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Abstract: Chitosan has come a long way in biomedical applications: drug delivery is one of its core
areas of imminent application. Chitosan derivatives are the new generation variants of chitosan.
These modified chitosans have overcome limitations and progressed in the area of drug delivery.
This review briefly surveys the current chitosan derivatives available for biomedical applications.
The biomedical applications of chitosan derivatives are revisited and their key inputs for oral drug
delivery have been discussed. The limited use of the vast chitosan resources for oral drug delivery
applications, speculated to be probably due to the interdisciplinary nature of this research, is pointed
out in the discussion. Chitosan-derivative synthesis and practical implementation for oral drug
delivery require distinct expertise from chemists and pharmacists. The lack of enthusiasm could
be related to the inadequacy in the smooth transfer of the synthesized derivatives to the actual
implementers. With thiolated chitosan derivatives predominating the oral delivery of drugs, the need
for representation from the vast array of ready-to-use chitosan derivatives is emphasized. There is
plenty to explore in this direction.

Keywords: chitosan; chitosan derivative; drug delivery; oral delivery; biomedical applications

1. Introduction

Chitosan, made up of β-(1,4)-N-acetyl-glucosamine [1–3], is obtained following the
deacetylation of chitin. Chitin is found extensively in the exoskeletons of crustaceans
and insects and in the cell walls of bacteria and fungi [4]. The quality of chitosan is
influenced by the source of chitin, separation method and the degree of deacetylation [5].
The major advantages of chitosan are that it is nontoxic, mucoadhesive, hemocompatible,
biodegradable and able to exhibit antioxidant, antitumor, antimicrobial properties. These
properties render chitosan a highly attractive biomaterial option. The iconic characteristic
of chitosan is that it does not provoke intense inflammation nor induce the body’s immunity.
Researchers have confirmed that chitosan with different molecular weights and degrees
of deacetylation exhibit low toxicity [6–9]. The catatonic nature of chitosan gives it its
bactericidal and bacteriological properties [10,11]. However, chitosan is not soluble in
aqueous solutions, a major disadvantage that limits its widespread application in living
systems [12].

Chitosan’s surface adherence comes in handy when delivering useful molecules across
mucosal pathways and adsorbs molecules that do not have any affinity for mucus [13].
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Chitosan, through its permeation-related attributes, is able to open the tight epithelial
junctions [14]. Chitosan also plays a role in coagulation. It accelerates the rate of wound
healing by enabling interactions between amino and platelet groups [15]. These hemo-
static properties are used with respect to wound healing applications. As a material for
wound dressing, chitosan possesses chemoattraction, macrophage and neutrophil activa-
tion, analgesic properties, acceleration of granulation tissue/re-epithelization, limited scar
formation and contraction, hemostasis and antibacterial properties [16]. The antitumor
properties of chitosan and its derivatives have been well demonstrated in both in vitro and
in vivo models [17]. The beneficial effects of antioxidants are well known [18], chitosan
and its derivatives are able to scavenge free radicals in vitro [19,20]. The biodegradabil-
ity of chitosan is yet another unique feature in biological organisms. Within the system,
chitosan interacts with bioenzymes to depolymerize. The degradation breakdown prod-
ucts, N-acetyl glucose and glucosamine, are nontoxic to the human body. These degraded
intermediates do not stay in the body and have no immunogenicity.

This review focusses on surveying the various novel chitosan derivatives that are
available for use as drug delivery options. The milestones achieved based on the use of
chitosan derivatives in the area of oral drug delivery has been comprehensively reviewed.
The lack of implementing the various chitosan derivatives for oral drug delivery has been
highlighted. The plausible reasons for this gap in the application of the various chitosan
derivatives for oral drug delivery has been discussed. The possible accomplishments that
could be achieved through utilization of the available resources has been addressed under
future perspectives.

2. Comprehensive List of Novel Chitosan Derivatives

This section deals with a brief overview of the various chitosan derivatives that
have been synthesized and are available for biomedical applications. The synthesis and
their characterization and their applications have been elaborately reviewed by various
authors [21–23]; here, we are restricted to a snapshot of their names. Figure 1 gives
an overview of the various modification processes involved in the making of various
chitosan derivatives.

