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Abstract: In this paper, we present a review of Shannon and differential entropy rate estimation
techniques. Entropy rate, which measures the average information gain from a stochastic process, is
a measure of uncertainty and complexity of a stochastic process. We discuss the estimation of entropy
rate from empirical data, and review both parametric and non-parametric techniques. We look at
many different assumptions on properties of the processes for parametric processes, in particular
focussing on Markov and Gaussian assumptions. Non-parametric estimation relies on limit theorems
which involve the entropy rate from observations, and to discuss these, we introduce some theory
and the practical implementations of estimators of this type.

Keywords: entropy rate; estimation; parametric; non-parametric

1. Introduction

The estimation of the entropy of a random variable has long been an area of interest
in Information Theory. From the original definition by Shannon [1], the interest in de-
velopment of information theory and entropy as a concept was motivated by aiming to
understand the uncertainty of sources of information and in the development of communi-
cation theory. In real systems, understanding this uncertainty allows more robust models
and a better understanding of complex phenomena.

Estimation of the entropy of random variables has been reviewed on several occasions,
with reviews that have covered the estimation of Shannon, differential, and other types
of entropy measures. A recent survey by Verdu [2] reviewed techniques for empirical
estimation of many information measures, such as entropy, relative entropy and mutual
information, for both discrete and continuous data. Amigó et al. [3] surveyed generalised
entropies, for further quantification of complexity and uncertainty of random variables.
Rodriguez et al. [4] surveyed and reviewed the performance of 18 entropy estimators for
short samples of data, assessing them on their bias and mean squared error. A comparison
of different generalised entropy measures, and their performance, was recently performed
by Al-Babtain et al. [5].

In this paper, we review techniques for estimating the entropy rate, a measure of
uncertainty for stochastic processes. This is a measure of the average uncertainty of a
stochastic process, when measured per sample. Shannon’s initial work considered the
problem of quantifying the uncertainty of Markov sources of information [1]. We will be
considering estimation techniques of the entropy rate for both discrete and continuous
data, therefore covering both Shannon and differential entropy rate estimation.

There are two main estimation paradigms that are used in statistical estimation,
parametric and non-parametric estimation. Parametric techniques assume a model for
stochastic process that generates the data, and fitting parameters to the model [6]. In many
cases, these parameters are estimated and then used directly in an entropy rate expression,
which we call plug-in estimation. Non-parametric approaches, on the other hand, make
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very few assumptions on the process that generates the data. However, they can contain
assumption properties, such as stationarity [6]. Fewer assumptions for an estimator can
lead to more robustness. This review will cover techniques using both of these approaches,
outlining what assumptions are used in the generation of the estimates. We categorise the
references used into parametric and non-parametric entropy rate estimates and modelling
estimates in Table 1. We review estimation techniques for continuous and discrete-valued
data, and continuous and discrete-time data, the references in this paper are categorised by
these properties in Table 2.

The parametric estimation techniques reviewed model the data as Gaussian processes,
Markov processes, hidden Markov models and renewal processes. For Gaussian processes,
due to the equivalence of entropy rate estimation and spectral density estimation, which
we discuss below, we introduce some literature on spectral density estimation, such as
maximum entropy and maximum likelihood techniques.

Non-parametric estimators are often based on limit theorems of an expression of the
entropy rate, with estimation being made on a finite set of data. We review and present
assumptions and properties of non-parametric entropy rate estimation techniques for
Shannon entropy, which are based on limit theorems of string matches. For differential
entropy rate estimation, we present three techniques that were developed as measures of
complexity of time series, rather than strictly as entropy rate estimators. However, in some
special cases, such as first order Markov chains, they have been shown to converge to the
entropy rate, and therefore, in practice, have been used as entropy rate estimators. Then,
we present another approach using conditional entropy estimates, based on observations of
a finite past, that provides an exact estimate, given some assumptions. There are far fewer
techniques that have been developed for continuous-valued random variables, which is
not surprising given the history of development of information theory for transmission
of data.

Table 1. Comparison of entropy rate estimation techniques into categories based on parametric/non-
parametric techniques. The modelling estimate refers to the quantity that is estimated in the technique
and the entropy rate estimate refers to the full entropy rate expression used. For example, if estimating
entropy rate of a Markov chain using plug-in estimation. Then, the modelling estimates may be
non-parametric for the transition probabilities, pij and the stationary distribution, πj. However, the
entropy rate estimator is a parametric estimator for the Markov model. Hence, there are no non-
parametric/parametric estimators because non-parametric entropy estimators do not use a model.

Modelling Estimate

Entropy Rate Estimate Parametric Non-Parametric

Parametric [7–26] [27–43]

Non-Parametric N/A [44–54]

Table 2. Comparison of entropy rate estimation techniques. They are partitioned into four categories
based whether they are discrete or continuous time, and whether they work on discrete or continuous-
valued data.

Time

State Space Discrete Continuous

Discrete [10–26,44–49,53,55,56] [23]

Continuous [7,8,27–43,51–54] N/A

2. Entropy and Entropy Rate

The objects of interest here are the Shannon entropy rate for discrete valued processes,
and the differential entropy rate for continuous valued processes. For the sake of precision,
we provide the definitions we will use in the review.
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Definition 1. Given a collection of random variables, X1, . . . , Xn, with support on Ω1, . . . , Ωn,
respectively, the joint entropy of the collection of discrete random variables is,

H(X1, . . . , Xn) = − ∑
x1∈Ω1

· · · ∑
xn∈Ωn

p(x1, . . . , xn) log p(x1, . . . , xn).

