine+
(NT) cells in the submucosa of severely diseased patients in
comparison with mild/moderate COPD, control smokers and
nonsmokers [15, 17, 18]. Nitrotyrosine formation is related to
peroxynitrite activity, which causes tissue damage, the release
of small pro-inflammatory peptides and increased adhesion
and activation of tissue neutrophils and macrophages. Since
IL-8 induces MPO release from neutrophils this may drive a
feedforward process to sustain inflammation.

Interestingly, our analysis of pro-neutrophilic chemokines
showed higher levels of CCL5 (RANTES) in epithelium and
increased numbers of CCL5+ and CXCL7+ (NAP-2) cells in
the submucosa of severe stable COPD patients when com-
pared with control nonsmokers [15, 17, 18]. We also found
an increased neutrophilic expression of the extracellular ma-
trix components CD44 and CD11b in the bronchial mucosa of
severe COPD compared with control smokers [15, 17, 18],
suggesting a role particularly for CC chemokines (RANTES,
MIP-1«x) in substaining neutrophilia in patients with severe
disease. Increased adhesiveness of neutrophils may also con-
tribute to increased permanence of these cells in the bronchial
tissue of severely diseased patients [15, 17, 18] (Fig. 2).

Increased neutrophil numbers are found in the small air-
ways as the severity of COPD progresses compared with con-
trol smokers with normal lung function [8]. These data togeth-
er show a shift of the cellular types involved in severe stable
COPD, with a prevalence of cells possessing phagocytic and
proteolytic activity in the bronchial tissue. In contrast, the T
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cell-mediated immunoresponse could be impaired or modified
in COPD patients with severe disease [28].

In contrast to asthma, most studies show no significant differ-
ences in the number of mast cells (tryptase+) or eosinophil
granulocytes identified with histochemical staining or as EG2+
cells in the wall of the small airways of COPD patients compared
with control smokers with normal lung function [8, 23, 83, 84].

Structural cells of the wall of the lower airways
in COPD immunopathology in stable COPD patients

Lower epithelium airways in COPD immunopathology
in stable COPD patients

For COPD to develop, cigarette smoke has to bypass or over-
whelm the host front lines of defence, namely the respiratory
tract mucosal epithelium, which serves as an effective physical
barrier and the innate immune system, which provides an im-
mediate, yet nonspecific response [85]. Lower airways epithelial
cells (AEC) and DC are situated in close proximity within the
airway epithelium and are the first cells to encounter inhaled
pathogens and environmental pollutants/irritants. AEC and DC
interact through the release of cytokines, chemokines, proteases
and other soluble mediators and through direct cell-cell contact,
and these interactions are likely to play an important role in
maintaining immune homeostasis [86].

At variance with asthma, the functional activity of bronchi-
al epithelium in COPD patients is poorly studied and most
studies have focused on the role of mucus-secreting epithelial
cells and on epithelial stem cells.

NF-kB is activated in the bronchial epithelium of mild/
moderate stable COPD patients and, to a lesser extent, in con-
trol smokers in comparison with control nonsmokers [27].
NF-kB activation may account for the increased expression
of pro-inflammatory cytokines such as IL-1, IL-6, IL-8, MCP-
1, TNF- and ICAM-1 in COPD [27]. For example, the ex-
pression of the adhesion molecule ICAM-1 is increased in the
bronchial epithelium in mild/moderate stable COPD in com-
parison with both control nonsmokers and current smokers
[15, 87] and may play a role in the T cell epithelial adhesion
[15] and T cell-mediated response to viral infections [15, 88].

Mucus-secreting epithelial cells and intraluminal mucus
in COPD immunopathology

The pathophysiological relationship between airway mucus
secretion and COPD are complex. Many patients with
COPD have chronic bronchitis with increased sputum produc-
tion. The presence of chronic bronchitis is a predictor of
COPD-related death, increased risk of pneumonia and of an
accelerated decline in lung function [89, 90]. Mucins are the
main component of lower airway mucus, and several mucins

(including MUC2, MUCS5AC, MUCSB, MUC6 and MUCS)
are secreted in the lower airways [91-94]. The occlusion of
the small airways by inflammatory exudates containing mucus
was associated with early death in patients with severe em-
physema [62].