N-(Aminoalkyl) Chitosan is a broad category of chitosan derivatives, which house
many other forms. The encapsulation of calcium alginate beads with poly(L-lysine) (PLL),
is the most accomplished encapsulation system for sustained delivery of bioactive agents.
However, due to its high cost, large scale usage of this system for oral vaccination of
animals is not possible. This is why a more economic and reliable microencapsulation
chitosan and alginate system was sought after. Succinyl, Quateraminated, and Octanoyl
Chitosan Porous chitosan microspheres for the delivery of antigens have been reported by
Mi et al. [24]. The porous chitosan microspheres were chemically modified incorporating
carboxyl, hydrophobic acyl, and quaternary ammonium groups.

Mitomycin C Conjugated N-succinyl Chitosan is the other class of chitosan derivatives.
N-succinyl-chitosan, due to its carboxyl groups, has low toxicity, excellent biocompatibility
and is retained in the body as a drug carrier for prolonged periods. This the reason why
highly succinylated succinyl-chitosan (degree of succinylation: [25,26] can be dissolved in
alkaline aqueous media, whereas chitosan cannot [27]. Succinyl-chitosan can react easily
owing to the –NH2 and –COOH groups.

The N-Alkyl and Acylated Chitosan derivatives, which greatly benefit from the
introduction of an alkyl or acyl chain, contribute greatly to chitosan’s molecular de-
sign. This modification of chitosan with hydrophobic branches, improved its solubil-
ity properties [28,29]. The introduction of an alkyl chain to water soluble modified chi-
tosan (N-methylene phosphonic chitosan) enabled the co-existence of hydrophobic and
hydrophilic branches [30]. The alkyl groups in N-lauryl-N-methylene phosphonic chitosan
weaken its hydrogen bonds and provide good solubility in solvents. Holding amphiphilic
properties, which are typical for surfactants, this derivative has prospective demands in
pharmaceutical and cosmetic fields.
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Chitosan hydrochloride derivatives have been demonstrated for their effective in vitro
release of ofloxacin from mucoadhesive erodible ocular inserts and ocular pharmacokinet-
ics [31].Thiolated chitosans are obtained by the modification of chitosan with 2-iminothiolane [32],
in order to improve the properties of chitosan as excipients in drug delivery systems.
Chitosan-2-iminothiolane was obtained by grafting 2-iminothiolane onto the chitosan back-
bone. This exhibits excellent in situ gelling properties and improved mucoadhesive and
drug releasing properties due to the thiol groups on chitosan. Phosphorylated chitosan,
which is prepared by reacting chitosan with orthophosphoric acid and urea in DMF [33] or
phosphorous pentoxide in methanesulphonic acid, is a water-soluble derivative of chitosan
with huge potential for drug delivery.

MCC and SNOCC chitosan derivatives are a biomedically significant class. Mono-
N-Carboxymethyl Chitosan (MCC), is a polyampholytic chitosan derivative, soluble at
both neutral and alkaline pH [34], synthesized using glyoxolic acid in chitosan [34]. These
derivatives are highly soluble and applicable for the administration of polyanionic drugs.
It has also been demonstrated by the same group that MCC can improve low molecular
weight heparin (LMWH) transport through Caco-2 cells.

Anionic chitosan derivatives were also attempted. N-sulfonato-N,O-carboxymethylchitosan
(SNOCC) was produced [35], which retains around 50% of its nitrogen centers on the glucose
subunits as free amino groups [36], which contribute to its unique biomedical characteristics.

PEGylated Chitosans are a prominent group of derivatives. Chitosan-PEG for oral
peptide delivery was attempted by Prego et al. [37]. PEGylation of chitosan is apt for oral
peptide/protein delivery, because generally PEGylation improves biocompatibility [38]
and improves stability in GI fluid [37]. PEGylated chitosan showed enhanced solubility
of hydrophobics.
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3. Oral Drug Delivery by Chitosan Derivatives

Although drug delivery is a broad terminology, which is backed up by enumerable
reviews when it comes to chitosan and drug delivery and good number of reviews when
it comes to chitosan derivatives, this review chooses to specifically delve into oral drug
delivery applications. The sections below consolidate what has been achieved in the area
of oral drug delivery based on chitosan derivatives and micro/nano particulate chitosan.

