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ABSTRACT: Lantibiotics are ribosomally synthesized and
post-translationally modified peptide natural products that
contain the thioether structures lanthionine and methyllan-
thionine and exert potent antimicrobial activity against Gram-
positive bacteria. At present, detailed modes-of-action are only
known for a small subset of family members. Lacticin 481, a
tricyclic lantibiotic, contains a lipid II binding motif present in
related compounds such as mersacidin and nukacin ISK-1.
Here, we show that lacticin 481 inhibits PBP1b-catalyzed
peptidoglycan formation. Furthermore, we show that changes
in potency of analogues of lacticin 481 containing non-proteinogenic amino acids correlate positively with the potency of
inhibition of the transglycosylase activity of PBP1b. Thus, lipid II is the likely target of lacticin 481, and use of non-proteinogenic
amino acids resulted in stronger inhibition of the target. Additionally, we demonstrate that lacticin 481 does not form pores in
the membranes of susceptible bacteria, a common mode-of-action of other lantibiotics.

The increasing application of genome mining to the
discovery of novel bioactive compounds has revealed

that ribosomally synthesized and post-translationally modified
peptides possess a wide diversity of structure and activity.1,2

Among the fastest growing families in this class of natural
products are the lantibiotics, which are defined by the presence
of the cyclic thioether-containing moieties meso-lanthionine
(Lan) and (2S,3S,6R)-3-methyllanthionine (MeLan).3 These
structures are post-translationally generated from a linear
precursor peptide containing an N-terminal leader peptide
that facilitates the modification of a C-terminal core peptide,
which becomes the active species after removal of the leader
peptide.4 Enzymatic dehydration of serine and threonine
residues to 2,3-didehydroalanine (Dha) and (Z)-2,3-didehy-
drobutyrine (Dhb), respectively, followed by intramolecular
Michael-type addition of a cysteine thiol yields the Lan/MeLan
structures. Many lantibiotics possess antimicrobial activity
against a range of clinically relevant Gram-positive bacteria,
including strains resistant to traditional antibiotics,3,5,6 but the
molecular details of these activities remain scarce in all but a
few cases. The best understood compound is nisin (Figure
1),7,8 which uses its N-terminal A- and B-rings to bind the
membrane-bound peptidoglycan precursor lipid II,9 the same
biological target as the clinical antibiotic vancomycin. Once
bound, nisin sequesters lipid II to prevent transglycosylation
involved in peptidoglycan biosynthesis10 and also inserts its C-
terminal ring system into the membrane to form pores.11,12 An
alternative binding interaction with lipid II has been described

for mersacidin (Figure 1), which inhibits transglycosylation but
does not form pores.13−15

Lacticin 481 (Figure 1) is a tricyclic class II lantibiotic first
isolated in the early 1990s from Lactococcus lactis subsp. lactis
CNRZ 481.16 This natural product demonstrates inhibitory
activity against the indicator strain L. lactis subsp. cremoris HP
(IC50 = 785 nM; MIC = 1,560 nM),17 but this activity is
modest compared to more potent lantibiotics such as nisin
(IC50 = 14 nM; MIC = 32 nM).18 A variety of natural analogues
containing a ring topology similar to that of lacticin 481,
including nukacin ISK-1 and members of the salivaricin family,
have since been isolated from other Gram-positive organisms
and exhibit varied antimicrobial scope and potency.19 Although
the ring topology of these compounds is quite different from
other lipid II binding lantibiotics, these peptides appear to
contain the mersacidin-like lipid II binding motif within their A-
ring (Figure 1). Until recently, the mechanism-of-action of this
subclass of lantibiotics was largely unexplored. The first
evidence that lacticin 481 may form complexes with lipid II
was provided in 2009 using thin-layer chromatography.14 More
recently, the binding interaction between lipid II and nukacin
ISK-1, a seven-residue natural variant of lacticin 481 with an
identical ring topology, has been documented using isothermal
titration calorimetry.20 These experiments suggest that lacticin
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481 likely exerts its biological activity via interaction with lipid
II.
We have recently reported the generation of a series of

