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INTRODUCTION 
 

Diabetes mellitus (DM) is a common chronic disease 

and its prevalence continues to increase [1]. With 

progression of DM, neuropathy has become the most 

common symptomatic complication of diabetic 

patients [2]. Diabetic optic neuropathy (DON) is one 

of the major chronic complications of DM [3], and 

includes diabetic papillopathy, optic disc neo-
vascularization, nonarthritic anterior ischemic optic 

neuropathy and optic atrophy [4]. The prevalence of 

DON in diabetic retinopathy (DR) patients is 38.4% 

[5]. Due to variation in the forms of DON, it is 

difficult to diagnose and it can therefore seriously 

threaten vision and affect the quality of life in 

diabetes patients, which underscores the need for an 

ophthalmologist’s evaluation. According to recent 

reports, hyperglycemia in diabetic patients decreases 

local tissue blood flow and this could affect the 

metabolism of the optic nerve [6]. The major 

mechanisms proposed to be involved in DON include 

activation of the polyol pathway, inflammatory 

response and oxidative stress [2, 7]. Furthermore, 

there is irreversible atrophy of the optic nerve as the 

disease progresses over time, which eventually leads 

to blindness.  
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ABSTRACT 
 

Diabetic optic neuropathy (DON) is a diverse complication of diabetes and its pathogenesis has not been fully 
elucidated. The purpose of this study was to explore dynamic cerebral activity changes in DON patients using 
dynamic amplitude of low-frequency fluctuation (dALFF). In total, 22 DON patients and 22 healthy controls 
were enrolled. The dALFF approach was used in all participants to investigate dynamic intrinsic brain activity 
differences between the two groups. Compared with HCs, DON patients exhibited significantly increased dALFF 
variability in the right middle frontal gyrus (P < 0.01). Conversely, DON patients exhibited obviously decreased 
dALFF variability in the right precuneus (P < 0.01). We also found that there were significant negative 
correlations between HADS scores and dALFF values of the right middle frontal gyrus in the DON patients (r = -
0.6404, P <0.01 for anxiety and r = -0.6346, P <0.01 for depression; HADS, Hospital Anxiety and Depression 
Scale). Abnormal variability of dALFF was observed in specific areas of the cerebrum in DON patients, which 
may contribute to distinguishing patients with DON from HCs and a better understanding of DON, 
hyperintensities of right middle frontal gyrus may be potential diagnostic marker for DON. 
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The examination and diagnosis of optic neuropathy 

mainly relies on an ophthalmological fundus examina-

tion, such as fundus photography, visual evoked 

potentials (VEP) and fundus fluorescein angiography. 

However, these examinations may not be appropriate for 

all diabetic patients, especially in patients with heart 

failure, or liver failure, or renal failure, or drug allergies. 

In clinical practice, the prevalence of DON is usually 

underestimated [8], and there have been few studies on 

DON. This prompted us to adopt a new technique known 

as amplitude of low-frequency fluctuation (ALFF), to 

deepen our understanding of neural mechanism changes 

in DON patients. The ALFF examination is a fully 

automated, reliable, standardized and sensitive functional 

magnetic resonance imaging(MRI) technology that 

reflects the intensity of local spontaneous cerebrum 

activity and endogenous/background neurophysiological 

processes in the human cerebrum at rest [9], which has 

been shown to be a valuable parameter that reflects the 

intensity of spontaneous neural activity [10–12]. It is also 

a reliable biomarker for many neurological diseases and 

can be applied to the study of eye diseases, such as 

strabismus [13], amblyopia [14], glaucoma [15, 16], and 

retinal diseases [17–19].  

 

However, the human cerebrum is the most complex and 

sophisticated organ in human body, and it produces 

continuous and rhythmic dynamic potential changes. It 

had been reported [20, 21] that the dynamic 

characteristics of cerebrum activity are related to various 

physiological functions, such as consciousness and 

cognition. Dynamic amplitude of low-frequency 

fluctuation (dALFF) is further measurement of the 

prolongation of ALFF, and it provides a new approach to 

explore ALFF on a time scale, which can allow dynamic 

study of local intrinsic cerebrum activity [22]. It has been 

applied to diagnosis and treatment of some diseases, such 

as depressive disorders [23] and schizophrenia [24, 25]. 