3.1. Chitosan/Chitosan Derivatives

When drugs are administered orally, they must be able to survive various ranges of
pH and gastrointestinal tract (GIT) secretions. The very process of oral drug absorption
rests on transport (via passive diffusion, carrier-mediated transport, or pinocytosis) across
the GIT membrane. This is impacted by various GIT physiological. The oral mucosa
has a thin epithelium and rich vascularity, which is makes it ideally fit for buccal and
sublingual administration [39]. The release of drugs from chitosan and its derivatives
follows the conventional protocol that holds good for chitosan. Drug release is influenced
by the hydrophilicity of chitosan and pH of the swelling solution. The chitosan-drug
release mechanism involves swelling, diffusion of drugs through the polymeric matrix and
polymer erosion [40] (Figure 2).
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Figure 3 lists the limitations that chitosan and its derivatives have broken, when it
can to oral drug delivery. Drug delivery via the oral route is the easiest and e most conve-
nient for patients. Chitosan because of its mucoadhesive nature, is able to protect labile
drugs from GIT enzymatic degradation. Additionally, it is able to enhance absorption
of administered therapeutic agent without affecting the biological system. This makes
chitosan a valuable candidate as an oral delivery agent. Not only chitosan, but also chi-
tosan micro-/nanoparticles have been demonstrated for oral drug delivery. Intestinal
disinfection, suppression of Helicobacter pylori and dealing with ulcerative colitis, have been
accomplished following treatment with antibiotic loaded chitosan particles. Amoxicillin
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and clarithromycin loaded into chitosan particles inhibited H. pylori [41,42]. The mucoadhe-
sive properties of chitosan enabled prolonged delivery and oral bioavailability of acyclovir,
an antiviral agent. This was because acyclovir chitosan microspheres could enhance drug
retention in the upper GIT [43]. Protection against GIT degradation, improvement of oral
bioavailability of insulin and enhancement of bioadhesion, have been reported as a result
of its encapsulation into chitosan microspheres [44].

Polymers 2022, 14, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. Listings of the limitations in oral drug delivery that chitosan and its derivatives have 
helped overcome. 

Chitosan-based delivery systems have been applied for the protection of insulin from 
degradation in the upper GIT. Furthermore, it has been used to carry out the release of 
insulin at the colon (through degradation of the chitosan glycosidic linkage by colon mi-
croflora) [45]. Chitosan microspheres coated with cellulose acetate butyrate, loaded with 
5-aminosalicylic acid (5-ASA) to treat ulcerative colitis is reported. Here, the bioadhesive 
nature of chitosan microspheres comes handy [46]. Another study reported localization 
of 5-ASA in the colon and low drug systemic bioavailability following oral administration 
of 5-ASA-loaded chitosan-Ca-alginate microparticles to Wistar male rats [47]. The fact that 
chitosan is highly soluble in the acidic medium, leading to drug burst in the stomach, has 
been mitigated using pH-sensitive polymer coatings [48–50]. 

Chitosan derivatives have also been reported for oral delivery of therapeutic peptides 
and proteins. Unmodified native chitosan itself has been proven for its oral peptide and 
protein delivery (e.g., capability to open tight junctions, mucoadhesive properties), with 
this being the case, how much more so with the use of chitosan derivatives. Recently, the 
potential of certain modified chitosans including TMC [51], thiolated chitosan [52,53] and 
chitosan-enzyme inhibitor conjugates [54–56] for noninvasive gene delivery has been 
widely reported. In addition, thiolated chitosan is able to inhibit efflux pumps, in partic-
ular P-glycoprotein (P-gp). In this way, thiolated chitosan comes handy when it comes to 
oral delivery of P-gp substrates [57–59]. The potential of chitosan, TMC and MCC for oral 
delivery of vaccine have been previously reviewed [60]. We touch on the highlights of 
these [61,62] reviews here. 

The effect of two different trimethyl chitosans (TMC) on the oral absorption of buser-
elin, a peptide drug, after intraduodenal administration in rats is reported [63] Both for-
mulations significantly enhanced buserelin plasma levels. Enhanced absorption in the 
presence of TMC60 (60% trimethylation) is because of the inherent ability of TMC60 to 
open tight junctions. The impact of TMC solutions on octreotide in vitro permeation and 
in vivo absorption in rats was also investigated [63]. The intrajejunally administered TMC 
solution led to a fivefold increase in the absorption of octreotide compared to octreotide 

Figure 3. Listings of the limitations in oral drug delivery that chitosan and its derivatives have
helped overcome.