There are increased amounts of MUC5B and MUCS5AC in
the sputum of stable COPD patients with little MUC2 [95-97]
but no difference in bronchial submucosal gland size [91].
MUCSAC expression is increased in the bronchial surface
epithelium both in smokers with normal lung function and
with COPD compared with the control group of nonsmokers
[91]. This confirms and extends the results of previous studies
that have found increased expression of MUCSAC in bron-
chial surface epithelium from smokers (with or without
COPD) [98, 99]. In addition, there is a significant correlation
between MUCSAC expression and pack-years [91], highlight-
ing the potential of tobacco smoking (and its components such
as acrolein and oxidants) to activate MUCS5AC in bronchial
epithelial cells via NF-kB [94]. In contrast, MUCS5AC expres-
sion is elevated in bronchial submucosal glands of COPD
patients compared with both smokers with normal lung func-
tion and nonsmokers (control groups) [91]. The expression of
MUCSB in both bronchial surface epithelium and submucosal
glands was not significantly different between groups.

In the NETT, when the pathological changes of the small air-
ways in the resected lung specimens were correlated with clinical
outcomes after surgery, the investigators found that occlusion of
the small airways by inflammatory exudates containing mucus
was associated with early death in patients with severe emphyse-
ma [62]. Interestingly, in excised lungs obtained from patients
with severe emphysema, the introduction of a catheter to the small
airways and their irrigation with a mucolytic drug reduces signif-
icantly the peripheral lung resistance [ 100].

The number of PAS+ or Alcian Blue+ goblet cells is not
significantly different in the small airways of patients with
mild to moderate stable COPD compared with control sub-
jects with normal lung function [23, 101]. In contrast, there is
an increase of intraluminal PAS+ (neutral mucins) and
MUCSB+ mucus and of the expression of MUCSAC in the
bronchiolar epithelium of the small airways in patients with
COPD compared with smokers with normal lung function.
These changes may contribute to the pathogenesis of the small
airways obstruction and of the increased risk of pneumonia of
the COPD patients [101].

Nerves, neuromediators/neurotransmitters,
neuroendocrine cells, neuropeptides, neurogenic
inflammation and COPD immunopathology

The cross-talk between the immune system and the neuroen-
docrine system of the lower airways is complex and scarcely
investigated in patients with COPD. It is now evident that
immune cells release many cytokines, chemokines,
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neuromediators/neurotransmitters and neuropeptides, which,
in turn signal to the central and peripheral nervous system
and the immune system [102] and in vitro ACh might promote
Th17-differentation [103].

Pilot data suggest that 5-HT and CGRP receptor distribu-
tion is altered in the lung of patients with stable COPD com-
pared with controls. The 5-hydroxytryptamine receptor 1F
(HTRIF) is expressed in nearly all basal cells in COPD com-
pared with only a subset of basal cells in control subjects
[104]. In contrast, there is decreased expression of the
CGRP receptor, calcitonin receptor (CALCR), in the airway
epithelium in patients with COPD, with increased localization
to basal cells in the control subjects. Similarly, HTR2B has a
diffuse epithelial expression in COPD with an increased basal
cell staining in controls [104].