Currently, dALFF analysis has been extended and 

successfully applied to quantify and assess the dynamic 

cerebral activity changes in patients with generalized 

tonic-clonic seizures [26], poststroke aphasia [27], and 

diabetic retinopathy [28]. Due to the frontal, temporal 

and thalamus regions comprising a default mode 

network, they are involved in emotional, memory, and 

cognitive functions [29, 30]. Therefore, we hypothesized 

that there might be dynamic cerebral electrical activity 

changes in patients with DON (Figure 1), and 

connectivity changes in relevant cognition-related areas 

may result in depression and anxiety. Based on the above 

views, the purpose of this study was to determine 

whether altered dynamic spontaneous neural activity was 

observed in DON patients using the ALFF examinations 

for evaluation and analysis.  

 

RESULTS 
 

Clinical characteristics 

 

In order to observed changes of dALFF values in DON 

patients, we recruited 22 DON patients and 22 health 

controls (HCs) who underwent the dALFF examination. 

There were no significant differences in sex, age, 

weight and handedness between the two groups 

(P>0.05). However, the binocular best corrected visual 

acuity of DON patients was significant worse than HCs 

(P < 0.05). Compared with HCs, DON patients showed 

delayed binocular latencies and lower amplitudes of 

VEP (P < 0.05). The mean course of DON patients was 

56.76±5.26 days. Details are shown in Table 1. 

 

 
 

Figure 1. Example of diabetic optic neuropathy was performed on fundus camera (A) and fluorescence fundus angiography (B). Perioptic 
nerve hemorrhage (red arrow) and optic disc edema (white arrow) were observed. 
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Table 1. Clinical characteristics of participants in this study. 

Condition DON HCs t P value 

Male/female 10/12 10/12 N/A > 0.99 

Age (years) 54.74 ± 5.98 53.02 ± 5.12 0.274 0.914 

Weight (kg) 65.32 ± 7.52 62.12 ± 8.57 0.197 0.943 

Handedness 22R 22R N/A > 0.99 

Duration of DON (days) 56.76 ± 5.26 N/A N/A N/A 

Best-corrected VA-left eye 0.35 ± 0.22 1.05 ± 0.25 -3.581 0.014 

Best-corrected VA-right eye 0.26 ± 0.19 1.05 ± 0.15 -3.127 0.011 

Latency (ms)-right of the VEP 121.01 ± 10.64 101.23 ± 5.42 3.291 0.002 

Amplitude (µV)-right of the VEP 6.96 ± 2.15 13.29 ± 1.84 -8.021 0.003 

Latency (ms)-left of the VEP 110.42 ± 7.48 100.76 ± 3.29 5.597 0.012 

Amplitude (µV)-left of the VEP 10.26 ± 3.34 16.24 ± 2.65 -3.018 0.005 

Note: Values are mean±SD.  
Abbreviations: DON, Diabetic optic neuropathy; HCs, Healthy controls; VA, Visual acuity; N/A, Not 
applicable; VEP, Visual evoked potential. 
χ2-test for sex and handedness(n).  
Independent t-tests for other normally distributed continuous data. 

 

Variance differences of dALFF 

 

The spatial patterns of dALFF variability were 

determined in DON patients (Figure 2A) and HCs (data 

were not showed). Compared with HCs, DON patients 

exhibited increased dALFF variability in the right 

middle frontal gyrus (MFG_R) (Figure 2B, 2C and 

Table 2), and exhibited decreased dALFF variability in 

the right precuneus-(PreC_R) (Figure 2B, 2C and  

Table 2). The mean values of altered dALFF were 

shown in Figure 2D between the DON and HC groups. 

However, we found no significant abnormalities in 

other cerebrum regions. 

 

Receiver operating characteristic curve 

 

To verify whether differences in altered dALFF values 

would be applied to diagnostic biomarkers to 

differentiate the DON patients from HCs, receiver 

operating characteristic (ROC) curve analysis was used 

to analyze the mean altered dALFF values for specific 

cerebrum regions. The area under ROC curve (AUC) 

represents the diagnostic rate. Values of 0.5 to 0.7 are 

low accuracy, 0.7 to 0.9 are middle accuracy, and > 0.9 

is high accuracy. The individual AUCs of altered 

dALFF values were as follows: DON >HCs, MFG_R 

(0.997, P < 0.0001, 95% CI: 0.985–1.000; Figure 3A); 

DON <HCs, PreC_R (0.858 P < 0.0001, 95% CI: 

0.737–0.979; Figure 3B). These results indicated that 

dALFF values in altered brain areas may be helpful in 

diagnosing DON. Moreover, the ROC curves suggested 

that the MFG_R dALFF value had better clinic value 

than PreC_R. 