Chitosan-based delivery systems have been applied for the protection of insulin from
degradation in the upper GIT. Furthermore, it has been used to carry out the release
of insulin at the colon (through degradation of the chitosan glycosidic linkage by colon
microflora) [45]. Chitosan microspheres coated with cellulose acetate butyrate, loaded with
5-aminosalicylic acid (5-ASA) to treat ulcerative colitis is reported. Here, the bioadhesive
nature of chitosan microspheres comes handy [46]. Another study reported localization of
5-ASA in the colon and low drug systemic bioavailability following oral administration of
5-ASA-loaded chitosan-Ca-alginate microparticles to Wistar male rats [47]. The fact that
chitosan is highly soluble in the acidic medium, leading to drug burst in the stomach, has
been mitigated using pH-sensitive polymer coatings [48–50].

Chitosan derivatives have also been reported for oral delivery of therapeutic peptides
and proteins. Unmodified native chitosan itself has been proven for its oral peptide and
protein delivery (e.g., capability to open tight junctions, mucoadhesive properties), with
this being the case, how much more so with the use of chitosan derivatives. Recently,
the potential of certain modified chitosans including TMC [51], thiolated chitosan [52,53]
and chitosan-enzyme inhibitor conjugates [54–56] for noninvasive gene delivery has been
widely reported. In addition, thiolated chitosan is able to inhibit efflux pumps, in particular
P-glycoprotein (P-gp). In this way, thiolated chitosan comes handy when it comes to oral
delivery of P-gp substrates [57–59]. The potential of chitosan, TMC and MCC for oral
delivery of vaccine have been previously reviewed [60]. We touch on the highlights of
these [61,62] reviews here.
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The effect of two different trimethyl chitosans (TMC) on the oral absorption of busere-
lin, a peptide drug, after intraduodenal administration in rats is reported [63] Both for-
mulations significantly enhanced buserelin plasma levels. Enhanced absorption in the
presence of TMC60 (60% trimethylation) is because of the inherent ability of TMC60 to
open tight junctions. The impact of TMC solutions on octreotide in vitro permeation and
in vivo absorption in rats was also investigated [63]. The intrajejunally administered TMC
solution led to a fivefold increase in the absorption of octreotide compared to octreotide
standalone. The effect of various liquid formulations on the oral bioavailability of oc-
treotide was studied in pigs [64]. Studies with MCC and SNOCC towards oral delivery of
LMWH [34,35], confirmed that chitosan derivatives in a concentration of 3% improved the
oral bioavailability of LMWH.

In vivo studies using thiolated chitosan tablets were applied using peptide drugs as
well as efflux pump substrates. Enteric coated chitosan–TBA conjugated with salmon
calcitonin for the oral administration to rats were tested. Besides chitosan–TBA, the tablets
contained two different chitosan–enzyme inhibitor conjugates, (chitosan–BBI conjugate and
chitosan–elastatinal) [65]. Oral administration of this chitosan conjugate showed decreased
plasma calcium levels for several hours [66]. Another study, where stomach targeted
delivery system for salmon calcitonin was investigated using tablets containing chitosan–
TBA as well as chitosan–pepstatin [67]. The efficacy of chitosan–TBA/GSH for oral peptide
delivery was studied using the peptide drug antide. Antide was not absorbed after oral
administration; however, absorption of the drug was reported following oral administration
of chitosan TBA/GSH tablets [26]. Besides peptides and proteins, oral bioavailability of
efflux pump substrates was improved using thiolated chitosan tablets were used. Oral
bioavailability of the P-gp substrate Rhodamine 123 (Rho-123) was reported [59]. Guggi
et al., used optimized tablets comprising of chitosan-TBA with lower molecular mass
(75–150 kDa instead of 400 kDa) and demonstrated a 5.5-fold increase in Rho-123 AUC in
comparison to the Rho-123 buffer solution. Guggi et al. investigated the effect of various
calcitonin containing tablets on the blood calcium level of rats after oral administration.
Compared to tablets containing calcitonin and chitosan only, marginal reduction of the
calcium level was observed after administration of chitosan–pepstatin conjugate tablets [67].
Oral insulin delivery using insulin and chitosan–aprotinin conjugate, showed reduced
blood glucose level, 8 h after oral administration [68].