For discrete-time stochastic processes, the entropy rate is an asymptotic measure of the
average uncertainty of a random variable.

Definition 2. For a discrete-valued, discrete-time stochastic process, χ = {Xi}i∈N, the entropy
rate is defined as,

H(χ) = lim
n→∞

1
n

H(X1, . . . , Xn).

We define the joint entropy similarly to the discrete random variable case.

Definition 3. The joint entropy of a collection of continuous random variables, X1, . . . , Xn, with
support on Ω1 × · · · ×Ωn, with a joint density function, f (x1, . . . , xn), is

h(X1, . . . , Xn) = −
∫

Ω1

...
∫

Ωn
f (x1, . . . , xn) log f (x1, . . . , xn)dx1 . . . dxn.

Then, we can define the differential entropy rate similarly to the Shannon entropy rate.

Definition 4. The differential entropy rate for a continuous-valued, discrete-time stochastic process,
χ = {Xi}i∈N, is defined as,

h(χ) = lim
n→∞

1
n

h(X1, . . . , Xn).

The entropy rates H(χ) and h(χ) are the quantities that we wish to estimate.
There are other entropic measures which are used to quantify uncertainty. For example,

the Rényi entropy [57], and its associated entropy rate, which is a generalisation of the
Shannon entropy. Another approach to quantifying the uncertainty of stochastic processes
is through an extension of a relative measure, mutual information, and the limit as a
stochastic process, the mutual information rate [58]. However, we are not considering any
generalised entropy quantities in this work.

A helpful property in the analysis of stochastic processes is stationarity, which ex-
presses the idea that the properties of the process do not vary with time.

Definition 5. A stochastic process, χ = {Xi}i∈N, with a cumulative distribution function for its
joint distribution at times t1 + τ, . . . , tn + τ, of FX(t1 + τ, . . . , tn + τ). We say that the process is
stationary if and only if FX(t1 + τ, . . . , tn + τ) = FX(t1, . . . , tn), ∀τ, t1, . . . , tn ∈ R, ∀n ∈ N.

This leads to another characterisation of the entropy rate for stationary processes, which is
based on the limit of the conditional entropy.

Definition 6. For random variables, X and Y such that (X, Y) ∼ p(x, y), the conditional entropy
is defined as

H(Y|X) = − ∑
x∈Ω

∑
y∈Ω

p(x, y) log p(y|x).

The following theorem gives a helpful way to analyse the entropy rate for stationary
processes, and has been used in the development of estimation techniques [54].
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Theorem 1. For a stationary stochastic process, the entropy rate exists and is equal to

H(χ) = lim
n→∞

H(Xn|Xn−1, . . . , X1).

Briefly we introduce the estimation problem. Given a sample of data, x1, . . . , xn, we
are aiming to define a function, Tn, such that we generate an estimate of a quantity, θ, as
θ̂ = T(x1, . . . , xn) = Tn. We will be assessing the quality with respect to some properties
of estimators, which we will describe here. The first property consistency means that an
estimator converges to the true value of the parameter being estimated as the number of
data tends to infinity ([59], p. 234). Secondly, we discuss asymptotic normality, which means
that the estimates are normally distributed, with variance that is related to the number of
data ([59], p. 243). The third property we discuss is efficiency, which measures the variance
of the estimation technique with respect to the lowest possible variance ([59], p. 250), the
reciprocal of the Fisher information, as defined by the Cramer–Rao bound ([60], p. 480).
We also discuss the bias, which measures if the expectation of the estimator differs from
the true value ([59], p. 120). The mean squared error is used to quantify the quality of the
estimate, by the squared differences between the data and estimates ([59], p. 121).

3. Parametric Approaches

In this section, we will discuss parametric approaches to estimate the entropy rate of a
process from observed data. Parametric estimators assume a model for the data, estimate
some aspects of the model from the data and then directly calculate the entropy rate from
those estimates. The three model types that are Gaussian processes, Markov processes, and
renewal/point processes.

3.1. Gaussian Processes

First, we will cover a class of processes that are defined by the assumption that
the finite dimensional distributions are normally distributed. These are called Gaussian
processes, and are often used to model real data. Gaussian processes, as an extension of
normally distributed random variables, are completely characterised by their first and
second statistics ([61], p. 28). Since the spectral density is the Fourier transform of the
autocovariance, all the information for the process is encoded in the spectral density.

Definition 7. A stochastic process is called a Gaussian process if and only if every finite collection
of random variables from the stochastic process has a multivariate Gaussian distribution. That is,
for every t1, . . . , tk ∈ R, (

Xt1 , . . . , Xtk

)
∼ N (µ, Σ),

where µ is the vector of expected values and Σ is the covariance matrix.

The entropy rate of a Gaussian process is given by,

h(χ) =
1
2

log(2πe) +
1

4π

∫ π

−π
log( f (λ))dλ, (1)

where f (λ) is the spectral density of the process ([62], p. 417).
This reduces the estimation task down to estimating the spectral density of the process.

That is, using an approach to create an estimate of the spectral density function, f̂ (λ), and
plugging it into the expression above. There are several methods to estimate the spectral
density of a Gaussian process, and hence produce an estimator of the entropy rate. Note
that we can use this framework even in the cases of discrete-valued, discrete-time processes,
using sampling techniques which can be used to calculate the integral in Equation (1). A
variety of parametric and non-parametric techniques have been developed to estimate the
spectral density of a Gaussian process. We will refer to these as either parametric/non-
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parametric or parametric/parametric for the classification by their entropy estimate and
modelling estimate type.

