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Despite the growing number of new drugs approved for the treatment of inflammatory
bowel disease (IBD), the long-term clinical use of thiopurine therapy and the well-known
properties of conventional drugs including azathioprine have made their place in IBD
therapy extremely valuable. Despite the fact that thiopurine S-methyltransferase (TPMT)
polymorphism has been recognized as a major cause of the interindividual variability in the
azathioprine response, recent evidence suggests that there might be some yet unknown
causes which complicate dosing strategies causing either failure of therapy or toxicity.
Increasing evidence suggests that gut microbiota, with its ability to release microbial
enzymes, affects the pharmacokinetics of numerous drugs and subsequently drastically
alters clinical effectiveness. Azathioprine, as an orally administered drug which has a
complex metabolic pathway, is the prime illustrative candidate for such microbial
metabolism of drugs. Comprehensive databases on microbial drug-metabolizing
enzymes have not yet been generated. This study provides insights into the current
evidence on microbiota-mediated metabolism of azathioprine and systematically
accumulates findings of bacteria that possess enzymes required for the azathioprine
biotransformation. Additionally, it proposes concepts for the identification of gut bacteria
species responsible for the metabolism of azathioprine that could aid in the prediction of
dose-response effects, complementing pharmacogenetic approaches already applied in
the optimization of thiopurine therapy of IBD. It would be of great importance to elucidate to
what extent microbiota-mediated metabolism of azathioprine contributes to the drug
outcomes in IBD patients which could facilitate the clinical implementation of novel tools for
personalized thiopurine treatment of IBD.
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INTRODUCTION

As the incidence of inflammatory bowel disease (IBD) is
dramatically rising, both in the Western and developing
countries, the arsenal of novel therapeutic options has also
grown larger. The etiology of IBD still remains poorly
understood with the main goal of the therapy being to induce
and maintain remission, thus providing a better quality of life for
patients. However, the novel class of biological drugs such as anti-
TNF therapy and monoclonal antibodies fail to induce remission
in approximately one-quarter of patients and also many have
been associated with severe side-effects and drug interactions
(Sandborn et al., 2019; Sanchis-Artero and Martínez-Blanch,
2020). Therefore, their cost-effectiveness has been critically
taken under consideration even in developed countries (Pillai
et al., 2017; de Boer, 2019).

On the contrary, reliance on the conventional therapy is
present among clinicians due to extensive familiarity with its
characteristics. 6—mercaptopurine (6-MP) and its prodrug
azathioprine are thiopurine drugs that have been used widely
for more than 50 years, thus they became the most commonly
used immunomodulators. The European Crohn’s and Colitis
Organization developed a consensus on the use of thiopurines
as a monotherapy for the maintenance of remission or an
adjunctive therapy to infliximab in Crohn’s disease (CD) and
steroid-dependent Ulcerative colitis (UC), highlighting the
importance of the thiopurines role in IBD therapy (Lim and
Chua, 2018).

Nevertheless, a therapeutic response and toxicity of thiopurine
therapy are highly variable among individuals and remain highly
unpredictable (Citterio-Quentin et al., 2017). Pre-treatment
testing of genetic polymorphism of enzyme thiopurine
S-methyltransferase (TPMT) involved in the thiopurine
metabolism is an important tool for optimizing thiopurine
therapy. Moreover, therapeutic drug monitoring that includes
the profiling of active and inactive drug metabolites, 6-
thioguanine (6-TGN) and 6-methylmercaptopurine (6-MMP)
offers an opportunity to optimize doses early. However, these
approaches just partly explain the variability and unknown causes
remain to be resolved (Duley and Florin, 2005; Moreau et al.,
2014).

The growing list of known oral drugs susceptible to direct
human gut bacterial metabolism has opened a new era of
pharmacomicrobiomics (Lam et al., 2019; Ðanić et al., 2019;
Đanić et al., 2021). The gut microbiome encodes enzymes which
perform drug biotransformation, including reduction, hydrolysis,
acetylation, deamination, dehydroxylation, decarboxylation,
demethylation, deconjugation and proteolysis, making gut
microbiota an important site of first-pass metabolism (Thiele
et al., 2017). For instance, 5-aminosalicylic acid (5-ASA), the
bioactive component of prodrug sulfasalazine used in IBD, is
inactivated in the gut by bacterial arylamine N-acetyltransferases
(Sandborn and Hanauer, 2003). The activity of these enzymes can
differ up to tenfold between individuals, shedding light to the
substantial interindividual differences in gut microbial
metabolism that may influence the drug response (Deloménie
et al., 2001). In addition, it has been shown that bile acids, which

are direct products of the gut microbiota, may serve as reliable
biomarkers for the prediction of outcomes for certain drugs
(Kaddurah-Daouk et al., 2011; Lazarević et al., 2019; Lavelle
and Sokol, 2020).

