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Abstract

The craniofacial region consists of several different tissue types. These tissues are quite commonly affected by traumatic/
pathologic tissue loss which has so far been traditionally treated by grafting procedures. With the complications and
drawbacks of grafting procedures, the emerging field of regenerative medicine has proved potential. Tissue engineering
advancements and the application in the craniofacial region is quickly gaining momentum although most research is still
at early in vitro/in vivo stages. We aim to provide an overview on where research stands now in tissue engineering of
craniofacial tissue; namely bone, cartilage muscle, skin, periodontal ligament, and mucosa. Abstracts and full-text English
articles discussing techniques used for tissue engineering/regeneration of these tissue types were summarized in this
article. The future perspectives and how current technological advancements and different material applications are
enhancing tissue engineering procedures are also highlighted. Clinically, patients with craniofacial defects need hybrid
reconstruction techniques to overcome the complexity of these defects. Cost-effectiveness and cost-efficiency are
also required in such defects. The results of the studies covered in this review confirm the potential of craniofacial
tissue engineering strategies as an alternative to avoid the problems of currently employed techniques. Furthermore,
3D printing advances may allow for fabrication of patient-specific tissue engineered constructs which should improve
post-operative esthetic results of reconstruction. There are on the other hand still many challenges that clearly require
further research in order to catch up with engineering of other parts of the human body.
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The craniofacial region is a complex network of several
tissue types, including bone, cartilage, muscle, salivary
glands, nerve tissue, teeth and the surrounding periodon-
tium, and skin/mucosa. The loss of craniofacial tissue may
be due to congenital causes, such as clefting' and craniofa-
cial microsomia, or acquired conditions, such as facial
trauma or tumor resection. The result of this loss is signifi-
cant aesthetic, functional, and psychological affliction.?
Craniofacial reconstruction is challenging due to the
complexity of the various structures involved. The vari-
ous sources of infection in the region (oral/nasal infec-
tions) are also to be taken care of. Reconstruction of such
defects has conventionally been approached using autol-
ogous, allogenic, or xenogeneic grafts to restore the
missing tissue with the hope for long-term functional
rehabilitation. Complications of this approach range from
graft rejection, infection, increased morbidity, and

prolonged hospital stays along with the economic burden
of such complications.> With continually evolving tis-
sue-engineering and stem cell technologies, the applica-
tion of regenerative strategies has gained momentum
among many research groups worldwide. Regenerative
medicine is a broad term encompassing all efforts to
reach the ultimate goal of tissue replacement clinically.
Tissue engineering is used to denote production of the
target tissue using one of many approaches, which all
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Figure |. Diagrammatic representation of different craniofacial tissues.
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Figure 2. Diagrammatic representation of the different scaffold approaches used in tissue engineering.

follow similar principals. The most common pillars of
the tissue engineering process are cells, scaffolds, growth
factors, and gene modification to guide cellular differen-
tiation and proliferation® (Figure 1). The use of drug mol-
ecules for tissue engineering and regenerative procedures
has also been reported to be a logical and successful
regenerative mechanism.” Cell transplantation is often
used when the defect is challenging to repair using only
the natural regenerative process. Cells are isolated from a
donor biopsy and expanded in vitro before transplanting

into the defect to effect repair and regeneration.
Alternatively, expanded cells may be loaded into a bioac-
tive scaffold. Following cellular adhesion and prolifera-
tion, the engineered tissue is then implanted into the
defect. The scaffold gradually degrades to allow space
for the regenerated tissue to fully integrate with the host
to restore structure and function.®” Different scaffolding
techniques are used for tissue engineering applications,
including the use of decellularized extracellular matrix
(ECM) and sheets of cells on ECM (Figure 2). An added
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advantage of the regenerative procedures is the ability of
incorporation of antimicrobial materials to fight infection
which may attack the implanted constructs from nasal or
oral infections.!?

The specific application of such strategies in the crani-
ofacial region is relatively recent compared to the limb
region. Craniofacial reconstructive procedures have transi-
tioned from grafting of tissue to 3D-printed implants to
tissue engineering techniques, or a combination of these.!!
This review aims to provide clinicians and researchers
with a wide overview of what has been reported so far
in the field of craniofacial tissue engineering. The latest
evidence for each of the craniofacial tissue types will be
presented with a representative image from discussed lit-
erature when possible (table 1). Tooth regeneration was
left out of this review as it has been covered in depth in
other previously published reviews.!>!3

Craniofacial bone regeneration

The current “gold standard” for craniofacial bone tissue
replacement is the use of autologous bone grafts from the
rib, cranium, or iliac crest. These procedures are associ-
ated with several complications, including bone resorp-
tion, infection, donor site complication, and can only be
used in relatively small defects.'* Bone regeneration is a
popular research topic and numerous reports have been
published on novel approaches to promote the best out-
comes.'>"'7 The investigation of such techniques in the
craniofacial region has been reported clinically, but is still
in its infancy due to the difficulty of developing a robust in
vivo model of a craniofacial bone defect!'® (Figure 3).