Correlation analysis 
 

To determine the linear relationship between abnormal 

cerebrum regions and depression or anxiety, a Pearson’s 

correlation analysis was performed. Pearson's r can 

range from -1 to 1. An r of -1, 0 and 1 individually 

indicate a perfect negative, no, and a perfect positive 

linear relationship between variables. There were 

significant negative correlations between Hospital 

Anxiety and Depression Scale (HADS) scores and 

dALFF values of the MFG_R in DON patients (r = -

0.6404, P <0.01 for anxiety and r = -0.6346, P <0.01 for 

depression; Figure 4). However, the relationship 

between dALFF values of PreC_R and HADS scores in 

patients with DON was not significant (P>0.05) (data 

were not showed). 

 

DISCUSSION 
 

As we know, resting-state functional magnetic 

resonance imaging(rs-fMRI) signals are associated with 

resting state networks and used to assess individual 

cognitive, emotional and executive functions [31]. 

Alterations of cortical signals can be used to locate 

cortical functional areas and further study brain 

functions [32]. Recently, a lot of rs-fMRI methods were 

used to observe the brain activities in DON patients, 

like degree centrality [33], functional connection 

density [34], regional homogeneity [35] and voxel 

mirrored homotopic connectivity [36] methods (details 
in Table 3). This study is the first to use the dALFF 

method which was ALFF combined with sliding 

window to reveal the temporal variability of regional 
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intrinsic cerebrum activities in DON patients. Our 

results indicated that DON patients exhibited increased 

dALFF values in the MFG_R and decreased dALFF 

values in the PreC_R compared with HCs. In addition, 

there were significant negative correlations between 

Hospital Anxiety and Depression Scale scores and 

dALFF values of the MFG_R in DON patients. These 

findings emphasize the importance of dynamic local 

brain activity in research. 

 

In this study, DON patients showed worse binocular 

best corrected visual acuity because of optic disc 

inflammation or edema, resulting in delayed VEP 

latency and decreased amplitude. To our knowledge, 

VEP have been used to observe the transmission of light 

signals to a subcortical nucleus and the visual cortex 

and this illustrates the extent of the visual pathway [37]. 

Damage to somewhere of visual pathway can lead to 

visual impairment, which affects the normal lives and 

leads to negative emotions [38], cognitive impairment 

[39] and poor motor perception [40]. Previous studies 

had demonstrated that there were retinal ganglion cells 

loss or apoptosis [41, 42] and retinal nerve fiber layer 

thinner or loss in DR patients [43], but there were less 

than half of DR patients had optic neuropathy [5] and 

this neurodegeneration was an early event in the 

pathogenesis of DR [44]. Willemien et al. [45] observed 

the atrophy of retinal optic nerve and visual function 

impairment in patient with temporal lobe part resection, 

and revealed that it was caused by direct retrograde 

axial degeneration. Therefore, visual loss and cerebral 

cortex affect each other. According to delayed latencies 

 

 
 

Figure 2. Comparison of different dALFF values between the DON patients and HCs. Spatial patterns of dALFF variance were 
observed in DON patients. The mean dALFF variance maps within DON patients (A). Compared with HCs, patients with DON showed 
increased MRG_R dALFF value and decreased PreC_R dALFF value. Representative distributions of them in the coronal, sagittal and 
transverse positions (B) and three-dimensional distributions (C). Two-sample t-test was used to compare dALFF values between two groups. 
The mean values of altered dALFF between the DON patients and HCs (D). * represented to P< 0.01. The warm color areas denote higher 
values, and the cool color areas denote lower values in two groups. Abbreviations: dALFF, dynamic amplitude of low-frequency fluctuation; 
DON, diabetic optic neuropathy; HCs, healthy controls; MFG, middle frontal gyrus; PreC, precuneus; R, right; L, left. 
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Table 2. Brain regions with significantly different dALFF values between patients with DON and HCs. 