Drugs which undergo extensive enzymatic transformation by
the host represent good candidates for the action of gut microbial
enzymes and in some cases host andmicrobiota perform the same
metabolic transformation (Zimmermann and Zimmermann-
Kogadeeva, 2019). According to the Biopharmaceutics Drug
Disposition Classification System (BDDCS) azathioprine is a
drug of class 2, characterized by low solubility and extensive
metabolism (Custodio et al., 2008). Following the oral
administration of azathioprine, due to the low solubility and
host factors, the absorption rate in the gastrointestinal tract is
highly variable (Ding and Benet, 1979; Van Os et al., 1996;
Gervasio et al., 2000). Accordingly, a large amount of the drug
encounters with commensal bacteria in the small intestine, and
especially in the large intestine, where the absorption of
azathioprine was demonstrated to be significantly lower than
in the upper gastrointestinal tract (Van Os et al., 1996). Since the
pharmacokinetic characteristics of BDDCS Class 2 drugs can be
clinically affected by metabolizing enzymes, whether the activity
of gut microbial enzymes may affect the bioavailability of
azathioprine via pre-uptake metabolism deserves investigation
and further insight (Zhang et al., 2021). Furthermore, it has
already been demonstrated that certain gut bacteria species are
equipped with specific enzymes which could target the metabolic
pathway of azathioprine (Cournoyer et al., 1998; Correia et al.,
2016; Liu et al., 2017; Oancea et al., 2017; Crouwel et al., 2020).
Hence, more in-depth insight into the microbial enzymes
potentially responsible for the metabolism of azathioprine and
thus leading to interindividual variations in dose-response
profiles is needed to better understand azathioprine’s
pharmacokinetics/pharmacodynamics characteristics and
ultimately develop clinical guidelines for personalized
pharmacotherapy. This study aimed at comprehensively
reviewing gut bacteria which possess enzymes with the
capability to metabolize azathioprine and proposing strategies
for elucidating the contribution of these bacteria to the variability
of drug responsiveness. As this field is lacking the overall
systematic understanding of direct microbial enzymatic
biotransformation of azathioprine, we intended, by a selection
of gut microbiota-derived enzymes, to direct further exploration
of metabolism of azathioprine and to highlight the role of gut
microbiota in the drug response that will ultimately lead to the
improvement of thiopurine therapy of IBD.

METABOLIC PATHWAY OF THIOPURINE
DRUGS AS A TARGET FOR GUT
MICROBIOTA
Recently, the gut microbiota has often been referred to as the
“invisible organ” due to its involvement in the modulation of the
immune system, etiology of many diseases and metabolism of
xenobiotics (Spanogiannopoulos et al., 2016). In the IBD, the
microbial phyla compositions have been mainly examined in the
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context of the pathogenesis of the disease. Themain differences in
the gut microbiota between IBD patients and healthy individuals
were demonstrated in the relative proportions of phyla within the
Bacteroidetes, Firmicutes and Proteobacteria (Frank et al., 2007;
Rehman et al., 2016). Less attention has been paid to the
metabolic capacity of gut microbiota and its impact on the
clinical effectiveness of drugs given in IBD (Ranjard et al.,
2002; Becker et al., 2022).

Thioguanine (TG) and the more conventional drugs,
azathioprine and 6-MP, are immunomodulating agents used in
IBDwhich have complexmetabolism (Figure 1) and what is still to
be elucidated is the involvement of gut microbiota in this process.