3.1.1. Maximum Entropy Spectral Estimation

A common technique used for the inference of spectral density is maximum entropy
spectral estimation. It is a fitting paradigm where the best estimate is considered to be the
estimate that maximises the entropy, that is, has the highest uncertainty. This paradigm is
often called the Principle of Maximum Entropy, introduced by Jaynes [63].

These techniques were introduced by Burg [7,8], when aiming to model seismic signals
by fitting stochastic models. He showed that given a finite set of covariance constraints
for a process {Xi}, E[XiXi+k] = αk, k = 0, 1, . . . , p, then, the process that is the best fit
for the constraints, given a maximum entropy approach, is the class of autoregressive
processes, AR(p),

Xn = −
p

∑
k=1

akXn−k + εn,

where εn ∼ N (0, σ2) is normally distributed and ak, σ2 are selected to fit the constraints [64].
This type of analysis can be generalised to auto-regressive moving-average, ARMA(p,q),

models of the form

Xn = −
p

∑
k=1

akXn−k +
q

∑
k=1

bkεn−k,

where the additional parameters, bk, are selected to fit the behaviour of the noise process.
Maximum entropy spectral analysis in this case also has to consider the function of the
noise, called the impulse response function. It was shown by Franke [65,66] that ARMA is
the maximum entropy process given a finite set of constraints on the covariances and on
the impulse response function, E[Xiεi−k] = σ2

ε hk, k = 1, . . . , q, where σ2
ε is the variance of

the noise variables and hk are the parameters of the impulse responses.
The entropy rate of the AR(p) and ARMA(p,q) classes of processes does not need to

perform the integration over the spectral density function as the rate is known to be [67]

h(χ) =
1
2

log(2πeσ2
ε ).

That is, the new information at each step of the process arises purely from the innovations,
and if we can estimate the variance of the innovations, then we can infer the entropy
rate directly. This has been extended to the ARFIMA(p,d,q) class of processes, where a
process passed through a linear filter (1− L)d,− 1

2 < d < 1
2 , of the lag parameter L, i.e.,

LXn = Xn−1 is an ARMA(p,q) process, with the same entropy rate [67]. However, for
a fixed process variance, the entropy rate in this case is dependent upon the fractional
parameter, d.

3.1.2. Maximum Likelihood Spectral Estimation

In contrast to maximum entropy techniques, there are a class of techniques using a
likelihood-based approach. This selects model parameters based on a likelihood function,
which is the probability of parameters that would have generated the observations. In
contrast to maximum entropy techniques, maximum likelihood requires the assumption
of a model of the data, from which the likelihood function is calculated. The maximum
entropy technique gives the best class of models which maximise the entropy, given some
observed constraints.

These were first developed by Capon [9], to estimate the power spectrum from an
array of sensors. Each sensor’s signal is modelled as xi = s + ni, where xi is the observed
value at a sensor i, s is the signal and ni is the noise at sensor i. The maximum likelihood



Entropy 2021, 23, 1046 6 of 19

assumption is used in the density of the noise, a multivariate normal distribution, and then,
a maximum likelihood estimate is made for the underlying signal.

Connections between the maximum entropy and maximum likelihood paradigms
have been found in some aspects of spectral estimation. Landau [68] makes a connection
between the maximum likelihood estimate of a spectral measure based on a one-parameter
distribution and the maximum entropy spectral measure, where the maximum entropy
measure is the uniform average over all of the maximum likelihood spectral measures. In
the one-parameter case, maximum entropy is the uniform average over the parameters of
the maximum likelihood estimators.

These approaches can then be used for an entropy rate estimate by calculating Equa-
tion (1) above, by plugging in the inferred spectral density function.

3.1.3. Non-Parametric Spectral Density Estimation

The spectral density of a Gaussian process can be estimated directly without additional
modelling assumptions, and then used in Equation (1) to estimate the entropy rate.

A common technique to estimate the spectral density is called the periodogram, which
uses the fact that the spectral density is the Fourier transform of the autocorrelation function.
Therefore, we can calculate the plug-in estimate of the spectral density estimate as

f̂ (λ) =
∞

∑
j=−∞

ˆγ(j)eijλdλ,

where the autocorrelation function can be estimated from observed data as

γ̂(k) =
1

n− k

n−k

∑
i=1

XiXi+k.

However, this can cause issues as it may not converge for large sample sizes. This mo-
tivated the research of the maximum entropy processes, given different autocorrelation
constraints [8].

Some important work in the development of the periodogram on time series data
is from Bartlett [27,28] and Parzen [31,32] showing the consistency of the periodogram.
Smoothing techniques have been developed and expanded in work by Tukey [29] and
Grenander [30].

Other techniques for non-parametric spectral density have been developed. Some
examples, including Stoica and Sundin [33], consider the estimation as an approximation to
maximum likelihood estimation. Other non-parametric techniques are robust to data from
long memory processes, which have a pole at the origin of the spectral density, as shown by
Kim [34]. Finally numerous bayesian techniques have been developed for smoothing [35],
parametric inference of the periodogram [36,37], robust to long memory [38], using MCMC
to sample a posterior distribution [39,40] and using Gaussian process priors [41–43].

3.2. Markov Processes

Markov processes have been used to model information sources since Shannon’s
introduction of information theory [1]. In this section, we discuss entropy rate estimation
assuming the Markov property, that is for a process {Xi}i∈N,

Pr(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = Pr(Xn = xn|Xn−1 = xn−1).