The innate regenerative process of healthy bone has
been reported as early as 1992." The role of the cellular
constituents of the periosteum and their distinct functions
at the time of bone injury dictate the regenerative pro-
cess.?’ The resident bone-forming stem cells of the perios-
teum differ according to the type of bone, such that the
craniofacial periosteum triggers intramembranous bone
formation while long bone periosteum promotes endo-
chondral ossification.?! The employability of the endo-
chondral route to craniofacial bone formation is also a
logical approach according to the type of bone to regener-
ate.?? The proven regenerative power of the periosteum has
led to its use in the management of maxillofacial defects of
relatively small size.”*?° Bone engineering techniques
may use a combination of cells (especially mesenchymal
stem cells—MSCs), scaffolds and growth factors to man-
age larger defects. Although several sources of stem cells
are known (embryonic; ESCs, Umbilical cord cells;
UCSCs, Adult somatic; iPSCs and adult tissue cells)
BM-MSCs and ADSCs remain the major sources of stem
cells. MSCs are usually harvested from the bone marrow
(BM-MSCs) or can be adipose-derived (ADSCs).?’
Bioactive scaffolds provide the proliferating cells with a
framework for adhesion, proliferation, and consolidation.
3D printing technologies may be used to produce these
scaffolds from materials, such as natural and synthetic
polymers. Other recent technologies for scaffold fabrica-
tion reported include gas foaming, cryogelation, material
extrusion, photopolymerization, electrospinning each with
a set of materials that work with it.2® The use of specific
agents/materials/growth factors to enhance the bone-form-
ing activity of differentiated osteoblasts is regularly

Figure 3. Dipyridamole coated 3-TCP scaffold assessment: quadrant scaffold demonstrates bone regeneration through scaffold
porosity, at both larger (red arrows) and smaller (white arrows) pore dimensions. (Below, left) Highly cellular and vascularized bone
formation is seen within scaffold interstices. Intramembranous-like healing is observed with regions of mature, lamellar-like

bone formation (blue arrows). (Below, right) Bone formation is guided by highly osteoconductive scaffold dimensions as new bone
formation is directed from scaffold pore-to-pore (green arrows) while interacting with scaffold struts (yellow arrows). Adapted from

Maliha et al.'®
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reported in literature. These agents may enhance cellular
recruitment and adhesion to the scaffold, promote prolif-
eration then differentiation of specific cells important for
bone regeneration and inhibit antagonistic activity (such as
that of osteoclasts),!%18:29:30

Calcium phosphates are widely used for bone recon-
struction.?!32 3D-printed B-tricalcium phosphate (B-TCP)
scaffolds soaked in collagen and coated with dipyrida-
mole have been investigated for bone regenerative pur-
poses. Dipyridamole is a known osteogenic agent that
increases osteoblastic differentiation and inhibits osteo-
clastic activity and inflammatory responses.*33° Scaffolds
of varying pore dimensions (220, 330, and 500 um)
impregnated with different concentrations of dipyrida-
mole (100, 1000, and 10,000 um) were placed within
critical-sized calvarial defects in 5-week-old rabbits.
Optimal bone growth and scaffold biodegradation were
reported with larger pore sizes and the highest dipyrida-
mole concentration. Histological and radiographical
assessment showed vascularized woven and lamellar
bone along with initial formation of vascular canals
(denoting angiogenesis) within the scaffold lattice and
patent calvarial sutures, an important requirement for
calvarial reconstruction/regeneration.® Other research-
ers have also reported success with 3D-printed B-TCP
scaffolds coated with dipyridamole.’*3” Wang et al.’®
compared autologous bone grafts with 3D-printed B-TCP
dipyridamole-coated scaffolds in alveolar clefts and cal-
varial defects created in immature rabbits. At 24 weeks,
the bioactive scaffolds showed better osteogenic genera-
tion than the autologous graft in both the alveolar and
calvarial defect sites. In addition, the regenerated bone in
both sites showed resemblance to the native bone in
terms of organization of trabeculae and mechanical char-
acteristics. The patency of the sutures was validated radi-
ographically at 6 months.

A firm, solid cell-scaffold construct can prove difficult
to handle and may not fit a defect easily. Injectable scaf-
folds have several advantages over stiffer scaffolds.> The
ability to inject a semi-solid or gel-like material into a
defect and have it set in position in vivo supports a less
invasive clinical approach.* Injectable tricalcium phos-
phate scaffolds were tested in vitro within a fibrin gel
and were proposed as an osteogenic property-enhancer.*!
Injectable hydrogels containing calcium phosphate cement
have proven to possess superior mechanical properties
and allow better cellular adhesion in vitro.*> Research on
methods to enhance the mechanical properties of the
setting scaffolds is currently ongoing. Such bioactive
hydrogels have been investigated for craniofacial bone
regeneration applications.* Injectable alginate hydrogels
loaded with hydroxyapatite, bone morphogenic proteins,
and gingival mesenchymal cells were used in peri-implan-
titis defects created in the maxilla of mice. Once injected,
final setting of the alginate hydrogel was achieved by

photopolymerization. In vivo assessment showed that
more than 50% of the alginate had dissociated by 6 weeks.
Clinical and micro-CT assessment revealed fewer inflam-
matory mediators, better bone recovery and implant sur-
vival in defects managed with the hydrogel compared to
controls. The option to alter the degradation rate of the
hydrogel by changing its molecular weight opens up the
potential for regeneration of tissues other than bone.*
Hydroxyapatite (HA)—which is a naturally occurring cal-
cium phosphate—has been commonly used to enhance
osteoconductivty of regenerative constructs is a commonly
followed strategy.** HA and other biphasic calcium phos-
phates have been reported to be a successful addition to
B-TCP in experimental maxillofacial models, clinical
socket preservation, sinus lift procedures, and crestal
height and width augmentation.*> The use of synthetic bio-
mimetic calcium phosphate (SBCP) granules in rat calva-
rial defects showed bone regrowth that was comparable to
that resulting from deproteinized bovine bone material
(DBBM). SBCP led to faster bone regeneration. This was
thought to be due to the microstructure and higher total
porosity of SBCP. The SBCP showed superior results in
terms of vertical bone growth which is of great clinical
importance in alveolar augmentation.*