In the central airways of patients with stable COPD, com-
pared with control smokers with normal lung function, there is
an increased immunoreactivity for substance P (SP) and VIP,
paralleled by a decreased NPY expression in the epithelium
and glands, and a decreased expression of all these three neu-
ropeptides in the smooth muscle layer [105]. In addition, the
density of VIP-positive nerves is significantly increased in the
bronchial submucosal glands of smokers with chronic bron-
chitis than in nonbronchitic subjects [106]. In conjunction,
there is increased expression of the VIP receptor VPACIR,
but not VPAC2R, in the bronchial epithelium, bronchial
glands and vessels of smokers with symptoms of chronic
bronchitis compared with asymptomatic smokers with normal
lung function. These subjects also had an increased number of
mononuclear cells positive for both VPACIR and VPAC2R in
the bronchial submucosa [107]. The functional role of these
abnormalities in neuropeptide pathways present in the lower
airways of patients with COPD is unknown.

Endothelial cells of the lower airways in COPD
immunopathology

The expression of the adhesion molecule ELAM-1 is in-
creased in the bronchial mucosa endothelium in mild/
moderate stable COPD patients in comparison with both con-
trol nonsmokers and current smokers [15, 17, 18, 87] and may
be involved in the neutrophil recruitment in COPD.

We investigated the immunoexpression of the Th17 related
cytokines in the bronchial biopsies of patients with increasing
COPD severity and observed significantly higher levels of epi-
thelial IL-22 and submucosal IL-22 and IL-17 in patients with
mild/moderate COPD compared with control nonsmokers, sug-
gesting a role for these Th17 related cytokines in substaining
tissutal neutrophilia in the bronchi of these patients [39].

Interestingly, in that study, we observed that less than 5 %
of IL-17+ cells were T cells and more than 90 % of IL-17A+
cells were also CD31+ endothelial cells. Considering 1L-22,
less than 10 % of IL-22+ cells were T cells and more than
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80 % of IL-22+ cells were also CD3 1+ endothelial cells, sug-
gesting that the contribution of T cells in producing the IL-17-
related cytokines and their possible related neutrophilic effects
is relatively modest and that surprisingly, endothelial cells
contribute importantly to the total upregulation of these cyto-
kines in the bronchial mucosa of COPD patients [39].
Furthermore, upregulation of these pro-neutrophilic cytokines
starting at milder stage of the disease indicates a possible
differential role with pro-neutrophilic chemokines (CCLS5,
CXCL7) becoming prevalent at a more severe stage of the
disease [15, 17, 18].

In some studies, there is an increase in apoptotic alveolar
epithelial and endothelial cells in the peripheral lungs of severe
stable COPD patients with severe pulmonary emphysema [108,
109]. If this is not counterbalanced by an increase in prolifera-
tion of these structural cells, the net result is destruction of lung
tissue and the development of pulmonary emphysema [110].

Vascular endothelial growth factor (VEGF) expression is
significantly decreased in the bronchiolar epithelium of
smokers with COPD compared with smokers with normal
lung function. However, bronchiolar VEGFR-2 is downregu-
lated in smokers with and without COPD in comparison to
lifelong nonsmokers only [111]. However VEGF, VEGFR-2,
GYP-1 and NRP-1 expression in the peripheral lungs of pa-
tients with stable COPD is not reduced compared with control
smokers with normal lung function [112] and VEGF expres-
sion is increased in the wall of small pulmonary arteries of
patients with stable COPD compared with control smokers
with normal lung function [113].

Endothelial dysfunction of the small pulmonary arteries,
which is associated with decreased release of endothelium-
derived vasodilating agents (nitric oxide, prostacyclin) and
increased expression of growth factors and vasoconstrictive
agents (such as endothelin-1) is present in all patients with
stable COPD from mild to severe. In these patients, as well
as in smokers with normal lung function, the small pulmonary
arteries show thickened intimas with CD8+ T lymphocyte
infiltration [114-116].

Pulmonary hypertension is acommon complication in COPD.
Its presence and severity is closely related to disease prognosis.
Remodelling of pulmonary vessels is the principal causative fac-
tor of pulmonary hypertension in COPD [114—116]. In advanced
COPD, pulmonary vascular remodelling is related to the severity
of arterial hypoxaemia. However, structural abnormalities and
alterations of vascular function are also apparent in patients with
mild COPD who do not have hypoxaemia and even in smokers
with normal lung function [114—116].