There are two main types of Markov processes considered. Firstly, a simple Markov
chain, and secondly, hidden Markov models (HMM). We mention Markov jump processes
at the end, which have had substantially less attention.
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3.2.1. Markov Chains

The entropy rate of a stationary Markov chain with state space, Ω, is given by

H(χ) = ∑
i∈Ω

∑
j∈Ω

πi pij log pij, (2)

where the pij = Pr(Xn = J|Xn−1 = i) form the probability transition matrix and πi is
the stationary distribution for the Markov chain ([62], Theorem 4.2.4). For this approach,
an implicit assumption of an ergodic Markov chain is required, for the existence of the
stationary distribution. A few different approaches have been developed to estimate this
quantity, which utilise parametric or non-parametric estimators.

The approach that has received most attention is to estimate the stationary distribution,
and the probability transition matrix directly, which was inspired by the description of
plug-in estimators for single samples by Basharin [10]. Maximum likelihood estimation
techniques have been developed by Ciuperca and Girardin [11], on a finite state space,
Girardin and Sesboue [55,56] on two state chains, and Ciuperca and Girardin [12] on
countable state spaces. These utilise maximum likelihood estimators for πi and pij, given
observations of the chain X = (X0, . . . , Xn), with state space E = 1, . . . , s, of the form

p̂ij =
Nij[0, n)
Ni[0, n)

,

and,

π̂i =
Ni[0, n)

n
,

where

Nij[0, n) =
n

∑
m=1

1{Xm=j,Xm−1=i},

and,

Ni[0, n) = ∑
j∈Ω

Nij[0, n) =
n−1

∑
m=0

1{Xm=i},

are the counting functions of transitions from i to j and visits to i, respectively.
Whether estimating from one long sample or many groups of samples, the estimator

from plugging these values into the entropy rate Equation (2) are strongly consistent and
asymptotically normal [11,12,56]. For the countable case, for any finite sample, there will be
transitions that have not been observed which are then set to 0, i.e., pij = 0 if Nij[0, n) = 0;
however, in the limit as n → 0, the entropy rate still converges. These results have been
extended to more general measures using extensions of the entropy rate, such as the Renyi
Entropy [13].

Kamath and Verdu [14] have analysed the convergence rates for finite samples and
single paths of estimators of this type. They showed that convergence of the entropy rate
estimators can be bounded using the convergence rate of the Markov chain and the number
of data observed.

A similar technique on finite state Markov chains was introduced by Han et al. [15],
by enforcing a reversibility condition on the Markov chain transitions, in particular πi pij =
πj pji. Using the stationarity of the transition function of the Markov chain, they define an
estimator by utilising Shannon entropy estimators of the conditional entropy H(X2|X1 = i),
and then, the estimator is

Ĥ = ∑
i∈E

π̂i Ĥ(X2|X1 = i),

where π̂i is the stationary distribution estimate.
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A similar approach was proposed by Chang [16] on finite Markov chains with knowl-
edge of the probability transition matrices. It makes estimates using this knowledge by an
entropy rate estimate using the observation xk at time k,

ĤN =
−∑N−1

n=0 H(Xn)

N
,

given an initial state, X0 = x and where H(Xn) is the Shannon entropy given knowledge of
the current state, Xn ∈ Ω. This is the same as using the maximum likelihood estimator of πi,
considering the probabilities as parameters, and then having a known conditional entropy
estimate, as in the previous approach by Han et al. [15]. Chang was able to show that there
is an exponential rate of convergence of this technique to the real value [16]. A similar
result is obtained by Yari and Nikooravesh [17], showing an exponential convergence rate
for this type of estimator under an assumption of ergodicity.

A final approach by Strelioff et al. [18] utilises Bayesian techniques to calculate the
entropy rate of a Markov chain, using the connection to statistical mechanics. The model
parameters, the probability transitions of the kth-order Markov chain are inferred as a
posterior using a prior distribution, incorporating observed evidence. This is formulated as

Pr(θk|Mk)Pr(D|θk, Mk) = Pr(D, θk|Mk),

where D is the data, Mk is a kth order Markov chain and θk are the parameters, transition
probabilities of the Markov chain. The same framework can be applied to other information
theoretic measures, such as the Kullback–Leibler divergence.

3.2.2. Hidden Markov Models

A generalisation of Markov chains is given by hidden Markov Models, where we
observe a sequence, {Yi}i∈Z+ where there is an underlying Markov chain, {Xi}i∈Z+ , and
the probabilities of the observations of the hidden Markov model only depend on the
current state of the Markov chain,

Pr(Yn = yn|Yn−1 = yn−1, . . . , Y1 = y1, Xn = xn, . . . , X1 = x1) = Pr(Yn = yn|Xn = xn).

Hence, this also exhibits the Markov property with dependence on the latent Markov chain.
In general, there is no known expression to directly calculate the entropy rate of a

hidden Markov model [69–72], so we cannot just describe the techniques with respect to
a plug-in expression for this class of models. However, some upper and lower bounds
have been given by Cover and Thomas ([62], p. 69), and a proof of convergence of the
bounds to the true value. It was shown that the entropy rate function is analytic in its
parameters in [73], and it has been shown that the entropy rate function of a hidden Markov
model varies analytically in its parameters, with some assumptions on the positivity of the
transition matrix of the embedded Markov chain.