Collagen is an integral constituent of bone. Thus, many
groups have utilized this natural biomaterial combined
with xenogeneic bone material to mimic bone structure
and facilitate regeneration. Collagen gels combined with
DBBM were used to reconstruct critical-sized calvarial
defects in adult rabbits. The presence of DBBM allowed
maturation of the formed bone such that it resembled the
composition and mechanical properties of native bone.
The collagen gel supported better soft tissue healing (in the
calvarial skin flap) when compared to the autologous bone
grafting; which adds to the scaffold advantages regarding
multi-tissue regeneration.*’ Collagen combined with por-
cine bone particles was studied and reported to enhance
bone regeneration and reduce bone loss in alveolar defects
in beagle dogs.*® Moreover, the collagen-porcine bone par-
ticle scaffolds demonstrated greater bone regeneration of
critical-sized calvarial defects in adult white rabbits as
compared to B-TCP/hydroxyapatite scaffolds.*>

In cases of bone osteonecrosis-specifically MRONJ
(medication related osteonecrosis of the jaw) the use of
stem cell therapies to reduce the effect of the drug on the
bone, reducing inflammatory reactions and promoting
healing. One study identified that MSCs in a mouse
MRONJ model improved the healing capacity of the
affected MSCs and so provided a better therapeutic bene-
fit. The effect of MSCs in MRONJ treatment may be
attributed to their capability of secreting immunomodula-
tory factors and being immunopriviliged.’! On the other
hand, the local delivery of ASCs and BMP-2 in a hydrogel
vehicle reinforced with hemicellulose polysaccharide fib-
ers, showed better mucosal recovery, bony reconstruction,
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and formation of new osteoclasts in a rat model.”> A more
recent report also confirmed the effectiveness of BM-MSCs
cultured on B-TCP in improving mucosal coverage with no
bone exposure and better bony healing in comparison to
the negative control in rat models.>? This gives hope for
future better management of MRONJ cases which are a
clinical dilemma for craniofacial surgeons. The applica-
tion of bone engineering technologies in the craniofacial
region has had reasonable success. The multiple cell types,
scaffolds and additions (e.g. growth factors) allow for test-
ing of different combinations to promote bone deposition
and maturation. The use of 3D printing technologies and
computer-aided design of scaffolds with specific micro-
and macro-structure of the scaffolds is now possible and
has a promising future. A recent study reported acceptable
primary results using a syringe-extruded hydrogel scaffold
which was then cured to final setting. Although elastic
modulus and tensile strengths of the final material still
needs to be improved; the cellular viability and prolifera-
tion of the used neuronal cells in this study prove potential
for further use.>* Moreover, the further utilization of addi-
tive manufacturing and computer-aided designing (CAD)
technologies will allow the specific designing of internal
micro and macro porosity which could be tweaked accord-
ing to the necessary tissue types. This was tested on a PLA
printed scaffold with different internal pore morphologies
and the seeded pre-osteoblastic line showed promising
proliferation and activity.>

Further research on the application of these technolo-
gies is expected soon. The possibilities of specific design-
ing of the internal architecture of scaffolds to mimic the
extracellular matrix of target defects in patients are encour-
aging. Combining these methods with more conventional
grafting procedures or with vascularized grafts may also
be a possibility in large defects to combine the advantages
of each of the techniques. Clinically oriented research
should soon be able to provide evidence on techniques
suitable for the different types of craniofacial bony defects.

Craniofacial skeletal muscle
regeneration

Muscles of the craniofacial region are of great importance
for function and esthetic appearance.’®” These muscles
may be subject to trauma, cancer, generalized muscle dis-
orders, surgical resections, or autoimmune diseases neces-
sitating  grafting/regenerative  procedures. Orofacial
congenital defects, such as cleft lip and/or palate, are asso-
ciated with impaired muscle regeneration and fibrosis after
surgery also requiring repair.>

For engineered muscle to be an acceptable option for
muscle regeneration, the tissue has to have similar to
native architecture and possess acceptable mechanical
properties. The muscle healing process starts by activation
of quiescent myogenic progenitor cells followed by prolif-
eration and differentiation.® To resemble the regenerative

process on a larger scale, muscle progenitor cells can be
extracted and expanded in vitro. The confluent cells may
then be loaded onto a scaffold, which guides and supports
early muscle formation and maturation.’® Growth factors
may also be used to support the muscle regenerative pro-
cess and include fibroblast growth factor (FGF), hepato-
cyte growth factor (HGF), insulin-like growth factor
(IGF), vascular endothelial growth factor (VEGF), plate-
let-derived growth factor (PDGF), and stromal cell-
derived factor (SDF).®

The fabrication of a scaffold mimicking the ECM of the
native muscle tissue is necessary to enable proper growth
and angiogenic activity of the central core to provide nutri-
ents to the newly formed muscle and the proliferating
cells. There are several different biomaterials that have
been investigated for muscle tissue engineering.
Biodegradable polyester scaffolds used for muscle regen-
eration include natural compounds, such as o-hydroxy
acids (polyglycolic acid, poly-L-lactic acid, and polycap-
rolactone) and silk-fibroin.®’ Synthetic biomaterial scaf-
folds, such as polyurethanes, polypropylene, silicone,®
and phosphate-based glasses®** are alternative options.®
Injectable hydrogels have further allowed for simpler
delivery to sites of defect.®®

