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The craniofacial region is a complex network of several 
tissue types, including bone, cartilage, muscle, salivary 
glands, nerve tissue, teeth and the surrounding periodon-
tium, and skin/mucosa. The loss of craniofacial tissue may 
be due to congenital causes, such as clefting1 and craniofa-
cial microsomia, or acquired conditions, such as facial 
trauma or tumor resection. The result of this loss is signifi-
cant aesthetic, functional, and psychological affliction.2

Craniofacial reconstruction is challenging due to the 
complexity of the various structures involved. The vari-
ous sources of infection in the region (oral/nasal infec-
tions) are also to be taken care of. Reconstruction of such 
defects has conventionally been approached using autol-
ogous, allogenic, or xenogeneic grafts to restore the 
missing tissue with the hope for long-term functional 
rehabilitation. Complications of this approach range from 
graft rejection, infection, increased morbidity, and 

prolonged hospital stays along with the economic burden 
of such complications.3–5 With continually evolving tis-
sue-engineering and stem cell technologies, the applica-
tion of regenerative strategies has gained momentum 
among many research groups worldwide. Regenerative 
medicine is a broad term encompassing all efforts to 
reach the ultimate goal of tissue replacement clinically. 
Tissue engineering is used to denote production of the 
target tissue using one of many approaches, which all 
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follow similar principals. The most common pillars of 
the tissue engineering process are cells, scaffolds, growth 
factors, and gene modification to guide cellular differen-
tiation and proliferation6 (Figure 1). The use of drug mol-
ecules for tissue engineering and regenerative procedures 
has also been reported to be a logical and successful 
regenerative mechanism.7 Cell transplantation is often 
used when the defect is challenging to repair using only 
the natural regenerative process. Cells are isolated from a 
donor biopsy and expanded in vitro before transplanting 

into the defect to effect repair and regeneration. 
Alternatively, expanded cells may be loaded into a bioac-
tive scaffold. Following cellular adhesion and prolifera-
tion, the engineered tissue is then implanted into the 
defect. The scaffold gradually degrades to allow space 
for the regenerated tissue to fully integrate with the host 
to restore structure and function.8,9 Different scaffolding 
techniques are used for tissue engineering applications, 
including the use of decellularized extracellular matrix 
(ECM) and sheets of cells on ECM (Figure 2). An added 

Figure 1.  Diagrammatic representation of different craniofacial tissues.

Figure 2.  Diagrammatic representation of the different scaffold approaches used in tissue engineering.
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advantage of the regenerative procedures is the ability of 
incorporation of antimicrobial materials to fight infection 
which may attack the implanted constructs from nasal or 
oral infections.10

The specific application of such strategies in the crani-
ofacial region is relatively recent compared to the limb 
region. Craniofacial reconstructive procedures have transi-
tioned from grafting of tissue to 3D-printed implants to 
tissue engineering techniques, or a combination of these.11 
This review aims to provide clinicians and researchers 
with a wide overview of what has been reported so far  
in the field of craniofacial tissue engineering. The latest 
evidence for each of the craniofacial tissue types will be 
presented with a representative image from discussed lit-
erature when possible (table 1). Tooth regeneration was 
left out of this review as it has been covered in depth in 
other previously published reviews.12,13

Craniofacial bone regeneration

The current “gold standard” for craniofacial bone tissue 
replacement is the use of autologous bone grafts from the 
rib, cranium, or iliac crest. These procedures are associ-
ated with several complications, including bone resorp-
tion, infection, donor site complication, and can only be 
used in relatively small defects.14 Bone regeneration is a 
popular research topic and numerous reports have been 
published on novel approaches to promote the best out-
comes.15–17 The investigation of such techniques in the 
craniofacial region has been reported clinically, but is still 
in its infancy due to the difficulty of developing a robust in 
vivo model of a craniofacial bone defect18 (Figure 3).

The innate regenerative process of healthy bone has 
been reported as early as 1992.19 The role of the cellular 
constituents of the periosteum and their distinct functions 
at the time of bone injury dictate the regenerative pro-
cess.20 The resident bone-forming stem cells of the perios-
teum differ according to the type of bone, such that the 
craniofacial periosteum triggers intramembranous bone 
formation while long bone periosteum promotes endo-
chondral ossification.21 The employability of the endo-
chondral route to craniofacial bone formation is also a 
logical approach according to the type of bone to regener-
ate.22 The proven regenerative power of the periosteum has 
led to its use in the management of maxillofacial defects of 
relatively small size.23–26 Bone engineering techniques 
may use a combination of cells (especially mesenchymal 
stem cells—MSCs), scaffolds and growth factors to man-
age larger defects. Although several sources of stem cells 
are known (embryonic; ESCs, Umbilical cord cells; 
UCSCs, Adult somatic; iPSCs and adult tissue cells) 
BM-MSCs and ADSCs remain the major sources of stem 
cells. MSCs are usually harvested from the bone marrow 
(BM-MSCs) or can be adipose-derived (ADSCs).27 
Bioactive scaffolds provide the proliferating cells with a 
framework for adhesion, proliferation, and consolidation. 
3D printing technologies may be used to produce these 
scaffolds from materials, such as natural and synthetic 
polymers. Other recent technologies for scaffold fabrica-
tion reported include gas foaming, cryogelation, material 
extrusion, photopolymerization, electrospinning each with 
a set of materials that work with it.28 The use of specific 
agents/materials/growth factors to enhance the bone-form-
ing activity of differentiated osteoblasts is regularly 