In the more specific case of binary-valued models, where both the Markov chain
{Xi}i∈Z+ and observed random variables {Yi}i∈Z+ are binary-valued, there have been
expressions derived based on a noise model using a series expansion and analysing the
asymptotics [74–76], and some analysis which links the entropy rate to the Lyapunov expo-
nents, arising in dynamical systems [70]. Nair et al. [19] generated some upper and lower
bounds, depending on the stationary distribution of the Markov chain and the entropy of
a Bernoulli random variable. Lower bounds were further refined by Ordentlich [21], by
creating an inequality that utilises a related geometrically distributed random variable. The
exact expression remains elusive and is an active topic of research; however, as pointed
out by Jacquet et al. [70], the link with Lyapunov exponents highlights the difficulty of this
problem in general.
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Although there are no explicit estimators for HMMs, Ordentlich and Weissman [20]
created an estimator for the binary sequence {Yi}i∈Z+ ,

H(Y) = E
[

H
(

eYi

1 + eYi
? p ? δ

)]
,

where ? is the binary convolution operator and p and δ are the probability of the embedded
Markov chain changing state and the probability of observing a different state from the
Markov chain. Given these simplifications, we can obtain an expression in terms of the
expectation of the random variable and the stationary distribution. Luo and Guo [22]
utilised a fixed point expression that can be developed on the cumulative distribution
function. Then, a conditional entropy expression is exploited to calculate an entropy
rate estimate,

H(X1|X0, Y1
−∞) = E

[
H2

((
1 + e−αX0−r(Y1)−L2

)−1
)]

,

where

H2(p) = −p log2 p− (1− p) log2(1− p),

is the binary entropy function,

α = log((1− ε)/ε),

r(y) = log
PrY|X(y + 1)
PrY|X(y− 1)

,

PrY|X() is the conditional probability of random variable Y given X and L2 is the log-
likelihood ratio. Then, they computed this numerically to form estimates, using a technique
that exploits the fixed-point structure in a set of functional equations.

Gao et al. [23] use a non-parametric approach using limit theorems discussed in
Section 4.1, which is applied to other processes such as Markov chains. However, with
some assumptions, results can be achieved using limit theorems and fitting parameters to
data. Travers [24] uses a path-mergability condition, if there exist paths that emit a symbol
from the process {Yi}i∈Z+ ,

δi(w) =
{

j ∈ E : Pri

(
X|w|−1

0 = w, Y|w| = j
)}

such that for two distinct states i and j, there is a state k that can be reached from both
states while creating the same path, i.e.,

k ∈ δi(w) ∩ δj(w).

Then, entropy rate estimates are made non-parametrically of the conditional entropy,

HT(χ) = H(XT |XT−1, . . . , X1),

which under the stationarity assumption converges to the entropy rate. Given these
assumptions, the estimates converge to the true value in the total variation norm at an
exponential rate.

Peres and Quas [25] then tackle the problem of finite-state hidden Markov models
with rare transitions. Their analysis is performed by setting some rare transitions to 0. In
this case, they have defined the entropy rate as the average over the possible paths w,

H(Y) = lim
N→∞

1
N ∑

w∈ΩN

Pr(YN
1 = w) log Pr(YN

1 = w).
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Under these assumptions, some lower and upper bounds of the expression above were
found. These bounds are composed of the sums of the entropy rate of the Markov chain
alone, and the entropy of the conditional distribution of the observed variables given the
latent Markov chain.

3.2.3. Other Markov Processes

In addition Markov and hidden Markov chains, some less studied Markov processes
have had parametric entropy rate estimators developed.

Dumitrescu [77] analysed Markov pure jump processes, which are processes that have
an embedded discrete-time Markov chain with jumps occuring at random times, Tt, for
the tth jump, where the rates are given by a generator matrix, Q =

(
qij
)

i,j∈Ω. In this case,
Dumitrescu [77] proved that the entropy rate is

H(χ) = ∑
i∈Ω

πi ∑
j 6=i

qij log qij + ∑
i∈Ω

πi ∑
j 6=i

qij, (3)

for π, the stationary distribution of the Markov chain.
Regnault [26] showed that, similar to the results of Ciuperca and Girardin [11,12], the

stationary distribution could be estimated consistently and is asymptotically normal, for
both: one long sample path and an aggregation of multiple sample paths. Consistency and
asymptotic normality of the generator matrix, Q̂, also proved, which are estimated using

q̂ij =


Nij [0,n)
Ri [0,n) , if Ri[0, n) 6= 0,

0, otherwise,

where Ri[0, n) is the total time spent in state i. Regnault then proved that plugging these
estimates into the parametric form of the entropy rate in Equation (3) results in consistent
and asymptotically normal estimates of the entropy rate, for the case of estimation from
one long single path and estimation of multiple paths.

3.3. Renewal/Point Processes

Another important class of stochastic processes are renewal processes, these processes
are a sequence of independent realisations of an inter-event distribution. We define the
renewal process S = {Si}i∈N, where Si are the event times, and we define the inter-event
times X = {Xi}i∈N, and note that Si = ∑i

j=0 Xj. A key description of a renewal process is
the counting function of events, which is defined similarly to the Markov chain case above,
N[0, n) = ∑∞

j=0 1{Sj≤n}, where each jump increments N[0, n) by 1. The entropy rate in this
case of discrete-time inter-event distribution is

H(S) = λH(X),

= −λ
∞

∑
j=1

pj log pj,

where λ = 1/E[X1].
Discrete renewal processes have been estimated by Gao et al. [23], for a discrete

distribution of X being pj, j = 1, 2, . . ., to model binary-valued time series. The estimator
is simply,

H(S) = −λ̂
∞

∑
j=1

p̂j log p̂j.