Drugs effect on COPD immunopathology
In contrast to asthma, glucocorticoid treatment of stable

COPD is rather ineffective in reducing airway inflammation
and the decline of lung function [15]. However, inhaled
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glucocorticoids (improperly termed inhaled corticosteroids
(ICS)) such as budesonide and fluticasone, delivered alone
or in combination with a LABA, are associated with increased
risk of serious adverse pneumonia events, but neither signifi-
cantly affected mortality compared with controls [117, 118].
This suggests that ICS may alter immune responses in the
COPD lungs increasing their susceptibility to bacterial
infections.

Few data are available in the literature regarding changes in
the immunopathology after treatment with inhaled glucocorti-
coids in the bronchial biopsies and/or bronchoalveolar lavage of
stable COPD patients. A recent systematic review [119] showed
that ICS were effective in reducing CD4 and CDS8 cell counts in
bronchial biopsies and reduced BAL neutrophil and lymphocyte
counts but increased BAL macrophage counts. Some studies
also observed a significant decrease in BAL inflammatory me-
diators such as CXCLS8 [120] and PGE2, 6kPGFlalpha and
PGF2alpha [121]. Data obtained from the sputum analysis
[122, 123] are in agreement with the few observations reported
for bronchial biopsies and BAL.

Three months salmeterol/fluticasone propionate reduced
CD8+ and CD68+ cells in bronchial biopsies of moderate/
severe COPD compared with placebo-treated subjects [124]
whereas 6 to 30 months treatment with or without added bron-
chodilators showed decreased counts of CD3+, CD4+ and mast
cells in moderate/severe COPD patients compared with the pla-
cebo group [125]. In addition, the combination of inhaled
fluticasone propionate plus salmeterol, but not fluticasone pro-
pionate alone, reduced the number of BAL myeloid DCs, mac-
rophages and neutrophils in current smokers with normal lung
function compared with placebo [126].

Inflammatory mediators and oxidative stress
in the pathogenesis of smoking-induced COPD

COPD is characterised by enhanced oxidative stress and ex-
pression of many pro-inflammatory proteins including cyto-
kines, chemokines, growth factors, neuropeptides, enzymes,
receptors and adhesion molecules and reduced expression of
anti-inflammatory mediators, such as IL-10, in the lower air-
ways and lungs [7, 10, 15, 127-131].

Both reactive oxygen species (ROS) and reactive nitrogen
species (RNS) play a role in the pathogenesis of smoking-
induced COPD [131-134]. The respiratory system is chronically
exposed to environmental pollutants, including oxidants, and the
inhaled gas component of cigarette smoke may contain as many
as 10'*'° free radicals per puff. Free radicals are highly reactive,
carbon- and nitrogen-centred species. Although generally short-
lived (<1 s), the half-life of many of these is sufficient to reach the
lower respiratory tract. As much as 500 ppm of nitric oxide (NO)
exists in cigarette smoke, and cigarette smoke converts tyrosine to
3-nitrotyrosine and dityrosine [131-134]. In addition, COPD in-
flammatory cells have a heightened capacity to produce oxidants.

Activated neutrophils, macrophages and resident cells such as
epithelial cells and airway smooth muscle cells can generate ox-
idants particularly after pro-inflammatory mediator stimulation
[129, 130]. RNS are mainly produced by reaction between and
nitric oxide (NO) and O,— yielding the powerful radical
peroxynitrite (ONOO-), the production of which is increased in
the lower airways of patients with COPD and may contribute to
mucus hypersecretion and lower airways damage [135].