mutants of lacticin 481 with altered antimicrobial potencies
using an in vitro biosynthetic platform.17,21 The analogues had
both improved and attenuated activities, but the underlying
mechanism for the changes in bioactivities is unknown and
could involve differences in uptake, metabolism, or interaction
with the target. In this study, we used the in vitro
methodology17 to produce sufficient quantities of four
analogues for further mode-of-action studies. These com-
pounds contained the following mutations: N15R/F21H,
N15R/F21Pal, N15R/F21H/W23Nal, and N15R/F21Pal/
W23Nal, where Pal = 3-(4′-pyridyl)alanine and Nal = 3-(2-
naphthyl)alanine. Previous evaluation of these analogues
against L. lactis HP demonstrated that the N15R/F21Pal
(IC50 = 213 ± 9 nM) and N15R/F21H (IC50 = 428 ± 21 nM)
analogues displayed more potent growth inhibitory activity
compared to authentic lacticin 481 (IC50 = 785 ± 19 nM). The
triply substituted analogues N15R/F21H/W23Nal (IC50 =
1370 ± 48 nM) and N15R/F21Pal/W23Nal (IC50 = 2420 ± 60
nM) were less active than the natural product, thus yielding an
IC50 value range from 200 to 2500 nM with authentic lacticin
481 as the median.17

We examined in this work whether changes in inhibitory
activity could be correlated with a biochemical mode-of-action.
Given the recently reported binding of nukacin ISK-1 to lipid
II,20 we specifically examined if lacticin 481 inhibits the
transglycosylation reaction involved in peptidoglycan biosyn-
thesis. We used a previously reported in vitro assay that
monitors the catalytic activity of a major transglycosylase,
PBP1b, from Escherichia coli using a radiolabeled lipid II variant
as substrate.22 The two lacticin 481 analogues with improved
antibacterial activity compared to that of the wild type
compound also displayed an enhanced inhibitory effect on
the transglycosylation reaction (Figure 2), with IC50 values of

5.4 ± 1.2 and 7.0 ± 2.9 μM for N15R/F21Pal and N15R/
F21H, respectively, compared to an IC50 of 12 ± 2.3 μM for
wild-type lacticin 481. Likewise, the two less active analogues
gave weaker inhibition with IC50 values of 27 ± 5.6 and 105 ±
34 μM for N15R/F21H/W23Nal and N15R/F21Pal/W23Nal,
respectively. These IC50 values are higher than those for
antimicrobial activity because these lantibiotics bind to the
substrate, not the biosynthetic enzyme, and because of the
relatively high concentrations of lipid II required for these
assays compared to lipid II present in cell membranes.
Importantly, the potency of transglycosylase inhibition
observed for lacticin 481 is similar to that of the known lipid
II binders haloduracin23 and ramoplanin24 using the same assay,
suggesting that like these compounds, the binding affinity is in
the mid-nanomolar range. Furthermore, the positive correlation
between antimicrobial activity and transglycosylation inhibition
in the series of analogues strongly suggests that lacticin 481
exerts its biological activity through inhibition of cell wall
biosynthesis.
The mersacidin-like lipid II binding motif (TXS/TXD/EC,

where X is any residue) is found in ring A of lacticin 481
(Figure 1) as well as other lantibiotics known to interact with
lipid II,25 including the α-peptides of two-component systems
such as lacticin 314726 and haloduracin.18,23 The importance of

Figure 1. Sequences and ring topologies of nisin, mersacidin, and
lacticin 481, highlighting the known lipid II binding motifs of nisin
(blue circle) and mersacidin (red circle). The chemical structures of
the post-translational modifications found in these natural products are
also shown.

Figure 2. Inhibition of PBP1b-catalyzed peptidoglycan (PG)
formation by lacticin 481 and analogues produced in vitro, at a lipid
II concentration of 4 μM and a PBP1b concentration of 100 nM. Error
bars represent the standard deviation from triplicate experiments.
Black squares: authentic lacticin 481; red triangles: N15R/F21H;
green circles: N15R/F21Pal; pink diamonds: N15R/W19Nal/F21H;
blue stars: N15R/W19Nal/F21Pal.
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the conserved acidic residue in this motif for antimicrobial
potency has been demonstrated in several instances, where
mutation to a nonacidic residue abolishes or severely attenuates
activity.23,27−30 It was therefore surprising that a previous study
suggested that the conserved glutamate (Glu13) in the A-ring
of lacticin 481 was not required for antimicrobial activity,
because a weak zone of growth inhibition was seen for the
E13A mutant that also lacked Lys1.31 Using our recently
developed in vitro methodology,17 we prepared wild type
lacticin 481 and an E13A mutant containing Lys1 and tested
their activity against L. lactis HP. Whereas the zone of growth
inhibition observed for the wild type compound prepared in
vitro was very similar to that of authentic lacticin 481 isolated
from the producer strain, the E13A mutant did not show any
zone of growth inhibition. Therefore, Glu13 is important for
the antimicrobial activity of lacticin 481,32 similar to previous
results for other lantibiotics containing the mersacidin-like lipid
II binding motif.
In addition to inhibition of peptidoglycan biosynthesis,