This was shown to be a consistent estimator of entropy rate; however, in practise, it was
shown that long strings can be undersampled, unless the process was observed for an
extremely long time frame. This is another example of a non-parametric model inside
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of a parametric estimator. One could estimate pj parametrically, e.g., assume X is a
geometric random variable, and then, pj = p(1− p)j and then estimate the probability, the
parameter p.

4. Non-Parametric Approaches

In this section, we will be discussing non-parametric estimators of the Shannon and
differential entropy rate. In contrast to the previous section, the estimators presented here
make very few assumptions about the form of the data generating process. However, there
are still assumptions that are required to enable the analysis, in particular, the stationarity or
ergodicity of the process, to allow for limit theorems which are used to develop estimators
with the desired properties. Non-parametric methods are robust to the type of distribution
and parameter choices of models ([78], p. 3). There has been more research interest for
Shannon entropy rate estimation, rather than differential entropy rate. However, there has
been considerable research into the estimation of differential entropy, see Beirlant et al. [79].
The interest into differential entropy estimation techniques continues, particularly with the
increase in computational power, to enable efficient calculation of kernel-density-based
techniques [80].

4.1. Discrete-Valued, Discrete-Time Entropy Rate Estimation

In this section, we will briefly describe some entropy rate estimators for discrete-
valued, discrete-time processes. We will consider techniques that utilise completely
non-parametric inference of quantities that can be used for entropy rate inference. Non-
parametric estimators have a rich history in information theory as ways of characterising
the complexity and uncertainty of sources of generating data, particularly when consider-
ing communication theory and dynamical systems.

The first estimator we discuss is based on the Lempel–Ziv compression algorithm [81].
The estimation technique is based on a limit theorem on the frequency of string matches
of a given length, for each n ∈ Z+. Given the length of the prefix sequences of a process
starting at digit i, xi, xi+1, . . ., we define,

Ln
i (x) = min{L : xi+L−1

i 6= xj+L−1
j , 1 ≤ j ≤ n, j 6= i},

or the length of the shortest prefix of xi, xi+1, . . . which is not a prefix of any other
xj, xj+1, . . . for j ≤ n. A limit theorem was developed by Wyner and Ziv [82], based
on the string matching, which states,

lim
n→∞

Ln
i (x)

log n
→ 1

h(χ)
, in probability.

This was extended to almost sure convergence, a.s., by Ornstein and Weiss [83]. Utilising
the idea of this theorem, estimation techniques were developed which utilise multiple
substrings and average the Ln

i ’s instead of estimating from one long string, to make accurate
and robust estimates with faster convergence to the true value. The following statement by
Grassberger [44] was suggested heuristically,

lim
n→∞

∑n
i=1 Ln

i (x)
n log n

=
1

h(χ)
, a.s.

This expression was shown by Shields [84] to not hold except in the cases of simple
dependency structures, such as independent and identically distributed (i.i.d.) processes
and Markov chains. However, a weaker version does hold for general ergodic processes,
which states that for a given ε > 0, all but a fraction of at most ε of the ∑n

i=1 Ln
i (x)/n log n,

are within the same ε of 1/h(χ) [84].
This is converted to an estimation technique by taking a suitably large truncation, and

calculating the above expression for 1/h(χ). However, to make consistent estimates for
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more complex dependency structures, where the limit expression above does not hold,
additional conditions are required. Kontoyiannis and Suhov [85], and Quas [46] extended
this concept to a wider range of processes, firstly to stationary ergodic processes that obey
a Doeblin condition, i.e., there exists an integer r ≥ 1 and a real number β ∈ (0, 1) such
that for all x0 ∈ A, Pr(X0 = x0|X−r

−∞) ≤ β, with probability one, and secondly, to processes
with infinite alphabets and to random fields satisfying the Doeblin condition.

Kontoyiannis and Suhov [85] followed the results of Shields [84] and Ornstein and
Weiss [83], to show that the above estimator is consistent in much further generality with
the addition of the Doeblin condition. They also state that without the condition, 1/h(χ) is
the asymptotic lower bound of the expression.

Another class of estimators, which was initially suggested by Dobrushin [86], uses a
distance metric on the “closeness” of different strings. We let ρ be a metric on the sample
space Ω, and define sequences of length T, as X(i) = (Xi, Xi+1, ...., Xi+T), with each of the
n sequences being independent. A nearest neighbour estimator is defined as,

ĥn = − 1
n log n

n

∑
j=1

log
(

min
i:i 6=j

ρ(X(i), X(j))

)
.

Grassberger suggested this as an estimator with the metric ρ(x, y) = max{2−k : xk 6= yk} [44].
This is an equivalent formulation using the Ln

i quantity, and therefore, the same results
from Shields apply. Similar techniques for nearest neighbour estimation were developed
by Kaltchenko et al. [47], and the convergence rate for the nearest neighbour estimator
was shown by Kaltchenko and Timofeeva [48]. Another related estimator was developed
by Vatutin and Mikhailov [49], where they calculated the bias and consistency for nearest
neighbour estimation.

A generalisation of the nearest neighbour entropy estimator was introduced as a
measure called Statentropy by Timofeev [50]. This estimator is defined as,

ĥn = − 1
n log n

n

∑
j=1

log

(
(k)

min
i:i 6=j

ρ(X(i), X(j))

)
,

where min(k) is the kth order statistic, i.e., the kth smallest value of the pairwise compar-
isons. Hence, this is a generalisation of the nearest neighbour estimator, by considering
the kth smallest value, rather than the minimum. This estimator has been shown to be
consistent, with convergence rates to the entropy rate developed by Kaltchenko et al. [48].