Oxidants participate in many signal transduction pathways
targeting cell growth and proliferation, as well as homeostatic
mechanisms. For example oxidant stress enhances the disrup-
tion of mitochondrial transport chain [136] leading to either cell
injury (necrosis) or apoptosis. Carbonyl stress, a form of oxida-
tive stress causes nonenzymatic posttranslational modifications
on proteins that alter protein function resulting in the formation
of danger-associated molecular patterns (DAMPs) and neo-
autoantigens (Fig. 5). Carbonyl stress-induced damage to mito-
chondrial proteins drives further ROS production by the dam-
aged mitochondria. Thus, carbonyl-modified proteins help drive
the autoimmune mechanisms in COPD [131]. Furthermore,
smokers with normal lung function and patients with stable
COPD show increased oxidative DNA damage (8-
hydroxyguanine formation) in their lungs as compared with
nonsmokers and this may contribute to the increased risk of lung
cancer observed in the patients with stable COPD [17] (Fig. 6).

Only a fraction of lifelong smokers develop COPD [137]. It
is possible that oxidative stress may overcome antioxidant
defences in the lower-airway epithelium in susceptible sub-
jects and thereby promote COPD pathogenesis [131-134].
These data suggest that the inhibition of intracellular oxidative
stress may be a potential therapeutic target for treatment of
virus-induced COPD exacerbations.

Cytokines and chemokines in COPD immunopathology

There is a heightened inflammatory response in the lower
airways and lungs of patients with stable COPD associated
with enhanced expression of a number of key cytokines in-
cluding TNF-«, IFN-y, IL-1f3, IL-6, IL-17, IL-18, IL-32 and
TSLP and growth factors, such as TGF-f3 [22, 39, 130].
Many studies have described increased/decreased expres-
sion of selected chemokines and/or chemokine receptors
(summarised in Fig. 7) in different compartments of the lower
airways in patients with COPD. It is imperative to better un-
derstand the chemokine-related inflammatory mechanisms
that underlie inflammatory cell recruitment into COPD air-
ways using primary cells and tissues from COPD patients to
design better therapeutics. Compounds that target chemokines
and their receptors are still in the early stages of development,
and the results of phase II clinical trials are awaited with great
interest. The potential for using chemokines as biomarkers to
predict clinical phenotypes or progression of COPD or even to
identify responders to particular therapies has so far not been
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Fig. 6 The increased risk of lung
cancer seen in COPD patients
may result from abnormal DNA
damage/repair processes in
response to oxidative stress.
Cigarette smoke-induced
oxidative stress causes DNA
strand breaks and a reduction in
the expression of key repair
protens such as Ku86 and sirtuin
1 (SIRTI). The resultant failure to
repair the damaged DNA foci
leads to accelerated lung ageing
and cancer
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realised. It may be the case that certain clinical phenotypes
respond better to specific therapies [129].

Immunopathology of COPD exacerbations

There is an increased number of sputum neutrophils during
severe COPD exacerbations leading to acute respiratory fail-
ure that is independent of the type (bacterial or virual) of
infectious agent detected (Fig. 8); whereas, virus-induced
COPD exacerbations with or without concomitant bacterial
infection are associated with an increased number of sputum
eosinophils, suggesting that sputum eosinophilia could be a
marker of viral infection during COPD exacerbations [132,
133]. Interestingly, increased sputum CD8+ T lymphocytes
have been reported during COPD exacerbations with a

Fig. 7 Key chemokines such as
CCL2, CCL3, CCL4, CCL5,
CCL6, CCL7 and CCL27 and CCR2
CXCL6, CXCL7, CXCLS, i
CXCL9, CXCL20 and CXCL11
in COPD mediate their effects
through targeting specific
chemokine receptors including
CCR2, CCR5, CXCR1, CXCR2
and CXCR3 localised on alveolar
macrophages, Th1 cells,
neutrophils and airway epithelial
cells
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relative reduction in the ratio of IFN-y/IL-4 expressing
CD8&+ T lymphocyte [138, 139]. Thus, a switch towards a
Tc2-like immunophenotype during COPD exacerbations
could trigger recruitment of eosinophils, a classical effector
cell recruited during Tc2 mediated immune responses, during
virus-induced COPD exacerbations.