Brain area BA Voxel 
MNI coordinates of peak voxel 

t-value 
X Y Z 

DON>HCs MFG_R 10 26 30 51 -3 4.9595 

DON<HCs PreC_R - 31 3 -69 45 -3.6307 

Note: The statistical threshold was set at the voxel level with p < 0.01 for multiple comparisons using Gaussian 
random-field theory (two-tailed, voxel-level P < 0.01, GRF correction, cluster level P < 0.05).  
Abbreviations: dALFF, dynamic amplitude of low-frequency fluctuation; DON, Diabetic optic neuropathy; HCs, 
healthy controls; BA, Brodmann area; R, right; MNI, Montreal Neurological Institute; MFG, middle frontal gyrus; 
PreC, precuneus; GRF, Gaussian random field. 

 

and decreased amplitudes of VEP, damage of visual 

pathway was proved in DON patients. Several studies 

[46–48] also found the same results in DR or DON 

patients, but this method was nonspecific, the 

breakdown of visual information transmission in 

somewhere can cause to changes of VEP. We 

speculated that this change in DON patients was due to 

the disease itself, because we did not observe abnormal 

dALFF variability in occipital lobe.  

 

The optic nerve is part of the cerebrum and optic 

neuropathy may lead to changes of neural activity in 

some brain regions. Previous studies demonstrated that 

retinal neurovascular degeneration may be a potential 

biomarker for mild cognitive disorder and Alzheimer’s 

disease [49, 50]. Compared with HCs, we found 

increased dALFF variability in the right MFG of DON 

patients. The right MFG, as a part of the prefrontal 

cortex, is the combination of dorsal and ventral 

attention networks. It has the ability to interrupt 

attentional processes of endogenous stimuli and convert 

them to exogenous stimuli, as with a circuit-breaker 

[51]. Japee et al. [52] demonstrated that this function 

may be conducive to remedying the effect of lesions in 

areas of the cerebrum. Previous studies [33, 53] have 

indicated that there are decreased ReHo and degree 

 

 
 

Figure 3. ROC curve analysis of the mean dALFF values for altered brain regions. (A) DON>HCs, the area under the ROC curve was 

0.997 (P < 0.0001; 95% CI: 0.985–1.000) for MFG_R. (B) DON<HCs, the area under the ROC curve was 0.858 (P < 0.0001; 95% CI: 0.737–0.979) 
for PreC_R. Abbreviations: ROC, receiver operating characteristic; dALFF, dynamic amplitude of low-frequency fluctuation; DON, diabetic 
optic neuropathy; HCs, healthy controls; AUC, area under the curve; R, right; MFG, middle frontal gyrus; PreC, precuneus. 
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centrality values of MFG_R in DON patients. ReHo 

was used to evaluate local synchronization of adjacent 

voxels in the whole cerebrum at rest [54], and degree 

centrality was used to observe the connectivity of 

cerebrum networks at the voxel level [55]. However, 

dALFF as an extension of rs-fMRI can better reflect 

the dynamic electrical activity of the cerebrum in 

diseases, especially applied in DR [28], consciousness 

[20], anxiety [56], and depression [57]. One study 

revealed that DR patients increased dALFF variability 

in the left parahippocampal gyrus, left cerebellum_8, 

left cerebellum_9, and right brainstem [28], but we did 

not found them in DON patients using dALFF method, 

this difference enlightened us to realize the mechanism 

of brain dALFF variability in patients with DON or 

DR may be inconsistent. Visual impairment in DON 

patients may lead to loss of visual information 

processing, which could relate to feedback-controlled 

cerebrum areas in order to repair the ability to turn on 

endogenous attention. The elevated dALFF of DON 

patients in the right MFG might be increased activity 

to deal with attention transforms, which could affect 

life quality in other aspects, such as anxiety and 

depression (Figure 5). Correlation analysis with HADS 

revealed that anxiety and depression scores were 

negatively correlated with dALFF values of the 

MFG_R. Therefore, more attention should be paid to 

emotions of DON patients. These data implied that 

local synchronization and connectivity in DON 

patients is abnormal in areas of the cerebrum. In 

addition, ROC curve showed that MFG_R had high 

accuracy for diagnosing DON. We conjectured that the 

MFG_R may be a potential biomarker for DON 

patients.  

 

It is noteworthy that vision loss can affect the health-

related quality of life [58] and easily cause emotional 

changes in patients, such as anxiety and depression [38, 

59] Moreover, low vision correction can significantly 

improve anxiety and depression indicators in visually 

impaired patients [59, 60]. Compared with HCs, DON 

patients had significant vision loss and afferent optic 

pathway impaired which can affect the normal lives and 

lead to negative emotions. Huang et al. [61] showed that 

DR patients exhibited increased dALFF variability in 

some brain regions that were not observed in our study, 

it means the increased dALFF values of MFG_R was 

due to the afferent optic pathway injury in DON 

patients. In addition, correlation analysis revealed that 

anxiety and depression scores were strong negative 

correlation with dALFF values of the MFG_R. 