3.2. Micro- and Nanoparticulate Oral Drug Delivery Systems Based on Chitosan Derivatives
3.2.1. Microparticulate Chitosan Derivatives Oral Drug Delivery Systems

Authors reported the preparation of liposome microspheres were coated with TMC
and chitosan–EDTA. In vivo studies on oral absorption of insulin, confirmed that chitosan
EDTA coated liposomes decreased blood glucose [69]. Microspheres based on chitosan–
succinate proved their potential for oral delivery of insulin [25]. The delivery system was
tested in vivo in diabetic rats, with chitosan–succinate microspheres, the relative phar-
macological efficacy showed fourfold improvement [25]. Intragastric administration of
calcitonin containing liposomes coated with dodecylated chitosan was confirmed in rats.
Similar results were obtained in case of chitosan–phthalate microspheres too. PEGylated
chitosan was tested for oral delivery of salmon calcitonin. Alginate–chitosan microspheres
with narrow size distribution were prepared by membrane emulsification technique in
combination with ion (Ca2+) and polymer (chitosan) solidification. The blood glucose
level of diabetic rats was effectively reduced. It was made available for as long as 60 h
after oral administration of the insulin-loaded alginate–chitosan microspheres. Therefore,
the alginate–chitosan microspheres were found to be promising vectors showing a good
efficiency in oral administration of protein or peptide drugs [70]. Chitosan microparticles
prepared using the precipitation/coacervation method to obtain biodegradable chitosan
microparticles. The entrapped ovalbumin was released after intracellular digestion into
the Peyer’s patches. The proved that the labeled chitosan microparticles could be taken
up by the epithelium of the murine Peyer’s patches. Since uptake by Peyer’s patches is an
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essential step in oral vaccination, these results confirmed that the chitosan microparticles
are useful when it comes to vaccine delivery system [71]. Chitosan and chondroitin sul-
phate microspheres were prepared and reported for controlled release of metoclopramide
hydrochloride in oral administration [72]. Microparticles prepared by ionic crosslinking
between tripolyphosphate (TPP) and chitosan (Cs) were applied to enable the oral bioavail-
ability of curcumin. The developed microparticles are reported to successfully enhance
the dissolution of the poorly water-soluble drug Cur, and eventually, improve its oral
bioavailability effectively [73].

3.2.2. Nanoparticulate Chitosan Derivatives Oral Drug Delivery Systems

TMC-based insulin-loaded nanoparticles were investigated, it was reported that
insulin-TMC polyelectrolyte complexes exhibited higher colloidal stability in simulated
intestinal fluid and protected insulin from trypsinic degradation [74]. TMC nanoparticles
has also been demonstrated for its oral vaccine delivery. Intragastrical (IG) administration
of TMC-nanoparticles containing the model vaccine urease could result in higher IgG
and IgA levels [75]. Another study reported the efficiency of TMC as vector for in vitro
and in vivo gene delivery [76]. Three different TMC-based nanoparticles encapsulated
pDNA encoding green fluorescent protein (GFP) were demonstrated for their successful
delivery attributes. Nanoparticles based on chitosan–TGA and pDNA for oral delivery
are also reported [53]. Acrylic nanoparticles with chitosan–TBA are also reported. In vivo
studies with thiolated chitosan nanoparticles for oral delivery are still lacking, however,
oral insulin delivery using thiolatedpoly(acrylic acid) nanoparticles [77] and intranasal
gene delivery using chitosan-TGA nanoparticles have been demonstrated [52]. Fucoidan
(FD) has hypoglycemic effects, TMC and FD were loaded with insulin. TMC/FD NPs are
pH sensitive and defend insulin from degradation in the GIT. Moreover, they enhance the
cellular transport of insulin across the intestinal barrier [78]. The delivery of insulin via
glycerol monocaprylate-modified chitosan nanoparticles has also been demonstrated using
TMC/FD NPs [79]. A nanoemulsion was coated with two different PEGylated chitosans.
In vivo studies in rats showed, that the oral uptake of salmon calcitonin when administered
in carriers coated with PEGylated chitosan was higher than the nanoemulsion alone [37].
Table 1 gives the consolidated list of chitosan derivatives that have been employed for oral
drug delivery applications.