Patients with mild/moderate COPD exacerbations show an
increased number of eosinophils in their bronchial mucosa and
increased mRNA for CCL5 (RANTES), neutrophils, T lympho-
cytes, very late antigen (VLA)-1 and TNF-« in comparison with
stable COPD patients [15, 17, 18] (Table 1). Increased eotaxin-1
and CCR3 chemokine receptor expression has also been reported
[15, 17, 18]. Severe exacerbations of COPD were associated with
increased neutrophilia and upregulation of epithelial mRNA for
CXCL-5 (ENA-78), CXCL-8 (IL-8), CXCR-1 and CXCR-2 in
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Fig. 8 The presence of viruses,
bacteria and air pollutants can
drive COPD exacerbations by
causing an acute-on-chronic
inflammatory state within the
airways. This results in systemic
inflammation causing
cardiovascular complications,
airway bronchoconstriction
oedema, mucus and lung hyper-
inflation which together are asso-
ciated with the signs and symp-
toms of an exacerbation. This
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comparison with stable disease [140]. Thus, total inflammation,
involving different inflammatory cells, is significantly increased
during COPD exacerbations. However, the eosinophilia observed
during exacerbations in mild/moderate COPD, differs from that
reported in asthma since the presence of eosinophils is transitory
and frequently confined to capillary vessels [15, 17, 18].

Not surprisingly, almost all of the studies on immunopathol-
ogy of COPD in the small airways have been conducted on
specimens obtained during stable conditions. The largest study
on the pathology of the small airways during COPD exacerba-
tions has showed that death from COPD is associated with both
emphysema and small airway inflammation [141, 142].

In vivo model of RV-induced COPD exacerbation

A human experimental model of infection in COPD patients
allows studies to take place under controlled conditions [143,
144]. This model showed that experimental rhinovirus infection
can cause exacerbation in COPD patients. COPD patients de-
veloped colds and exacerbations with 100- to 1000-fold lower
doses of virus than used in previous studies in asthmatic and
normal volunteers, and there was a 3- to 4-day gap between the
peak of cold symptoms and the peak of lower respiratory symp-
toms [143, 144]. Interestingly, at variance with smokers with
normal lung function, sputum neutrophils significantly in-
creased in COPD patients following experimental infection.
BAL CD3+ and CD8+ T cells increased in COPD patients

post-infection compared with baseline and CD3+ T cells corre-
lated with virus load [143, 144]. BAL IL-27 and IL-10 levels are
also increased [143, 144]. There were also significant increases
in airway inflammation and markers of oxidative and nitrosative
stress in COPD subjects which correlated with virus load.
Sputum macrophage HDAC2 activity pre-infection was in-
versely associated with sputum virus load and inflammatory
makers during exacerbation [143, 144].

Secondary bacterial infection, particularly Haemophilus
influenzae [143, 144], is detected in 60 % of subjects with
COPD after rhinovirus infection compared with 10 % in healthy
smokers and nonsmokers. Sputum neutrophil elastase was signif-
icantly increased and SLPI and elafin levels significantly reduced
after rhinovirus infection exclusively in subjects with COPD with
secondary bacterial infections with SLPI and elafin levels corre-
lating inversely with bacterial load [143, 144].

The role of the lung microbiome in the immunopathology
of COPD remains unknown although the bacterial load of the
bronchial mucosa of patients with stable COPD is related to
the intensity of the airway inflammation and to disease pro-
gression [133]. Chronic bacterial colonisation could contrib-
ute to the increased susceptibility of COPD patients to viral
infection, for example, by increasing ICAM-1 expression on
the surface of the bronchial epithelial cells [145].