Azathioprine and 6-MP are prodrugs which require
intracellular activation by hypoxanthine
phosphoribosyltransferase (HPRT) into 6-thioinosine-
monophosphate (TIMP) which is converted, by the action of
inosinemonophosphate dehydrogenase (IMPDH), to 6-
thioxanthosine-monophosphate and finally, by the action of
guanosine monophosphate synthase (GMPS) into thioguanine
nucleotides (TGNs), the active cytotoxic metabolites. Two other
catabolic enzymatic pathways are known to compete with this
anabolic metabolic pathway. Xantine oxidase (XO), proven to be
present in both the intestinal mucosa and liver, converts 6-MP
into 6-thioxanthine (6-TX) and subsequently into thiouric acid
(TU). Another form of XO is xanthine dehydrogenase (XD). Both
forms are interconvertible and catalyze the same reaction.
Additionally, 6-MP is metabolized by TPMT into inactive 6-
methyl-mercaptopurine (6-MMP). In comparison with 6-MP,
azathioprine avoids first-pass metabolism in the gut more
efficiently since azathioprine is not a substrate for XO, unlike
6-MP (Van Asseldonk et al., 2009). However, the bioavailability
of azathioprine is 27–83% which is still highly variable (Van Os
et al., 1996) and the important factor in limiting the systemic
bioavailability of thiopurines that should not be neglected is the
rich enzymatic machinery of gut microbiota. Formerly, the
conversion of azathioprine to 6-MP and S-methyl-4-nitro-5-
thioimidazole was thought to be a non-enzymatic reaction that
occurs in the intestinal mucosa and liver. However, it has been
demonstrated that 90% of this conversion is catalyzed by
glutathione S-transferases (GSTs). For both pathways, the co-
substrate used in this reaction is (reduced) glutathione (Van
Asseldonk et al., 2009). The mechanism of action of human GSTs
related to biotransformation of azathioprine includes a
nucleophilic attack of the sulfur atom of deprotonated
glutathione on the slightly electrophilic 5′ carbon atom in the
imidazole moiety of azathioprine, forming 6-mercaptopurine and
a glutathione-imidazole conjugate (Kurtovic et al., 2008b).
Currently, human GST is considered as the most efficient
enzyme in the bioactivation of prodrug azathioprine, thus the
molecular docking studies of azathioprine-GST interactions have
been performed with the aim of possible applications of targeted
enzyme-prodrug therapy of diseases (Zhang W. et al., 2012;
Modén and Mannervik, 2014). Moreover, the novel substrate
for GST was synthesized which mimicked azathioprine in the
reaction with glutathione in order to achieve efficient screening
for variants of GSTs with higher catalytic activity toward
azathioprine (Kurtovic et al., 2008a). A superfamily of
bacterial GSTs is involved in a stunning variety of metabolic
processes of the bacteria strains possessing these enzymes (Masip
et al., 2006). Due to reported evidence of the bacterial GSTs
interaction with certain xenobiotics, further studies on the ability
of GSTs encoded in bacterial genomes to catalyze the conversion
of azathioprine to 6-MP are required (Board et al., 2000;
Vuilleumier and Pagni, 2002). GSTs are widely distributed in
the phylum Proteobacteria, which is commonly increased in
patients with IBD in respect to healthy controls (Vuilleumier
and Pagni, 2002). Therefore, the contribution of members of this
phylum present in the gut microbiota to the clinical
responsiveness to azathioprine needs to be examined.

FIGURE 1 | A metabolic pathway of azathioprine. Enzymatic reactions
which lead to the synthesis of TGNs are marked with green color, while the
pathways leading to the formation of inactive or toxic metabolites are marked
with red and blue color. GST, glutathione S-transferases; TPMT,
thiopurine S-methyltransferase; XO/XD, Xantine oxidase/xanthine
dehydrogenase; HPRT, hypoxanthine phosphoribosyltransferase, IMPDH,
inosine monophosphate dehydrogenase; GMPS, guanosine monophosphate
synthase; TGNs, thioguanine nucleotides.
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The other enzymes in the metabolic pathway of
azathioprine which compete with the activation, TPMT and
XO/XD, are clinically relevant enzymes (Ansari et al., 2008).
Testing of the activity of these enzymes is frequently
performed before the initiation of azathioprine therapy in
order to tailor doses and prevent adverse effects (Lamb and
Kennedy, 2019; Ding et al., 2021). Interestingly, a bacterial
gene encoding a protein highly homologous to human TPMT
was found and characterized in Pseudomonas syringae
(Scheuermann et al., 2003), supporting reports about TPMT
activity in P. aeruginosa, fluorescens and ovalis (Krynetski and
Evans, 2003). Similarly, bacterial XO/XD homologous have
gained considerable interest (Correia et al., 2016; Wang et al.,
2016). According to the presence of XD, the leading phylum is
Gammaproteobacteria which harbours the gut of IBD patients
in a higher proportion (Wang et al., 2016). Liu et al. (Liu et al.,
2017) have examined the effects of azathioprine, 6-MP and 5-
ASA on the growth of fifteen different bacterial strains
associated with IBD and performed in silico analysis of the
presence of enzymes in these bacteria involved in the
metabolism of thiopurine drugs. Interestingly, even though
Escherichia coli possesses all enzymes required for conversion
of azathioprine to TGNs, its growth was not significantly
inhibited by azathioprine nor 6-MP. Conversely, the growth
of Campylobacter concisus which does not possess enzymes
GST and HPRT was significantly inhibited by azathioprine.
These results indicated that inhibitory action of azathioprine
and 6-MP on C. concisus does not occur through the
conventional pathway.