several lantibiotics are known to form pores in bacterial
membranes using lipid II as a docking molecule, including
nisin11,12 and the two-component systems lacticin 314726 and
haloduracin.18,23 To investigate if lacticin 481 is similarly able to
form pores once bound to lipid II, we used flow cytometry to
monitor changes in bacterial membrane polarization using the
potential-sensitive fluorescent dye 3,3′-diethyloxacarbocyanine
iodide (DiOC2(3)). We chose to use Bacillus subtilis ATCC
6633 in these experiments because lacticin 481 (IC50 = 980 ±
110 nM) possesses antimicrobial potency relatively similar to
that of nisin (IC50 = 410 ± 170 nM)18 against this organism. As
expected, nisin gave a marked concentration-dependent
decrease in cell-associated mean fluorescent intensity (MFI),
which is indicative of membrane depolarization due to pore
formation (Figure 3). However, lacticin 481 did not decrease
the MFI at concentrations up to 20 μM when compared to a
control sample. We also probed potential membrane disruption
by lacticin 481 in L. lactis HP using the fluorescent dye
propidium iodide (PI), which cannot cross intact cell
membranes and enters cells only in the presence of a pore-
forming agent. Nisin used at 0.2 μM (15-fold above its IC50
value for this strain) gave a large increase in cell-associated
MFI, consistent with pore formation and loss of membrane
integrity (Figure 4). On the other hand, lacticin 481 was not
able to increase the MFI above control levels at concentrations
up to 20 μM, or 25-fold above its IC50 value. Taken together,
these data suggest that lacticin 481 is not able to form pores in
bacterial membranes. This conclusion may partially explain the
modest activity of lacticin 481 compared to nisin against certain
bacterial strains, such as L. lactis. Analogously, in two-
component lantibiotics, the α-peptide binds lipid II and bears
modest antimicrobial activity, but subsequent complex
formation with the β-peptide results in pore formation and a
50- to 100-fold increase in potency,18,26 which is comparable to
the ratio of activity between lacticin 481 and nisin against L.
lactis HP.
In conclusion, lacticin 481 binds to lipid II and inhibits the

transglycosylation reaction necessary for cell wall formation.
The antimicrobial potency of a series of analogues demon-
strated a clear positive correlation with inhibition of trans-
glycosylation, indicating that the improved antimicrobial
activities imparted by the introduction of non-natural amino
acids resulted in an increased affinity to its target. These
observations bode well for the use of non-proteinogenic amino

acids to improve lantibiotics via molecular editing. Unlike nisin,
lacticin 481 is not able to form pores in bacterial membranes,
which may contribute to its modest activity against some
bacterial strains compared to nisin.

■ METHODS
General Materials and Methods. Cell culture media were

purchased from BD Biosciences. The indicator strain Lactococcus lactis
subsp. cremoris HP ATCC 11602 was obtained from American Type
Culture Collection. Flow cytometry dyes 3,3′-diethyloxacarbocyanine
iodide (DiOC2(3)) and propidium iodide (PI) were purchased from
Invitrogen. Nisin was purified from Nisaplin, purchased from Danisco
A/S, as previously described.18 Lacticin 481 was purified from cultures
of the producing organism L. lactis subsp. lactis CNRZ 481 as
previously described.17

Chemoenzymatic Synthesis of Lacticin 481 Analogues.
Lacticin 481 analogues were prepared as previously described.17

Briefly, a constitutively active leader-LctM fusion enzyme (LctCE-
GS15) was expressed in Escherichia coli Rosetta 2 (DE3) and purified
by immobilized metal ion affinity chromatography and gel filtration
chromatography. Linear lacticin 481 core peptide analogues were
prepared via Fmoc-based solid-phase peptide synthesis and purified to
homogeneity by reversed-phase high performance liquid chromatog-
raphy (RP-HPLC). These core peptide analogues (20 μM) were
incubated with LctCE-GS15 (2 μM) in a buffer containing
tris(hydroxymethyl)aminomethane (50 mM, pH 7.5), MgCl2 (10
mM), and ATP (2 mM) for 5−12 h and purified by RP-HPLC to yield