Table 1. Chitosan derivatives that have been used for oral drug delivery applications.

Chitosan Derivative Oral Drug Delivery Application References

TMC, thiolated chitosan noninvasive gene delivery [52,53]

Thiolated chitosan oral delivery of P-glycoprotein (P-gp) substrates [57–59]

TMC, MCC oral vaccine delivery [60]

Trimethyl chitosans (TMC) oral absorption of the peptide drug buserelin after
intraduodenal administration in rats [63]

TMC octreotide in vitro permeation and in vivo absorption
in rats [80]

TMC oral bioavailability of octreotide in pigs [64]

MCC, SNOCC oral delivery of LMWH [34,35]

Chitosan–TBA oral administration of drug salmon calcitonin to rats [65]

Chitosan–TBA/chitosan–enzyme
inhibitor conjugate Delivery of drug salmon calcitonin [66]

Chitosan–TBA, chitosan–pepstatin Stomach targeted delivery of salmon calcitonin [67]
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Table 1. Cont.

Chitosan Derivative Oral Drug Delivery Application References

Chitosan–TBA/GSH oral peptide delivery of peptide drug antide [26]

Chitosan–TBA Oral bioavailability of the P-gp substrate
Rhodamine 123 [59]

Chitosan–TBA 5.5-fold increase in Rho-123 AUC [59]

Chitosan–pepstatin conjugate tablets Reduction of blood calcium level of rats after
oral administration [67]

Chitosan–aprotinin conjugate Oral insulin delivery [68]

TMC–nanoparticles–Vaccine urease Oral vaccine delivery–higher IgG and IgA levels [75]

TMC nanoparticles gene delivery [76]

TMC–based nanoparticles encapsulatde
pDNA encoding green

fluorescentprotein (GFP)
Oral delivery [53]

chitosan-TGA and pDNA Oral delivery [53]

thiolatedpoly(acrylic acid) nanoparticles Oral insulin delivery [77]

Chitosan–TGA nanoparticles intranasal gene delivery [52]

liposomes coated with dodecylated chitosan Intragastric administration of calcitonin [37]

TMC and chitosan–EDTA Oral absorption of insulin [78]

chitosan-succinate oral delivery of insulin
chitosan-succinate microspheres [25]

Chitosan–succinate microspheres in vivo insulin delivery in diabetic rats [25]

TMC/FD NPs defend insulin from degradation in the GIT,
enhance transport [79,80]

4. Future Endeavors

This review briefly surveyed the current scenario of oral drug delivery using chitosan
derivatives. Drug delivery is a very appropriate subject area, which chitosan have enor-
mously impacted. We ran a pubmed search, using keywords, chitosan and drug delivery,
chitosan derivatives and oral drug delivery, chitosan derivatives and drug delivery. Backed
up by a total of 10,000 odd publications as per our pubmed search from 1981–2022, chitosan
has indeed generously contributed to drug delivery. Novel chitosan derivatives, which are
the second-generation innovations emerging from chitosan, have a 2635 publication record
when it comes to drug delivery applications.

Chitosan derivatives are well reported for their use in delivery of poorly soluble drugs,
for colon-targeted drug delivery, for mucosal drug delivery, ocular drug delivery and
topical delivery [81–84].

Chopra et al. [85] have extensively reviewed the advances and potential applications of
chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. When it comes
to drug delivery, the drawbacks of chitosan have been overcome through derivatives such
as carboxylated, various conjugates, thiolated, and acylated chitosan and Tan et al. have
reviewed the applications of quaternized chitosan as antimicrobial agents, including their
antimicrobial activity, mechanism of action and biomedical applications in orthopedics [86].
These have become an appropriate platform for sustained release at a controlled rate,
prolonged residence time, improved patient compliance through reduced dosing frequency,
enhanced bioavailability leading to significant improvement in therapeutic efficacy.