Furthermore, data provided by Oancea et al. (Oancea et al.,
2017) strongly supported the relevance of gut microbiota in
thiopurine metabolism. Namely, they have demonstrated that
specific bacteria belonging to the gut microbiota are able to
convert 6-MP and TG, into therapeutically active TGNs, with
threefold higher production in the case of TG. The reason for
this difference in the amount of TGNs may be the less complex
metabolic pathway of TG as the conversion of TG to TGNs is a
direct result of HPRT enzyme activity. On the other hand, 6-MP
conversion requires a few steps, as already mentioned
(Figure 1), whereby the reaction catalyzed by the IMPDH
could limit the production of TGN (Haglund et al., 2011).
Nevertheless, these in vitro and in vivo studies conducted by
Oancea et al. serve as a proof of how the gut microbiota can
affect the pharmacokinetics of thiopurine drugs and may be the
reason for interindividual variability in the therapeutic response
(Atreya and Neurath, 2017). Bacterial species which are able to
transform these drugs to TGNs are Escherichia coli
(Proteobacteria), Enterococcus faecalis (Firmicutes) and
Bacteroides thetaiotaomicron (Bacteroidetes) (Oancea et al.,
2017). In comparison with azathioprine and 6-MP, TG may
have a clinically faster onset of action but it is rarely used
because of dose-related vascular liver toxicity which is a
consequence of the rapid generation of TGNs in the portal
circulation (Ward et al., 2017). Therefore, in this review we
addressed the therapeutic efficacy of azathioprine, which is
more frequently used than TG in clinical practice, from the
aspect of its complex metabolic pathway as a potential site for

the powerful enzymatic activity of bacteria belonging to gut
microbiota.

SELECTION OF GUT BACTERIAL
SPECIES—POTENTIAL CANDIDATES
RESPONSIBLE FOR THE
BIOTRANSFORMATION OF
AZATHIOPRINE

The chemical structure of certain drugs, in particular their functional
groups (such as lactones, nitro, azo, sulfhydryl and urea groups),
predispose these compounds for metabolic modifications by gut
bacteria. As Zimmermann et al. (Zimmermann and Zimmermann-
Kogadeeva, 2019) have pointed out, the drugs metabolized by most
of the bacteria (except Proteobacteria) contain a nitro or azo group,
which is prone to the reduction in anaerobic metabolism, while
drugs which are specifically metabolized by Bacteroidetes contain
ester or amide groups that can be hydrolyzed. Such chemical
modifications of drugs by gut microbiota can lead either to their
activation, inactivation or even to the toxification (Stojančević et al.,
2014). In UC therapy, a most typical example of the drug
biotransformed by gut microbial enzymes is sulfasalazine. The
azo bond of prodrug sulfasalazine is attacked by gut bacterial
azoreductases, releasing 5-ASA and sulfapyridine. 5-ASA is an
active compound while the latter one causes side effects such as
nausea, anorexia and skin rash (Franzin and Stefančič, 2021).

As it was demonstrated in the studies mentioned in the previous
section, specific gut bacterial species could carry a complete
metabolic pathway of 6-MP independently of the host enzymes.
Nevertheless, converting azathioprine to 6-MP requires GST
enzymatic activity which certainly expands the library of potential
gut bacterial candidates for themetabolism of azathioprine. Also, the
recent study showing how a drug metabolite produced by one
bacteria species could be a substrate for the biotransformation by
another bacteria species, causing the variable interpatient response to
the drug, indicates how important is to identify the specific species
and pathways that metabolize the drug (Rekdal et al., 2019).