Different cell sources have also been investigated for
muscle regenerative approaches including satellite cells,
ADSCs, BM-MSCs, PVSCs, iPSCs, ESCs, and
UC-MSCs.% Umbilical cord mesenchymal stem cells
(UC-MSC) are a promising source. These can be harvested
from the umbilical cord without the need for a separate
biopsy procedure from the child. The umbilical cord blood
and tissue contain a heterogeneous mixture of stem and
progenitor cells at different stages of differentiation.®”-%8
The use of UCMSC:s in cleft lip and palate surgery together
with anti-inflammatory and antifibrotic agents is a promis-
ing method.®

Pulp stem cells were also reported to have myogenic
potential when pretreated with 5-Aza (5-aza-2’-deoxycyt-
idine; a modified demethylation agent) in vitro. Treatment
of the pulp cells with 5-Aza stimulated myotube forma-
tion, myogenic differentiation associated with desmin and
myogenin expression, and a degree of scaffold contraction.
The epigenetic modification of these cells (collected from
premolars) stimulated craniofacial muscle regeneration in
the masseter and gastrocnemius of adult mice in vivo.”

Human myogenic and non-myogenic craniofacial mus-
cle-derived cells (MDC) extracted from biopsies and
seeded onto 3D collagen constructs expressed myogenin,
indicative of myogenic differentiation. Furthermore, there
was a synergistic effect as the heterogeneous co-culture of
myogenic and non-myogenic cells generated the highest
peak force (muscle function) and expressed the most
MMP-2 mRNA compared to isolated individual cell popu-
lations.”! This may guide further research on muscle
regeneration by starting off with a mixed co-culture if that
enhances the final engineered muscle activity. Human
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Figure 4. hAMCs improved tissue repair on VML. H&E and Masson trichrome staining of 2 and 4 weeks after establishment of
VML model (blank group), implantation of GelMA gel (GelMA group), GelMA + hAMCs (hAMCs group), and GelMA + 5-Aza-
inducted hAMCs (5-Aza group). The dotted line is the boundary between normal muscle tissue and defect. White arrow shows the
neovascularization, black arrow shows fused hAMCs and fiber-like tissue. 200X. Adapted from Zhang et al.”*

masseter muscle-derived cells were also used with phos-
phate-based glass fiber scaffolds in vitro. The scaffolds
were fabricated with different internal configurations;
bundle alignment, spread-out, and mesh-like arrangement.
Microscopic imaging showed that the mesh arrangement
led to optimal cell attachment and proliferation which may
have been due to the macrotopography of the scaffolds
which provided more delicate spaces allowing better cel-
lular grouping and adhesion.”

Creation of a robust craniofacial muscle defect in ani-
mal models has proved challenging—for example, a soft
palate surgical site was tested in adult rats, but proved too
small and difficult to handle.’® Therefore, the most com-
mon region to test muscle engineering applications are the
limb muscles. Although the structural similarities of crani-
ofacial and limb muscle are undeniable, cellular constitu-
ents vary.

Clinical application of muscle regeneration spans a
wide range of defects with volumetric muscle loss being
the type of defect immensely requiring intervention
whether as in grafting with the complications of that’ or
regeneration.®™ A recent study reported encouraging
results in Volumetric Muscle Loss (VML) of rat tibialis
anterior muscle using amniotic mesenchymal cells. Muscle

specific markers (MyoD and desmin) were detected at the
end of the study along with improved angiogenesis and
local tissue repair’* (Figure 4).

Craniofacial muscle engineering efforts are starting to
gain more attention with the important clinical solutions
they offer. Challenges still exist regarding the conductivity
of scaffolds, vascular ingrowth within the engineered con-
structs and transfer of the in vitro outcomes to the in vivo
environment to further test the proposed methods.

Cartilage

The craniofacial region has several cartilaginous struc-
tures, such as the articular disc of the temporomandibular
joint (TMJ), the nose and ears. The avascular nature of car-
tilage and its resulting poor regenerative capacity has
made the reconstruction of cartilage defects/deformities an
important area of research.

The TMJ disc is a cartilaginous structure, which is
integral to the normal mandibular movements pertaining
to function. Traditional approaches to manage common
destructive conditions of the TMIJ disc, include non-inva-
sive and invasive joint procedures associated with high
complication and failure rates including diminished
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Figure 5. (a) Schematic image of the anatomical structure of temporomandibular joint (TMJ) and the most common target sites
for treating temporomandibular disorder (TMD). The image shows components of normal joint anatomy, including the articular disk
of TMJ, mandibular fossa, the head of the mandibular condyle, lateral pterygoid muscle, and TM) capsule enclosing the disk. (b) TMD
morphology; the head of the mandibular condyle and the articular disk lose their structures and functions. Intra-articular injection:
injection with syringe and needle can deliver proper biomolecules into TMJ capsule for treating TMD as adapted from Dashnyam

et al®!

mobility, prolonged pain episodes, scarring, numbness,
and bleeding.”® Therefore, investigation into disc regen-
eration utilizing tissue engineering approaches has
become essential. The direct injection of human mesen-
chymal cells into arthritic joints showed better articular
cartilage repair and slowing down of the arthritic pro-
gression.”® However, there is still a need to produce carti-
lage discs in the presence of advanced destruction, and
many approaches have also utilized scaffolds loaded with
cells. Nasal chondrocytes extracted from nasal cartilage
of adult female white rabbits were reported to success-
fully treat a knee articular disc defect in an adult rabbit
model when used with an injectable hydrogel scaffold.
Although this was tested in an osteochondral knee defect;
the principle was reported to be applicable in other simi-
lar joints.”” Moreover, Chondrogenic differentiation of
rabbit adipose stem cells seeded on PLA scaffolds ena-
bled fabrication of articular discs.”®

Scaffold-free tissue engineered implants were con-
structed from costal chondrocytes of minipig ribs. After ex
vivo testing of the technique of the tissue-engineered con-
struct implantation; the constructs were placed in a
designed intralaminar defects of TMJ discs of minipigs.