According to recent functional imaging studies, the 

MFG_R are now considered to play an essential role in 

emotion regulation, and the lesions of this area are 

prone to show anxiety and depression [62–65]. Some 

studies [56, 57] demonstrated that patients with 

generalized anxiety disorder or major depressive 

disorder exhibited abnormal dALFF variability in 

widespread regions, but not included MRG_R, this may 

due to different degree of anxiety and depression or 

different mechanism between them. Therefore, our 

study supposed that DON patients may lead to lesions 

of MRG_R, and then caused the symptoms of anxiety 

and depression. 

 

 
 

Figure 4. Correlations between dALFF values of MFG_R and clinical behaviors. A Pearson’s correlation analysis was performed to 
determine the linear relationship between significant dALFF values and HDS scores. (A) The anxiety scores showed a negative correlation with 
dALFF values of MFG_R (r = −0.6406, P < 0.01); (B) The depression scores showed a negative correlation with dALFF values of MFG_R (r = 
−0.6346, P < 0.01). Abbreviations: dALFF, dynamic amplitude of low-frequency fluctuation; MFG, middle frontal gyrus; R, right; AS, anxiety 
scores; DS, depression scores. 
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Table 3. Rs-MRI method applied in DON patients in the current literatures. 

Author Year Method 
Abnormal cerebrum regions 

Decreased values Increased values 

Xu et al. [33]  2020 DC LFMO, RMFG/RGS  LTL 

Chen et al. 

[34] 
2021 FCD 

longFCD:  

Bilateral Lingual,  

Lingual_R, 

Cingulum_Mid_L 

lFCD: Cerebelum_8_L 

Cerebelum_Crus2_R 

Temporal_Inf_L 

Temporal_Sup_L 

Guo et al. [35]  2021 ReHo RMFG, LAC, SFG/ LFSO - 

Tan et al. [36] 2021 VMHC RTI, LTI, RCM, LCM, RSM, LSM - 

Abbreviations: Rs-MRI, resting-state functional magnetic resonance imaging; DON, diabetes optic neuropathy; DC, 
[33]; LFMO, left frontal mid-orb; RMFG/RFS, right middle frontal gyrus /right frontal sup; LTL, left temporal lobe; 
FCD, functional connection density; R, right; L, left; ReHo, regional homogeneity; LAC, left anterior cingulate; SFG/ 
LFSO, superior frontal gyrus /left frontal superior orbital gyrus; VMHC, voxel mirrored homotopic connectivity; 
RTI, right temporal inf; LTI, left temporal inf; RCM, right cingulum mid; LCM, left cingulum mid; RSM, right supp 
motor; LSM, left supp motor. 

 

 
 

Figure 5. Relationship between cerebrum dALFF values of right middle frontal gyrus and mood state.  Compared with HCs, 
dALFF values of right middle frontal gyrus were decreased in DON patients, which were more likely to undergo the anxiety and 
depression. Abbreviations: dALFF, dynamic amplitude of low-frequency fluctuation; HCs, healthy controls group; DON, diabetic optic 
neuropathy. 
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We also observed decreased dALFF variability in the 

PreC_R in patients with DON. Anatomically, the 

precuneus is located directly in front of a wedge-shaped 

fold on the medial side of the occipital lobe. The 

marginal branch of the cingulate sulcus, the medial 

portion of the parieto-occipital fissure, and the inferior 

parietal sulcus are the front, rear, and lower edges of the 

precuneus, respectively [66]. The human cerebrum 

showed different methods of functional connectivity 

between disparate cerebrum areas, even at rest [67, 68]. 