The enzymes activating and inactivating production of TGNs
in the metabolic pathway of azathioprine which should be
considered as the potential target for the gut microbial
enzymes are: GST, TPMT, XO/XD, HPRT, IMPDH, GMPS.

In order to identify bacteria that encode candidate enzymes
required for the metabolism of azathioprine we performed the
research by reviewing available literature and by using publicly
available enzyme databases as BRENDA, MetaCyc, National
Center for Biotechnology Information (NCBI) protein
database and Universal Protein Resource (UniProt). In
Table 1 we have reviewed the bacteria by the criteria of
possession of enzymes which could catalyze the
transformation of azathioprine in the gut and contribute to
the treatment outcome. The bacteria species addressed in
Table 1 are the members of commensal gut microbiota or
pathobionts involved in IBD.

As shown in Table 1, potential candidates for microbial
structural modifications of azathioprine belong to the phyla
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whose compositions were demonstrated to be disturbed in
patients with IBD (Proteobacteria, Firmicutes, Bacteroidetes).
An exception, not considered as a typical gut-associated
species, is P. fluorescens which was shown to possess bacterial
GST and TPMT. P. fluorescens and other members of the family
Pseudomonadaceae are rare components of fecal bacteria of the
colon. However, PCR assays for the P. fluorescens-specific I2
sequence are usually positive for mucosa of the ileum (both
healthy and IBD individuals) and colon (CD) suggesting that
P. fluorescens may be the low-level commensal of ileal mucosa in
IBD and may expand its colonization to susceptible colonic

mucosa in CD (Wei et al., 2002). Therefore, this species
should be also considered in the analysis of the enzymatic
transformation of azathioprine by gut microbiota. Similarly,
Bacillus subtilis, which is usually considered a soil organism,
has been isolated from the human gut and thought to be adapted
to life within the human gastrointestinal tract (Hong et al., 2009).
Furthermore, human gastrointestinal isolates of B. subtilis have
shown increased sporulation compared to traditional lab-grown
isolates of B. subtilis indicating that this strain in the human gut
had been previously under-represented (Tam et al., 2006; Egan
et al., 2021).

TABLE 1 | Classification of gut bacteria which possess enzymes involved in the metabolic pathway of azathioprine.

Phylum Class Order Family Genus Species Enzyme Reference

Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia Escherichia coli GST Vuilleumier and Pagni,
(2002); Wang et al. (2009)

XO/XD Xi et al. (2000); Leimkühler,
(2014); Liu et al. (2017)

HPRT Eng et al. (2016)
IMPDH Gilbert et al. (1979); Pimkin

and Markham, (2009)
GMPS Tesmer et al. (1994)

Enterobacter Enterobacter
cloacae

GST Piccolomini et al. (1989)
XO Machida and Nakanishi,

(1981)

Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas
fluorescens

TPMT Krynetski and Evans,
(2003)

GST Zablotowicz et al. (1995)

Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter
concisus

IMPDH Liu et al. (2017)
GMPS Liu et al. (2017)

Firmicutes Bacilli Lactobacillales Enterococcacae Enterococcus Enterococcus
faecalis

XD Srivastava et al. (2011)
HPRT Gaca et al. (2013); Liu et al.

(2017)
IMPDH Riboulet-Bisson et al.

(2008)
GMPS Liu et al. (2017)

Bacillales Bacillaceae Bacillus Bacillus subtilis HPRT Christiansen et al. (1997)

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides
thetaiotaomicron

HPRT Franzin and Stefančič,
(2021)

IMPDH Franzin and Stefančič,
(2021)

GMPS Pimkin and Markham,
(2009); Franzin and
Stefančič, (2021)

Bacteroides fragilis HPRT Zhang et al. (2012a);
Franzin and Stefančič,
(2021)

IMPDH Liu et al. (2017); Franzin
and Stefančič, (2021)

GMPS Liu et al. (2017); Franzin
and Stefančič, (2021)

Phocaeicola Bacteroides
vulgatus

GST Liu et al. (2017)
XO Liu et al. (2017)
HPRT Liu et al. (2017)
IMPDH Liu et al. (2017)
GMPS Liu et al. (2017)
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Although the bacteria species selected in Table 1 appeared to
encode genes for the enzymes required for the metabolism of
azathioprine, it remains to confirm their enzymatic activity.