The development of such human experimental model in
which causation is clearly defined and in which detailed clin-
ical, immunological and inflammatory studies on the

Table 1  Variations in inflammatory cells and related markers in the bronchial submucosa during COPD exacerbations

Cell type Inflammatory mediator
Upregulated Eosinophils Neutrophils CD3 T cells VLA1 TNF-x CCL5 CXCL5 CXCLS8 CXCR1
Unchanged Mast cells CD68 macrophages ELAMI1 ICAM1 L4 IL-5

Data extracted from ([33, 138-140] and references therein)
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mechanisms of COPD exacerbations can be carried out, will
offer an invaluable tool to increase our understanding of the
specific COPD immunopathology during exacerbations in-
duced by rhinovirus.

Limitations of studies in COPD immunopathology

Small airway specimens are most frequently obtained from
subjects undergoing lung resection for peripheral carcinomas
or from subjects with pulmonary emphysema undergoing lung
volume reduction surgery (LVRS). The selection criteria cre-
ate important biases in the analysis of inflammation of the
airways and parenchyma. Of utmost importance is the need
to compare the results obtained from COPD patients with age-
matched control subjects.

The lung tissue specimens from lung resection for periph-
eral carcinomas came mainly from patients with nonsmall cell
lung cancer (NSCLC). Inflammation in the neoplastic lungs of
patients with NSCLC in variable in the different studies, but
usually there is a predominance of Thl cells independent of
concomitant COPD severity [146] and of Tregs [147].
Furthermore, cancer cells may also suppress dendritic cell
maturation [148]. To minimise these concerns, it is important
to obtain the non cancerous lung tissue as far as possible from
the primary lung lesion.

Studies on the pathology of COPD bronchi have contrib-
uted significantly to our current knowledge, but an important
limitation, particularly those in patients with severe disease, is
a potential effect of steroid treatment. Although not generally
a problem with peripheral airway samples obtained by lung
resection for peripheral carcinomas as these patients are not
usually treated with ICS, this is an issue with severe and very
severe COPD samples obtained by LVRS as these patients
have almost invariably been treated with high-dose ICS and/
or other drugs and are often infected by bacteria. In a similar
manner, smoking status and use may affect the histopatholog-
ical features observed. Ideally, it is important to have bio-
chemical proof of smoking status.

The comparison of results over time has been complicated
by the fact that the definition of COPD in both National and
International guidelines has changed many times. When ex-
amining clinical lung function data presented in some of the
older studies (for example, see Table 1 in [149]), some patients
with COPD or control smokers with normal lung function
should be reclassified to a different clinical phenotype.

Finally, there are some methodological issues that need to
be controlled in that most studies use histochemical and im-
munohistochemical techniques which require unmasking of
the epitope in paraffin sections and not all antibodies work
well under these conditions and detection of some markers
are suboptimal using high-throughput analysis. Gene expres-
sion studies performed using microarrays or next-generation
sequencing provides enormous amounts of information but
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lack precision as to cellular origin. However, recent bioinfor-
matic approaches have enabled cell subsets to be much better
defined using gene signatures.

Conclusions

The immunopathology of COPD is based on the innate and
adaptive inflammatory immune responses to the chronic inha-
lation of cigarette smoking. In the last quarter of the century,
the analysis of specimens obtained from the lower airways of
COPD patients compared with those from a control group of
age-matched smokers with normal lung function has provided
novel insights on the potential pathogenetic role of the differ-
ent cells of the innate and acquired immune responses and
their pro/anti-inflammatory mediators and intracellular signal-
ling pathways, contributing to a better knowledge of the im-
munopathology of COPD both during its stable phase and
during its exacerbations. The COPD immunopathology is
largely driven by a complex cross-talk between macrophages
and dendritic cells and lymphocytes which trigger both cell-
mediated and antibody-mediated chronic inflammation and
remodelling of the lower airways with the clinical conse-
quences of irreversible airflow limitation and respiratory
symptoms. This process is likely triggered by many compo-
nents of the tobacco smoke especially oxidative/nitrosative/
carbonyl stress. Greater understanding of the pathophysiology
of COPD will provide an informed basis for rational drug
development.
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