The precuneus, posterior cingulate cortex, medial 

prefrontal cortex, and bilateral temporoparietal junction 

formed the default mode network (DMN), which is the 

network most easily related to rest states, and its activity 

increases at rest and decreases with task engagement 

[69, 70]. Across the areas of the DMN, the precuneus is 

prominent for having a unique role. Two studies [71, 72] 

have shown that precuneus acts as a key part of the 

DMN by converting its network connectivity to the left 

frontal-parietal control network and DMN depending on 

the situation of the cerebrum. Cavanna et al. [73] 

demonstrated that the precuneus plays a core role in 

visuo-spatial imaging, episodic memory retrieval, and 

self-processing operations. Compared with HCs, DON 

patients underwent blurred vision and impaired visual 

image acquisition due to significant worse visual ability, 

besides, we found that decreased dALFF variability in 

the PreC_R in patients with DON, which means that the 

DMN was engaged in the task. We speculated that its 

abnormal activity may lead to weakening of the ability 

to regulate rest and work states, and even affect the 

cerebrum functional connection. Our findings agree with 

a report by Chen et al. [34]. In this study, they 

demonstrated abnormal functional connection density in 

some cerebrum areas of DON patients. As precuneus 

activation is usually attributed to episodic memory and 

the visuo-spatial process, the influence of DON deserves 

special attention when observing cerebrum activity. 

Moreover, ROC curves in Figure 3 show different signal 

values of brain areas that exhibited acceptable sensitivity 

and excellent specificity when the two groups were 

distinguished, which could lead to the suggestion that 

the dALFF values of MFG_R and PreC_R may be 

potential diagnostic markers for DON. 

 

In this study, we observed cerebrum activity of dALFF 

in DON patients and healthy controls (Figure 6 and 

Table 4), which could allow a better understanding of 

the potential pathophysiological mechanisms of DON 

patients, and dALFF may be a useful tool for detection 

and discrimination of the effects of cerebrum activity 

in DON patients. However, larger sample size studies 

and longitudinal research should be conducted in the 

future. 

 

 
 

Figure 6. The mean dALFF values of altered cerebrum regions. Compared with HCs, the dALFF values of the following region 1 in DON 

patients was increased: MFG_R (BA 10, t = 4.9595), while the dALFF values of the following region 2 was decreased: PreC_R (t =-3.6307). 
Abbreviations: dALFF, dynamic amplitude of low-frequency fluctuation; HCs, healthy controls; DON, diabetic optic neuropathy; R, right; MFG, 
middle frontal gyrus; PreC, precuneus; BA, Brodmann's area. 
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Table 4. Alternation of cerebellum regions and its potential impact. 

Cerebellu

m regions 

Experimental 

results 
Cerebellum functions Anticipate effects 

MFG_R DON > HCs 
Auditory information processing, 

reorienting of attention 

Mental disorders and inattention, including 

depression and anxiety 

PreC_R DON < HCs 
visuo-spatial imaging and episodic 

memory retrieval processing 

Movement and memory impairment, including 

acute sleep deprivation 

Abbreviations: MFG, middle frontal gyrus; R, right; PreC, precuneus; DON, diabetic optic neuropathy; HCs, health control 
group. 

 

CONCLUSIONS 
 

In total, patients with DON exhibited increased dALFF 

of MFG_R implicated in mental disorders and 

inattention and decreased dALFF of PreC_R implicated 

in movement and memory impairment. The hyper-

intensities of MFG_R may be related to the anxiety and 

depression of DON patients and contributed to 

distinguishing patients with DON from HCs. This study 

sheds new insight into the brain dysfunction underlying 

DON from the perspective of dynamic local brain 

activity, highlighting the important role of alterations in 

dALFF variability in understanding the neuro-

pathological mechanisms underscoring DON and 

potentially informing the diagnosis of this disease. 

 

MATERIALS AND METHODS 
 

Participants 
 

Twenty-two DON patients (10 males and 12 females) 

who had been diagnosed and treated in the Department of 

Ophthalmology of the First Affiliated Hospital of 

Nanchang University were enrolled as the DON patient 

group (DON). The diagnostic criteria of DON was based 

on Levin et al. [74] as follows: a) a clear history of 

diabetes; b) optic disc edema (nonspecific congestive 

edema), or ischemic optic neuropathy, optic disc 

neovascularization and optic nerve atrophy; c) different 

degrees of visual impairment, no clinical basis for visual 

impairment, no typical clinical features on visual field 

examination, and enlarged physiological blind spots or 

limited impairment of visual acuity; d) fundus fluorescein 

angiography revealing early lesions, involving part or all 

of the optic papilla, or showing blurred, leaky, and low 

fluorescence; e) exclusion of other diseases that may 

cause optic disc edema, such as toxic optic neuropathy, 

hereditary Leber’s optic neuropathy, local ischemic 

papillary optic lesion, congenital abnormalities of the 

optic nerve, optic nerve trauma, or systemic lesions; f) 

disc edema caused by optic neuropathy that could be 

treated or would recover after approximately 6 months 

with the recovered disc possibly appearing pale; and g) 

no other systemic disease, such as high blood pressure. 