MICROBIOTA-DRUGS INTERACTIONS:
FUTURE PERSPECTIVE OF
PERSONALIZED THIOPURINE THERAPY
IN IBD

Since there is no cure for IBD and the challenging process of
designing and introducing new drugs into the market, it is
absolutely worthwhile to use the maximum potential of
conventional therapy. Thus, predictors of responsiveness to
the thiopurine therapy and adverse effects need to be
elucidated. Lately, the investigation of factors that cause
interpersonal variability has shifted the focus from the human
genome analysis to the role of gut microbiota in drug response
and toxicity. Various models have been applied to study gut
microbiota-drug interactions (Liu et al., 2017; Oancea et al.,
2017; Xu et al., 2018; Dhurjad et al., 2022). In a recently
published study, Zimmermann et al. (Zimmermann et al.,
2019) showed that even two-thirds of 271 studied drugs have
been metabolized by at least one strain of human gut bacteria,
confirming that the link between the gene content and metabolic
activity of gut bacteria directly reflects on interindividual
differences in therapeutic outcome. Accumulating evidence
from different in vivo, in vitro and in silico studies mentioned
in this review has provided a strong rationale for thoroughly
designed research of the microbiota-driven metabolism of
azathioprine which could lead to firm conclusions regarding
the drug outcome (Ogita et al., 2015; Liu et al., 2017; Oancea
et al., 2017). The novel experimental setup for mapping the
ability of the human gut microbiome to metabolize small
molecule drugs showed that azathioprine after incubation
with microbiota was no longer detectable, classifying it to the
group of drugs prone to microbiome-derived metabolism
(Javdan et al., 2020). What makes this approach unique is the
use of subject-personalized microbial communities rather than
the use of monocultures of a selected set of representative
species. This is of vital importance because the expression of
genes for microbial enzymes differs sustainably between a strain
grown in monoculture versus heterogeneous bacterial
communities in which strains interact in complex patterns
(Javdan et al., 2020; Lucafò and Franzin, 2020). Nevertheless,
in order to generate high-quality predictive models for
thiopurine therapy of IBD, this type of workflow which has
merged computational and in vitro techniques must go along
with well-designed human in vivo studies. Next-generation
sequencing is a well-established technology for identifying
human gut microbial fingerprints from fecal samples (Malla
et al., 2018; Sanchis-Artero and Martínez-Blanch, 2020).
Microbiota perturbations in IBD patients and various
environmental factors that can influence the diversity of
microbiota indicate that the investigation of microbial
metabolism of azathioprine should be performed in precisely

chosen study populations. The experimental design should also
include a questionnaire concerning diet, lifestyle, use of
probiotics, antibiotics and other factors affecting gut
microbiota. Moreover, azathioprine itself may affect the
composition of gut microbiota, thus, it would be thought-
provoking to analyze longitudinal microbiota changes in IBD
patients before and throughout the use of azathioprine. Related
to this, the development of microfluidic gut-on-a-chip has
opened a new avenue for studying microbial enzymatic
pathways and the drug impact on microbiota on in vitro
IBD-specific models (Lee et al., 2016; Guo et al., 2018). In
particular, employing human samples from different cohort
groups of IBD patients on this device which mimics an in
vivo-like intestinal microenvironment could facilitate
translational research.

A growing body of evidence on gut microbiota-drug
interactions suggests that the gut microbial signature is a
powerful tool for the prediction of therapeutic outcomes and
represents the future of precision medicine in IBD. Therefore,
novel models for studying this field are urgently needed. New
approaches would ultimately pave the way for personalized
pharmacotherapy based on the patient’s microbiota and the
associated interactions that may lead to modifications in
dosage or therapy.

Due to the lack of systematic information regarding
azathioprine metabolism by gut microbiota, herein we
accumulated consistent findings of microbial enzymes which
could potentially metabolize azathioprine and impact the
clinical outcome. This review provides a solid basis for future
studies on the effects of gut microbiota on azathioprine, by
eliciting detailed pathways of microbiota-drug interactions of
which an understanding fosters the required rationale for
personalized pharmacotherapy to eventuate into clinical
practice guidelines.
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