4.2. Continuous-Valued, Discrete-Time Entropy Rate Estimation

A few techniques have been developed to provide differential entropy rate estimates
for continuous-valued, discrete-time processes. There are two classes: relative measures,
which can be used for comparison of complexity of a system, and absolute measures, which
are intended to accurately estimate the value of differential entropy rate for a system.

The relative measures include two closely related approaches, approximate [51] and
sample entropy [52], which utilise pairwise comparisons between substrings of realisations
of the process to calculate a distance metric. Another popular approach is permutation
entropy which utilises the frequency of different permutations of order statistics of the
process [87], and then calculates the estimate using an analogue of Shannon entropy on the
observed relative frequencies [53].

These techniques were developed to quantify the complexity of continuous-valued
time series, and therefore, the intention is to compare time series as opposed to provide
an absolute estimate. These types of measures from the dynamic systems literature have
been successful in the analysis of signals to detect change [88–90]. From the probabilistic
perspective, we have an interest in the accurate, non-parametric estimation of differential
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entropy rate from data, without any assumptions on the distribution of the underlying
source, and to compare complexity using this quantity.

The final technique we consider, specific entropy [54], is an absolute measure of the
entropy rate. Due to computational advances, the technique uses non-parametric kernel
density estimation of the conditional probability density function, based on a finite past,
and uses this as the basis of a plug-in estimator.

We present each of these techniques in more detail below.

4.2.1. Approximate Entropy

Approximate entropy was introduced by Pincus [51], with the intention of classifying
complex systems. However, it has been used to make entropy rate estimates, since it
was shown in the original paper to converge to the true value in the cases of i.i.d. pro-
cesses and first-order finite Markov chains. Given a sequence of data, x1, x2, ..., xN , we
have parameters m and r, which represent the length of the substrings we use for com-
parison and the maximum distance, according to a distance metric, between substrings
to be considered a match. Then, we create a sequence of substrings, u1 = [x1, . . . , xm],
u2 = [x2, . . . , xm+1], . . . , uN−m+1 = [xN−m+1, . . . , xN ] and we define a quantity,

Cm
i (r) =

1
N −m + 1

N−m+1

∑
j=1

1{d[ui ,uj ]≤r},

where d[x(i), x(j)] is a distance metric. Commonly used metrics for this measure are the l∞
and l2 distances.

The following quantity, used in the calculation of the approximate entropy, is defined
in Eckmann and Ruelle [91] and used in Pincus [51],

Φm(r) =
1

N −m + 1

N−m+1

∑
i=1

log Cm
i (r).

We now define the approximate entropy, ApEn(m, r), which is,

ApEn(m, r) = lim
N→∞

[
Φm(r)−Φm+1(r)

]
.

For finite sequences of length N, this is positively biased because of the logarithm
function E[log(X)] ≤ log(E[X]) by Jensen’s inequality [92] and the counting of some
substrings twice. The bias in this estimator decreases as the number of samples, N, becomes
larger [92].

Pincus showed in his initial paper that approximate entropy would converge to
the entropy rate for i.i.d and finite Markov chains [51]. However, this does not hold in
more general cases. Approximate entropy is also quite sensitive to the two parameters,
m, and r, and hence, care must be taken when selecting these parameters [92,93]. It is
recommended that m has a relatively low value, e.g., 2 or 3, which will ensure that the
conditional probabilities can be estimated reasonably well [92]. The recommended values
for r, are in the range of 0.1σ− 0.25σ, where σ is the standard deviation of the observed
data [92]. Another approach has been suggested by Udhayakumar et al. [94] to replace r by
a histogram estimator based on the number of bins, and generate an entropy profile based
on multiple different rs, to reduce the sensitivity to this parameter.

4.2.2. Sample Entropy

A closely related technique for estimating the entropy rate is sample entropy [52],
which was developed to address the issues of bias and lack of relative consistency in
approximate entropy. The sample entropy, SampEn, is a simpler algorithm than ApEn,
with a lower time complexity to make an estimate and eliminating self-matches in the data.
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We define sample entropy by using very similar objects to approximate entropy.
Given a time series, x1, . . . , xN , of length N, we calculate substrings um

i = [xi, . . . , xi+m−1]
of length m, and choose the parameter, r, for the maximum threshold between strings. We
now define two related quantities,

A =
N−m

∑
i=0

1{d[um+1
i ,um+1

j ]<r},

B =
N−m+1

∑
i=0

1{d[um
i ,um

j ]<r},

where d[um
i , um

j ] is a distance metric, with the usual distance metrics l∞ and l2. Finally, we
define the sample entropy as,

SampEn = − log
A
B

.

As A will be always less than or equal to B, this value will always be non-negative.
Sample entropy removes the bias that is introduced via the double counting of sub-

strings in approximate entropy; however, sample entropy does not reduce the source of
bias that is introduced by the correlation of the substrings used in the calculation [52,92].

4.2.3. Permutation Entropy

In addition to these two related relative entropy rate estimation techniques, we in-
troduce permutation entropy developed by Bandt and Pompe [53]. Unlike the previous
two, this has not been shown to converge to the true entropy rate for particular stochastic
processes. However, it was developed for the same purpose, to quantify the complexity of
processes generating time series data. Further development of the theory was undertaken
by Bandt and Pompe, justifying the development of permutation entropy as a complexity
measure [87].