The efficacy of these constructs to repair thinning discs
was assessed by gross inspection, histologic assessment,
and osteoarthritis scoring. All these criteria showed better
disc repair using the tissue engineered constructs as
opposed to the empty controls.”

An injectable mixture of fibrin, thrombin, and differen-
tiated chondrocytes was reported to enable fabrication of
cartilage-like structures in adult rabbit heads. The origin
of these chondrocytes was septal/auricular and the recipi-
ent sites were the forehead and interocular regions.®’ The
inflammatory events that occur within the temporoman-
dibular joint are now proven to be a primary cause of the
pain, functional limitation, and degenerative procedures
that occur. The use of cell-laden biomaterials as vehicles
for drug delivery intra-articularly has shown superior
results to conventional injections due to the longevity of
its action and the regenerative capacity it enforces®!
(Figure 5). Moreover, hUC-MSCs injected into osteoar-
thritic rabbit joints, showed significant regenerative
capacity and anti-inflammatory action comparable to that
of the Dexamethasone injection control. Growth factors,
ECM markers and anti-inflammatory cytokines exhibited
upregulated expression while pro-inflammatory cytokines
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expression was reduced.®? This was also proven with
Dental Pulp stem cells in arthritic rat joints®>* human
shed deciduous SCs in mice arthritic joints®* and human-
derived ESCs in rats.®® Although clinical trials have not
yet reported the use of these technologies to fabricate
human cartilage clinically; reports of the differentiation
and implantation of human bone marrow cells to engineer
cartilage have emerged.®¢

The regeneration of ramus-condyle units (RCU) has
been reported to be the solution in cases of TMJ degenera-
tive disease. Scaffolds were milled into anatomically
identical forms using decellularized bone matrix and
impregnated with adipose-derived chondrogenic and oste-
ogenic cells. The constructs were implanted in minipig’s
jaws after culturing for 5weeks. The constructs main-
tained their forms and showed better full-thickness regen-
eration and mechanically comparable cartilage formed
over a bony stump than acellular scaffolds and bone-only
engineered grafts. This provided an opportunity for multi-
ple tissue regeneration. Inclusion of the adjacent tissues
such as soft connective tissues and the TMJ disc could
further extend the functional integration of engineered
RCUs with the host.?’

Nasal reconstruction historically involved autogenous
grafting to attain an aesthetic alar/nostril configuration
especially in cleft patients.®® This has evolved recently with
the use of 3D printing technologies to improve post-surgi-
cal outcome.®’ Septal chondrocytes harvested from healthy
human candidates showed regenerative capacity and
resulted in neocartilage constructs of significant volume in
vitro.”® A cell-homing procedure was reported where nasal
dorsum progenitor cells were recruited and chondrogeni-
cally differentiated onto a bi-layered alginate and PGLA
scaffold leading to the formation of cartilage-like con-
structs 10 weeks later in rat models.”! A recent report on a
3D printed nasal cartilage augmentation technique has
shown promising results when the printed scaffold impreg-
nated with hASCs implanted subcutaneously in female
athymic mouse backs. The use of such technology carries a
promise for better postoperative esthetics and shorter heal-
ing periods which are crucial in esthetic surgery.”

With the improved esthetics and patient satisfaction,
similar techniques were used for auricular cartilage recon-
struction.>** Human auricular chondrocytes (hAuC),”
monkey-derived perichondrium progenitor cells,”® and
porcine chondrocytes were all tested for their regenerative
capacity.”” The cells in these studies were harvested, grown
in vitro then implanted in vivo. The harvested tissue
showed organized arrangement of cartilage mimicking
auricular composition. Ex vivo testing of scaffolds versus
scaffold-less injectable techniques showed primary results
of the possibility of using such techniques for articular
regeneration.”®

Although research is targeted towards cartilage regen-
eration in several parts of the human body (in vitro and in

vivo preclinical testing), the applications in the craniofa-
cial region are in the early stages. Clinical reports on TMJ
disc regeneration are yet to provide evidence of success.
Improving mechanical properties of the engineered carti-
lage and further testing of its long-term survival and func-
tion is also yet to be improved.

Craniofacial nerve tissue engineering

Peripheral nerve injuries generally require a complicated
grafting procedure to return to pre-injury sensation/func-
tion in sensory and motor neurons, respectively. The graft-
ing procedures carry increased risk of infection, graft
rejection, and donor site morbidity.”>'?’ Craniofacial
nerves are of specific importance. They are either sensory,
motor, or carry both types of fibers. These nerves play an
integral part in the sensory detection and reaction to inter-
nal and external stimuli. They also have a key role in motor
control of the masticatory muscles, extraocular muscles,
and muscles of facial expression.'®’ Craniofacial nerve
injury is not uncommon due to the prevalence of facial
trauma/tumors affecting the related neural structures.'®
The facial nerve, in particular, is responsible for facial
expression—injury of the facial nerve causes facial asym-
metry and esthetic deficits, which are managed by primary
surgical nerve repair or nerve grafting.'>!* These tech-
niques are quite complex and require expensive equipment
and training to enable the surgeon to perform the delicate
microsurgical anastomosis,!>106