Twenty-two healthy controls (10 male and 12 female 

participants) without DM matched for age, gender, 

handedness, educational level and total intracranial 

volume were treated as HCs. The inclusion criteria for 

HCs were as follows: a) no ocular disease history; b) no 

drug or alcohol abuse history; c) no neurological or 

psychiatric diseases; d) no MRI contraindications; and 

e) normal brain parenchyma on MRI. 

 

This study was approved by the medical ethics 

committee of the First Affiliated Hospital of Nanchang 

University, which is also compliant with the Declaration 

of Helsinki. All participants voluntarily participated in 

the study, understood its methods, purpose, and 

potential risks, and signed informed consent forms. 

 

MRI data acquisition 

 

All participants were scanned with a Siemens Trio 3.0T 

MRI scanner (Trio; Siemens, Munich, Germany) using 

an 8-channel phased-array head coil. During the 8 min 

MRI examination, all participants were in a comfortable 

and noise-free environment and were kept awake. The 

scanning parameters were performed as follows: repeat 

time =2,000 ms; echo time =30 ms; field of view =240 

mm × 240 mm; flip angle =90°; slice thickness =3 mm 

with a 1-mm gap; and number of slices = 30. A total of 

240 functional images were finally captured.  

 

rs-fMRI data processing 

 

The rs-fMRI data preprocessing was performed using 

Data Processing and Analysis for Brain Imaging 

(DPABI, http://www.rfmri.org/dpabi) [75], which was 

performed with the following steps: 1) the first 10 time-

points were excluded, and slice timing was carried out 

to correct time differences; 2) realignment for 

individual-level correction was applied to correct head 

motion with a Friston-24 model; 3) mean framewise 

displacement (FD) was used to minimize the potential 

influences of head motion; 4) several covariates were 

regressed; 5) the data were normalized to the standard 

Montreal Neurological Institute (MNI) echo planar 

imaging (EPI) template at a resolution of 3×3×3 mm3; 

http://www.rfmri.org/dpabi
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6) a temporal bandpass filter (0.01–0.08 Hz) was 

applied; and 7) functional volumes were smoothed with 

6-mm full-width at half maximum Gaussian kernel. 

 

dALFF analysis 

 

The sliding window was applied to quantify the dALFF 

of each participant using the DynamicBC toolbox (v2.0, 

http://www.restfmri.net/forum/DynamicBC) [76], which 

is a significant parameter to evaluate dynamic 

spontaneous neural activities, and the proper window 

length played a crucial role in dynamic analysis. 

Previous studies indicated that the range of appropriate 

window length was 10–75 TR and step = 1 TR [77, 78]. 

Therefore, an appropriate sliding window length of 30 

TR (step = 1 TR) and five TR (10 s) as the step size was 

chosen to calculate the dALFF of each participant and 

maximize the statistical power. Then the ALFF map 

was computed within each window. To evaluate the 

temporal variability of dALFF (dALFF variability), we 

measured the variance of these maps by using the 

standard deviation. Furthermore, the dALFF variability 

was transformed into z-scores for statistical analyses.  

 

Statistical analyses 

 

SPSS version 19.0 software (IBM Corporation, 

Armonk, NY, USA) was applied to analyze the 

cumulative data. The Chi-square (x2) test and 

independent t-test were used to assess the clinical data 

between two groups. Two-sample t-test was used to 

compare dALFF values between DON patients and 

HCs, with age, sex, and mean FD as covariates. and the 

Gaussian Random-Field (two-tailed, voxel level, P < 

0.01; gaussian random field correction, cluster level, P 

< 0.05) were used to process multiple comparison 

corrections. P < 0.05 was regarded as statistically 

significant. In addition, ROC curves were used to 

compare specific cerebral regions between the two 

groups. 

 

Correlation analysis 

 

The HADS was filled out by all patients, and the 

differences in clinical behavior were based on scores of 

anxiety and depression. The GraphPad Prism 8 software 

(GraphPad Inc, San Diego, CA, USA) was applied to 

analyze Pearson’s correlation, and to evaluate and plot 

the linear correlation between HADS scores and mean 

dALFF signal values in the MFG_R. 
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