Figure 3. Membrane depolarization activities of nisin and lacticin 481
against Bacillus subtilis measured using DiOC2(3) fluorescence. (a)
Average mean fluorescence intensity (MFI) of triplicate measurements
for different concentrations of lacticin 481 (blue) and the known pore-
forming lantibiotic nisin (red). At each concentration, the difference in
MFI between the compounds was statistically significant (P < 0.05).
(b) Representative histogram of cell count versus DiOC2(3)
fluorescence intensity at various lacticin 481 and nisin concentrations.
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the pure, fully modified peptides as determined by MALDI-TOF MS
analysis. HPLC solvent compositions: solvent A was 0.1% trifluoro-
acetic acid in H2O (v/v); solvent B was 4:1 acetonitrile/H2O (v/v)
with 0.087% trifluoroacetic acid.
LctA core wi ld type . Sequence: H-KGGSGVIHTISH-

ECNMNSWQFVFTCCS-OH. RP-HPLC: Phenomenex Jupiter Pro-
teo C12 column (250 mm × 15 mm × 10 μm) using a flow rate of 10
mL/min and a solvent gradient of 10% solvent B for 1 min, 10−20% B
over 3 min, 20−48% B over 28 min, 48−100% B over 1 min. tR =
28.3−29.1 min. HRMS (MALDI-TOF): calculated [M + H]+ for
C127H191N36O39S4 2972.295, found 2972.444 (unmodified precursor);
calculated [M + H]+ for C127H183N36O35S4 2900.250, found 2900.385
(modified product).
LctA core E13A. RP-HPLC: same conditions as LctA core wild type.

tR = 28.9−29.6 min. HRMS (MALDI-TOF): calculated [M + H]+ for
C125H189N36O37S4 2914.289, found 2914.246 (unmodified precursor);
calculated [M + H]+ for C125H181N36O33S4 2842.244, found 2842.349
(modified product).
PBP1b Transglycosylation Assays. The gene encoding Escher-

ichia coli PBP1b, previously amplified from MG1655 genomic DNA,
was expressed as a C-terminal hexa-histidine (His6) fusion protein and
purified as previously described.22 A [14C]GlcNAc-labeled heptaprenyl
lipid II analogue was prepared via a chemoenzymatic route by Dr.
Yuto Sumida and Dr. Hiro Tsukamoto (Dan Kahne laboratory,
Harvard University) as previously described.33 The [14C]GlcNAc-
labeled heptaprenyl lipid II analogue (4 μM; typical specific activity =
288 μCi μmol−1) and varying concentrations of lacticin 481 or
analogues were used for a PBP1b assay as previously described.23

Flow Cytometry Analysis of Membrane Disruption. For
membrane potential assays using the dye 3,3′-diethyloxacarbocyanine
iodide (DiOC2(3)),

18 cultures of Bacillis subtilis ATCC 6633 were
grown overnight at 37 °C in LB medium and then diluted with fresh
LB to an OD600 of 0.1. Cells were combined with DiOC2(3) (final
concentration 2 μM), HEPES (1 mM) and glucose (1 mM) and
incubated for 20 min at RT. Stock solutions of nisin or lacticin 481
were added to final concentrations of 0.2, 2.0, and 20 μM and
incubated for an additional 15 min prior to analysis; H2O was added
instead of antibiotic as a negative control. Changes in cell-associated
DiOC2(3) fluorescence were measured with a BD Biosciences LSR II
flow cytometer, using excitation at 488 nm with an argon laser and
measurement of emission through a band-pass filter at 530/30 nm. A
minimum of 50,000 events were detected for each sample, and
experiments were performed in triplicate. Data analysis to calculate the
geometric mean fluorescence intensity (MFI) of gated cell populations
was performed using FCS Express 3.00.0311 V Lite Stand-alone
software. For membrane permeability assays using the dye propidium
iodide (PI),34 cultures of Lactococcus lactis subsp. cremoris HP were
grown overnight at 30 °C in GM17 medium (40 g L−1 M17, 0.5%
glucose (w/v)) and then diluted with fresh GM17 to an optical density
at 600 nm (OD600) of 0.1. Cells were combined with PI (final
concentration 25 μM), HEPES (1 mM), glucose (1 mM), and lacticin
481 (0, 0.2, 2.0, 20 μM) or nisin (0.2 μM), incubated for 15 min at
RT, and analyzed. Data acquisition and analysis were performed as for
membrane potential assays, except emission was measured through a
band-pass filter at 695/40 nm.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: vddonk@illinois.edu.

Author Contributions
⊥These authors contributed equally to this work.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Institutes of Health
(GM58822 to W.A.V.; GM067610 to S.W.), the Robert C. and
Carolyn J. Springborn Endowment (to P.J.K.), an American
Heart Association Midwest Affiliate predoctoral fellowship
(11PRE7620039 to P.J.K.), and a National Institutes of Health
Cellular and Molecular Biology training grant (T32 GM007283
to T.J.O.).

■ REFERENCES
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