An intact endoneurium is necessary to bridge gaps
between the distal and proximal edges of a nerve injury. The
use of conduits for neural repair is a common strategy where
different materials and/or grafts are implanted at the injury
site to guide the neuronal regeneration.'’’ Different addi-
tives have been tested on the fabricated scaffolds for neu-
ronal regeneration, such as fibroblast growth factor,'% IL-6,
neurotrophins, glial-derived neurotrophins, and perse-
phin.'® Most of the reported studies have used pluripotent
stem cells because they are easy to harvest and readily dif-
ferentiate to nerve tissue. A few studies have reported the
use of ADSCs, BMSCs, or dental pulp cells in facial nerve
regeneration with varying success.!'’ "> Dental pulp stem
cells have a common ectodermal origin making these cells a
logical source for nerve tissue engineering. These cells were
tested in vitro and showed encouraging results in terms
of stimulating neurogenesis in adult mice ex vivo.!'>!*
Isolated muscle stem cells have also shown ability to regen-
erate nerve cells in murine xenotransplantation models. !>
Moreover, recent murine studies have demonstrated that
cells of the immune system, specifically regulatory T cells,
play a critical role in nerve regeneration following acute
chemical injury.!'>"'8 The utilization of recent technologies
has not been disregarded in neural regeneration attempts;
recently a 3D engineered functional human peripheral nerve
was tested on a novel nerve-on-a-chip platform with very
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Figure 6. Schwann cells migrated out of the spheroid and elongated along the axons. (a) Image showing how human Schwann cells
(hSCs) stained for the hSC marker S100 (green) migrated out of the spheroid along with growing axons stained for Blll-tubulin
(red) over a period of 4weeks. Nuclei were labeled with DAPI (blue). Scale bar: 1000 um. (b) High-magnification image of inset from
image A. Scale bar: 25 pm. (c) 3D image showing close-up of the relationship between hSCs (green) and myelinated axons (red).
Slice size was 368.36 X 368.36 X 34.00 um. Adapted from Sharma et al.'"®

encouraging results'"’ (Figure 6). With most of these trials,
especially targeting craniofacial nerve engineering, being in
vitro; translational and in vivo trials are much needed.
Further assessment of the proposed methods, their longevity
and long-term results and whether they may also aid in
myogenic regeneration of target muscles is crucial.
Moreover, clinical application remains largely unattained to
with it being the most important target of all neural regen-
eration research.

Engineering the salivary glands

The craniofacial region has multiple major and minor sali-
vary glands, which may be affected by conditions, such as
auto-immune disorders (Sjogren’s disorder) and tumors.
The result of these conditions is salivary gland dysfunction
leading to hyposalivation or xerostomia. Patients have a
poorer quality of life, because of poor masticatory and
taste ability, and the increased risk of fungal infections and
dental caries due to loss of the protective and lubricant
quality of saliva. Conventional management is with sialog-
ogues and salivary substitutes, which require strict patient
compliance. Sialogogues are associated with complica-
tions, such as muscle aches and pains.'?°

Attempts to regenerate the damaged salivary paren-
chyma started by isolation of primary human-salivary cells;

the culture of isolated cells was reported as early as
2007.121122 Parotid specimens of healthy consenting adults
were collected and the epithelial cells were isolated and
cultured on collagen scaffolds. A rise in amylase produc-
tion was noted in the cultured salivary epithelial cells indi-
cating the organization and activity of acinar cells. These
were compared with human bladder cells as a control group
over a 6-day culture period. Ogawa et al. (2015) isolated
germ cells from the submandibular, parotid, and sublingual
glands of mice and demonstrated epithelial bud formation
after 2days in organ culture.'” When transplanted back
into salivary gland defects in mice, better salivary flow was
noted when compared to the no-intervention control.'>* A
mixture of epithelial and mesenchymal cells extracted from
submandibular, parotid, and sublingual salivary glands of
adult mice were used to regenerate an organ germ which
was then implanted onto a masseter defect in female mice
after extraction of their submandibular, sublingual, and
parotid glands. The implanted gland had an extending
Polyglycolic acid (PGA) guide which was inserted into the
host parotid duct. Saliva was collected from the oral cavity
with and without stimulation proving the functional capac-
ity of the bioengineered salivary glands. No significant dif-
ference in salivary flow and content between the
bioengineered glands and those in natural mice was noted
(Figure 7).!** Correct acinar/glandular cellular orientation
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Figure 7. (a) Schematic representation of the transplantation procedure using the interepithelial tissue-connecting plastic method
with the bioengineered salivary gland germ. (b) Phase-contrast images of the bioengineered salivary gland germ containing a PGA
monofilament guide. Scale bar, 200 um. (c) Photographs of bioengineered salivary gland germ transplantations in salivary gland defect
mice. The three major salivary glands were extracted and a bioengineered salivary gland germ was transplanted. Scale bar, | mm.
(d) Photographs of the natural submandibular gland (left) and the bioengineered salivary gland at days 0 and 30 after transplantation
(second and third figure from the left). FITC-gelatine conjugate was injected into the bioengineered submandibular gland from the
host parotid duct (right). Scale bar, | mm. (e) Histological images of the duct connection between the host duct and epithelial duct
of the GFP-labelled bioengineered salivary gland (left). Higher magnification images in the box area are shown (right). Bioengineered
salivary glands developed in vivo with the correct connection to the recipient parotid gland duct (arrowhead). Scale bar, 150 pm.