Given a set of discrete-time data, x1, . . . , xN , we consider permutations, π ∈ Π of
length n which represent the numerical order of the substring data. For example, with
n = 3, three consecutive data points (2, 7, 5) and (3, 9, 8) are examples of the permutation
021, and (5, 1, 3) and (7, 4, 5) are examples of the permutation 201, the numbers in the
permutation represent the ordering of the substring. For every permutation π, the relative
frequencies are calculated as

p(π) =
|{t|t ≤ T − n, xt+1, . . . , xt+n has type π|}

T − n + 1
.

Hence, we are working with approximations to the real probabilities; however, we could
recover these by taking the limit as T → ∞ by the Law of Large Numbers ([95], p. 73) using
a characteristic function on observing the permutation, with a condition on the stationarity
of the stochastic process.

The permutation entropy of a time series of order n ≥ 2 is then defined as,

H(n) = − ∑
π∈Π

p(π) log p(π).

Permutation entropy has one parameter, the order n. The number of permutations for
an order scales as n!, which creates a time complexity issue as the required computations
grows very quickly in the size of the order. Hence, the minimum possible data required to
observe all of the possible permutations of order n, is n! data. However, it is claimed that
the permutation entropy is robust to the order of the permutations used [53]. In practise,
smaller ns are used, such as n = 3, 4, 5 due to the growth of the number of permutations
which requires more data to observe all of the permutations [53].
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4.2.4. Specific Entropy

Specific entropy was defined by Darmon [54], to provide a differential entropy rate
estimation technique that has a stronger statistical footing than the previously defined
estimation techniques. The intent of the development of this quantity was to create a
measure of the complexity of a continuous-valued, discrete-time time series, as a function
of its state. Then, a differential entropy rate estimate is made by taking a time average of the
specific entropy estimates. Therefore, it can be applied in particular to ergodic processes.
The approach is to consider the short-term predictability of a sequence, by utilising a finite
history of values to create a kernel density estimate of the conditional probability density
function. Then, use the kernel density estimate to plug-in into the differential entropy rate
formula, when using the conditional density function. For the calculation of this quantity,
a parameter of the length of the history, p, is used in the kernel density estimation of the
conditional probability density function.

The definition of the specific entropy rate makes a finite truncation of the conditional
entropy version of the entropy rate, as follows from Theorem 1. One condition is required
in the formulation of the theoretical basis, which is that the process being measured
is conditionally stationary. That is, given the conditional distribution function of Xt+1,(

Xt, . . . , Xt−p+1
)
= X does not depend on the value of t for a fixed length of history being

considered, p. In the paper by Darmon [54], they showed that the conditional entropy up
to order p, depends on the state specific entropy of a particular history (xp, . . . , x1) = xp

1
and the density of the possible pasts (Xp, . . . , X1) = Xp

1 . This is shown by an argument
which establishes that,

h
(

Xt|Xt−1
t−p

)
= −E

[
E
[
log f

(
Xt|Xt−1

t−p

)]]
.

Given this relationship and the law of total expectation, the specific entropy rate of
order p, h(p)

t is defined as

h(p)
t = h

(
Xt|Xt−1

t−p = xt−1
t−p

)
,

= −E
[
log f

(
Xt|Xt−1

t−p

)]
,

= −
∫ ∞

−∞
f
(
xp+1|x

p
1
)

log f
(
xp+1|x

p
1
)
dxp+1.

Hence, the specific entropy rate estimator, ĥ(p)
t , defined by plugging in the estimate of

the density obtained by kernel density estimation, f̂
(
xp+1|x

p
1
)
, is

ĥ(p)
t = −E

[
log f̂

(
xp+1|x

p
1
)]

.

Then, the estimate of the differential entropy rate of order p, ˆh(p), is defined as

ĥ(p) =
1

T − p

T

∑
t=p

ĥ(p)
t ,

=
1

T − p

T

∑
t=p
−E
[
log f̂

(
xp+1|x

p
1
)]

,

which is the time average of all the specific entropy rates across the observed states.
Specific entropy relies on some parameters to construct the kernel density estimation,

which is the length of the past, p and the p + 1 bandwidths, k1, . . . , kp+1 that are used in the
kernel density estimation [54]. The parameter choice can have large impacts on the quality
of the estimation, in particular depending on the length of the past used in the kernel
density estimation. The suggested technique for selecting p is a cross-validation technique
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which removes an individual observation and l observations on either side. Then, the
following expression is minimised for its parameters p, k1, . . . , kp+1,

CV(p, k1, . . . , kp+1) = −
1

T − p

T

∑
t=p+1

log f̂−t:l

(
Xt|Xt−1

t−p

)
.

where f̂−t:l is the conditional density with the points removed [54]. A suggested approach
is to take l = 0 and only remove the individual observation [96]. In practise, it is advised
to fix p and then calculate the bandwidths due to the computational complexity of the
cross-validation [54].

5. Conclusions

The research on entropy rate estimation has been driven by the need to quantify the
complexity and uncertainty of sources of data, for a wide range of applications, from
communications to biological systems. There are still gaps in the research, with many
potential parametric approaches that can be developed for different stochastic models,
and improvements to existing non-parametric approaches. In particular, the development
of non-parametric estimators for the differential entropy rate and the development of
more efficient techniques for non-parametric estimation of the Shannon entropy rate. In
addition, further research could be developed for more generalised entropy rates, such as
the Fisher–Shannon [97] and Rényi [98] entropy rates.
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