Currently, chitosan derivative nanoparticles are mainly used for sustained release,
preparation of targeted drugs and as vectors for gene therapy. As delivery carriers, chitosan
and its derivatives are usually available as microspheres, nanoparticles, micelles, and gels
in delivery carriers [87,88]. Besides these options, chitosan derivative nanoparticles are
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also used for the delivery of polypeptides. Chitosan derivative nanoparticles interact with
peptides through strong hydrogen bonds and static electricity, obtaining peptide-loaded
nanoparticles. Fatty-acid-modified quaternary ammonium chitosan nanoparticles loaded
with insulin have been shown to be beneficial [89]. Chitosan derivative nanoparticles have
also been applied for gene delivery. Gene therapy is a promising strategy for challenging
diseases. A key step in gene therapy is the successful delivery of genes [90,91]. Chitosan
derivative nanoparticles, as non-viral vectors, have excellent solubility, biodegradabil-
ity, biocompatibility, non-toxicity and a higher transfection rate than chitosan nanopar-
ticles [92]. Methoxy polyethylene glycol-modified trimethyl chitosan (mPEG-TMC) has
been covalently linked to doxorubicin (DOX) and cis-itaconic anhydride (CA), for better
anti-tumor activities [93,94]. O-carboxymethyl chitosan inhibited tumor cell migration
in vitro [95]. The poly-β-amino ester nanoparticle loading gene, after the addition of thio-
lated O-carboxymethyl chitosan, showed a higher cell transfection rate [96]. These are a
notable few brief mention of the drug delivery potentials of chitosan derivatives, which
have been dealt in detail by earlier reviews.

Chitosan derivatives upgraded to break many of the limitations that chitosan was
facing, and with that reputation, it was believed that higher research curiosity and much
more research interest would be evident. This expectation is well below the actual trend. As
for oral drug delivery, chitosan derivatives are within the 500-article mark, which is one fifth
lesser than the interest on chitosan derivatives and drug delivery. Figure 4 summarizes this
trend. However, as this review points out, there is definitely a high potential contribution
from chitosan derivatives in biomedical applications and drug delivery, which we stress
has not been fully tapped into in terms of oral drug delivery applications. This review
hopes to provoke some though and awareness towards this area of research.

Non-invasive oral drug delivery is the crown of drug delivery approaches, chitosan
derivatives are the latest generation upgrades, a fusion of both these should break numerous
boundaries and limitations. The fact that this is truly an interdisciplinary area, where
synthetic chemists and pharmacologist need to collaborate to access the full potential of
either expertise, may be the retardant. The reason for the low enthusiasm could be the
interdisciplinary nature of this area of research. There is no dearth for chitosan derivatives,
as pointed out by the review, diverse chitosan derivatives are in the market. Yet, as pointed
out in this review, only thiolated chitosans have been predominantly applied, and few
other scattered versions too. There are a whole lot of options to consider and avenues that
they would open up which are yet to be looked into. This review hopes to enthuse the
researchers in this direction.

Combining nanoaspects of chitosan with synthesis of chitosan derivatives is definitive
progress in this area. Nanoforms have always pushed limitations of various applications,
and there is surely a lot more to derive from nanostucturization of the chitosan derivatives.
Oral drug delivery has benefitted greatly from the use of nanochitosan forms; combining
chitosan derivatives with nano aspects could prove highly beneficial.
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5. Conclusions

The objective of this review was to showcase the wealth of available chitosan deriva-
tives and to evaluate their achievements in the area of oral drug delivery. Numerous
reviews exist in the area of chitosan and drug delivery, chitosan derivatives and drug
delivery applications are also well reported. We reviewed the comparatively less-reported
chitosan derivative application into oral drug delivery. During the review process, it be-
came clear that there is no doubt as to the advantages of employing the use of chitosan
derivatives for oral drug delivery purposes. However, as pointed out in the review, there
is a huge gap between the available knowledge and the synthesized chitosan derivations
and their oral drug delivery applications. There are so many derivatives synthesized, yet
only few have been used for oral drug delivery applications. The reasons for this gap and
the various reasons that could have led to this have been speculated. The need to bridge
these ends have been emphasized. There is definitely much to harness and more to achieve,
through proper inclusion of chitosan derivatives that have so far not been attempted for
oral drug delivery applications.
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