(f) Photographs of the bioengineered salivary gland, which was reconstituted from GFP-transgenic mice-derived epithelial cells and
normal mice-derived mesenchymal cells (left: merged with the stereomicroscope image and the GFP image, second figure from the
left: GFP image). Scale bar, | mm. The section images of hematoxylin and eosin (HE) staining (third figure from the left) and GFP
fluorescence (right) are shown. Scale bar, 200 um. (g) Histological analysis of the submandibular gland (upper columns) and the
sublingual gland (lower columns), including the natural (upper) and bioengineered (lower) salivary glands. Images of HE staining (left
three) and periodic acid and Schiff (PAS) staining (right two) are shown. Higher magnification images in each box area are shown
(second and third panels from the left, right figure). Scale bar, 100 um in the left column and 25 pm in the second and subsequent
columns. (h) Wet weights of natural and bioengineered salivary glands. The data are presented as the median = max, min; n=6

for the natural parotid, submandibular and sublingual glands, n=20 for the bioengineered submandibular glands and n=9 for the
bioengineered sublingual glands. PG: parotid gland; SLG: sublingual gland; SMG: submandibular gland. Adapted from Ogawa et al.'?*
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is crucial to provide proper salivary function. Researchers
have been able to achieve this through the layering of cells.
When implanted into a mouse model, a double layer of cul-
tured submandibular gland cells showed superior regenera-
tive properties with organization of the cells into acini-like
structures compared to a single layer of cells.'?®

Hydrogel scaffolds were used in mouse submandibular
gland injury models to prove their efficiency in promoting
regeneration of salivary gland injury. Laminin-fibrin
hydrogel scaffolds were used in a wound-healing model
of mouse submandibular glands.'?® Laminin is a protein of
the extracellular matrix that showed capacity to improve
growth organization and differentiation of salivary cells in
vitro.'?’ Histologic assessment showed that the laminin-
fibrin hydrogels guided organized salivary regeneration
as opposed to the disorganized collagen formation in the
untreated model. The defect treated with fibrin hydrogel
alone showed some salivary organization, but was said to
be worse than that seen with the laminin-fibrin group.!'?®
Any scaffolds to be used for salivary regeneration must
allow for proper structural integrity for the heterogenic
population the naturally occurring salivary glands. This
was reported to be achieved by nature-inspired catechol-
conjugated hyaluronic acid environment (NiCHE) forma-
tion. This was said to mimic the hyaluronic acid rich
mesenchymal environment in embryonic submandibular
glands. When tested on previously discussed scaffolds
(PCL, hydrogels, polycarbonate membrane) led to better
cellular adhesion, proliferation, angiogenesis, and struc-
tural branching in vitro.'?® Surgical access to cells of the
minor salivary glands of the lips and cheeks is easier and
safer than those of the parotid, submandibular, and sublin-
gual salivary glands. Recently, cultured stem cells
extracted from human labial tissue discarded during den-
tal surgery were injected into the blood stream of irradi-
ated mice. Better salivary flow was noted in the salivary
glands of the injected subjects at 9 weeks than those of the
sham control group.'?

The use of different stem cell reservoirs to enable sali-
vary differentiation and the combinations with different
scaffold materials allows for a great deal of flexibility in
research design. With the promising results seen in large
animal studies, the transition into clinical trials is in the
near-future and may finally provide a satisfactory solution
for patients with salivary hypofunction.

Mucosa, periodontal, and skin tissue
engineering

The periodontal interface consists of bone, dentin, cemen-
tum, and the periodontal ligament. Periodontitis is a
chronic disorder with progressive inflammation and dam-
age of the tooth-supporting structures, eventually leading
to tooth loss.!3" Treatment of the resulting defects must
include regeneration of the alveolar bone and adjacent
periodontal ligament (PDL). One of the earliest forms of

craniofacial tissue engineering was the guided regenera-
tion achieved by using membranes (such as GorTEX) in
periodontal defects whereby unwanted cells were excluded
from the regenerative field and the healing process was
“guided” as needed. Several reports claim it a possible
method of PDL regeneration.'3!13* A 5-year clinical trial
reported the successful restoration of periodontal defects
with the use of GorTEX membranes, bovine xenograft,
enamel derivative, or a combination.'*> Regeneration of
periodontal defects is a distinct process due to the com-
plexity of the structures of the periodontal interface. Young
native PDL stem cells (PDLSCs) derived during tooth
extraction were investigated for their ability to regenerate
the PDL structures. These cultured cells showed the ability
to differentiate into osteogenic, cementogenic, and fibro-
genic lineages enabling periodontal regeneration.'3¢
PDLSCs were also compared with dental follicle cells
(DFCs) in their ability to restore periodontal defects in
adult dogs. Although periodontal reattachment was seen in
both groups, it was reported that the DFC group showed
more organized periodontal regeneration.'3’

Regeneration of facial skin has a great impact on the
patient’s quality of life and psychological health. Skin
engineering was one of the earliest tissues investigated.
As a result, skin tissue grafts are commercially available
reducing the need for autologous grafts from other sites
and the associated morbidity.!3%!3° However, limitations
will always exist necessitating continual improvement.
Acellular membranes, such as human acellular amniotic
membranes separated from consenting mother placentas,
have been used in clinical trials. When compared to
Vaseline® gauze treatment, the human acellular mem-
branes showed better hemostasis and pain scores.'*
Unfortunately, due to their acellular nature, these grafts
show high resorption and infection rates.'*! Dermal sub-
stitutes, such as Integra®, have been used successfully in
cases of traumatic defects of large areas of facial skin.
Defect size shrinkage of up to 40% have been reported,
but graft take, infection, time to treatment, and cost are
some of the disadvantages.'** Allograft dermal tissue is
another method for mucosal defect coverage in various
locations, such as the tongue, vestibule, floor of the
mouth, palate, and lips. Although 90% of the patient
population showed complete graft take and epithelializa-
tion, contracture, scarring, pain, and infection were also
reported.'®® To further improve facial aesthetics and
patient satisfaction, CAD/CAM applications and recent
3D bioprinting were used to produce patient-specific
facial skin based on a CT images. Researchers have bio-
printed “facial masks” composed of a tri-layer of polyu-
rethane (PU), a keratinocyte-laden hydrogel, and a
fibroblast-laden hydrogel and tested it within facial
defects in adult mice with promising results (Figure 8).'#
Recently, culturing of keratinocytes and fibroblasts was
reported on de-epithelialized human amniotic mem-
branes with favorable results. A largely keratinized layer
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implantation, (c) 70% skin wound on the face-shaped construct, and (d) BioMask application. Adapted from Seol et al.'*

was achieved on the epidermal surface of the membrane
with a structured fibrous surface on the other side.'*
Wound healing of the oral mucosa is generally faster
and associated with less scarring than in the skin. This may
be attributed to the simple epithelial differentiation and
lower inflammatory cascades that occur.'*® Culture of
mucosal cells (whether in vitro or in vivo) are therefore a
logical goal. Oral mucosa cell sheets were grown from
human and rat donor keratinocytes and fibroblasts. These
were isolated from oral mucosal, pharyngeal, esophageal,
and neck skin biopsies. Implantation in a skin model
wound of adult rats demonstrated enhanced primary
wound healing with less scar tissue formation in compari-
son to the no intervention control group.'*’ Cell feeder sys-
tems were also proposed to fabricate mucosal tissue'*®

with long-term cryogenic storage (up to 204 days) of fabri-
cated oral mucosa epithelial cell sheets opening up more
possibilities in clinical application. '

Recently, a biomimetic engineered human mucosal
equivalent was produced from fish collagen. Histologic
assessment of the produced construct showed a fully dif-
ferentiated and stratified epithelial layer and a dermal-epi-
dermal junction similar to that of human oral mucosal
tissue.'”” The enhancement of the physical properties of
this construct remains an issue that must be solved before
clinical use.

Although there has been expansive research in skin/
mucosal tissue engineering; the integration of these tech-
niques clinically will only be acceptable when issues of
infection, scarring, and cost are completely resolved. On
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the other hand, periodontal tissue regeneration is becom-
ing more and more predictable in preventing tooth loss
secondary to periodontal disease.

Engineering of multiple tissues

The craniofacial region as discussed earlier consists of
several different tissue types. Regeneration procedures in
many of the clinical scenarios requires regeneration of
more than a single tissue type. The most common explain
for this is the engineering of the periodontium. In this case
a bone, periodontal ligament, dentin, and cementum
should be regenerated. Research has proven that is possi-
ble especially with the advances in scaffold fabrication.
Multilayering of scaffolds to fit the different necessities
for each tissue type has proven to be of acceptable results.
Different materials and fabrication technologies have
been used to fabricate multilayered scaffolds and all
showed primary promising results in vitro.">"">2 An ear-
lier attempt reported the use of a biphasic scaffold to engi-
neer the bony and periodontal components of a periodontal
defect. The scaffold consisted of an FDM fabricated part
coated with Calcium phosphate, seeded with osteoblasts
and cultured for 6 weeks. The resulting construct was then
augmented with PDL cell sheets onto the electrospun
scaffold surface and implanted into rats for a total of
8weeks. The results showed good regeneration in the
bony and periodontal compartments and high vasculariza-
tion.'** Fabricating scaffolds such that each part fits the
target tissue needed. This was tested by fabricating
PCL-HA scaffolds in three different phases each with
internal porosities differing according to the tissue type
and DPSCs, PDL stem cells, ABSCs were cultured. The
results of this study also supported the evidence suggest-
ing that multi-layered/configured scaffolds can indeed be
used to produce constructs of different tissue types.'>*

The concept of simultaneous multi-tissue engineering
is of great clinical importance. Most craniofacial defect
caused by tumor ablation or trauma consist of several tis-
sue types requiring regeneration whether bone, PDL, and
mucosa or muscle and skin for example. Providing clini-
cians with well tested choices to regenerate these tissues
rather than resort to much dreaded grafting procedures is
target to lots of ongoing research.

Conclusions and future perspectives

The clinical condition of patients with craniofacial defects
necessitates reconstruction utilizing the most cost-efficient
and cost-effective approaches. Complexity of the recon-
struction is paramount due to the different tissue types usu-
ally involved in such defects. The necessity for simple
effective regenerative procedures is paramount and the
results discussed in this review confirm the potential of
craniofacial tissue engineering strategies as an alternative to
avoid the problems of currently employed reconstructive/

grafting techniques (Table 1). With the variety of scaffold
materials, cell origins, growth factors, drug molecules, and
gene modification possibilities; a wide range of application
is feasible. Research targeting specific tissue type or a multi-
tissue engineering are to be proven in vivo. Furthermore,
recent advances in 3D printing and scanning technologies
open the opportunity for fabrication of patient-specific tis-
sue engineered constructs. This should allow launching of in
vivo and clinical trials assessing what has already been
proven in vitro. The translation of the research has shown
that some of the successful in vitro approaches do not really
work in vivo due to the complexity of natural cellular and
extracellular microenvironments. The importance of vascu-
lar ingrowth (angiogenesis) in vivo is another area that
needs more work. It remains one of the main reasons scaf-
fold-cell construct implantations fail due to the necrosis of
the inner portions of the constructs not receiving sufficient
blood supply from the surrounding host tissue. There are
still many challenges ahead and it is clear that further
research is essential in order to catch up with engineering of
other parts of the human body.
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