Figure 3.  Dipyridamole coated β-TCP scaffold assessment: quadrant scaffold demonstrates bone regeneration through scaffold 
porosity, at both larger (red arrows) and smaller (white arrows) pore dimensions. (Below, left) Highly cellular and vascularized bone 
formation is seen within scaffold interstices. Intramembranous-like healing is observed with regions of mature, lamellar-like 
bone formation (blue arrows). (Below, right) Bone formation is guided by highly osteoconductive scaffold dimensions as new bone 
formation is directed from scaffold pore-to-pore (green arrows) while interacting with scaffold struts (yellow arrows). Adapted from 
Maliha et al.18
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reported in literature. These agents may enhance cellular 
recruitment and adhesion to the scaffold, promote prolif-
eration then differentiation of specific cells important for 
bone regeneration and inhibit antagonistic activity (such as 
that of osteoclasts).15–18,29,30

Calcium phosphates are widely used for bone recon-
struction.31,32 3D-printed β-tricalcium phosphate (β-TCP) 
scaffolds soaked in collagen and coated with dipyrida-
mole have been investigated for bone regenerative pur-
poses. Dipyridamole is a known osteogenic agent that 
increases osteoblastic differentiation and inhibits osteo-
clastic activity and inflammatory responses.33–35 Scaffolds 
of varying pore dimensions (220, 330, and 500 μm) 
impregnated with different concentrations of dipyrida-
mole (100, 1000, and 10,000 μm) were placed within 
critical-sized calvarial defects in 5-week-old rabbits. 
Optimal bone growth and scaffold biodegradation were 
reported with larger pore sizes and the highest dipyrida-
mole concentration. Histological and radiographical 
assessment showed vascularized woven and lamellar 
bone along with initial formation of vascular canals 
(denoting angiogenesis) within the scaffold lattice and 
patent calvarial sutures, an important requirement for 
calvarial reconstruction/regeneration.35 Other research-
ers have also reported success with 3D-printed β-TCP 
scaffolds coated with dipyridamole.36,37 Wang et  al.38 
compared autologous bone grafts with 3D-printed β-TCP 
dipyridamole-coated scaffolds in alveolar clefts and cal-
varial defects created in immature rabbits. At 24 weeks, 
the bioactive scaffolds showed better osteogenic genera-
tion than the autologous graft in both the alveolar and 
calvarial defect sites. In addition, the regenerated bone in 
both sites showed resemblance to the native bone in 
terms of organization of trabeculae and mechanical char-
acteristics. The patency of the sutures was validated radi-
ographically at 6 months.

A firm, solid cell-scaffold construct can prove difficult 
to handle and may not fit a defect easily. Injectable scaf-
folds have several advantages over stiffer scaffolds.39 The 
ability to inject a semi-solid or gel-like material into a 
defect and have it set in position in vivo supports a less 
invasive clinical approach.40 Injectable tricalcium phos-
phate scaffolds were tested in vitro within a fibrin gel 
and were proposed as an osteogenic property-enhancer.41 
Injectable hydrogels containing calcium phosphate cement 
have proven to possess superior mechanical properties 
and allow better cellular adhesion in vitro.42 Research on 
methods to enhance the mechanical properties of the  
setting scaffolds is currently ongoing. Such bioactive 
hydrogels have been investigated for craniofacial bone 
regeneration applications.43 Injectable alginate hydrogels 
loaded with hydroxyapatite, bone morphogenic proteins, 
and gingival mesenchymal cells were used in peri-implan-
titis defects created in the maxilla of mice. Once injected, 
final setting of the alginate hydrogel was achieved by 

photopolymerization. In vivo assessment showed that 
more than 50% of the alginate had dissociated by 6 weeks. 
Clinical and micro-CT assessment revealed fewer inflam-
matory mediators, better bone recovery and implant sur-
vival in defects managed with the hydrogel compared to 
controls. The option to alter the degradation rate of the 
hydrogel by changing its molecular weight opens up the 
potential for regeneration of tissues other than bone.43 
Hydroxyapatite (HA)—which is a naturally occurring cal-
cium phosphate—has been commonly used to enhance 
osteoconductivty of regenerative constructs is a commonly 
followed strategy.44 HA and other biphasic calcium phos-
phates have been reported to be a successful addition to 
β-TCP in experimental maxillofacial models, clinical 
socket preservation, sinus lift procedures, and crestal 
height and width augmentation.45 The use of synthetic bio-
mimetic calcium phosphate (SBCP) granules in rat calva-
rial defects showed bone regrowth that was comparable to 
that resulting from deproteinized bovine bone material 
(DBBM). SBCP led to faster bone regeneration. This was 
thought to be due to the microstructure and higher total 
porosity of SBCP. The SBCP showed superior results in 
terms of vertical bone growth which is of great clinical 
importance in alveolar augmentation.46

Collagen is an integral constituent of bone. Thus, many 
groups have utilized this natural biomaterial combined 
with xenogeneic bone material to mimic bone structure 
and facilitate regeneration. Collagen gels combined with 
DBBM were used to reconstruct critical-sized calvarial 
defects in adult rabbits. The presence of DBBM allowed 
maturation of the formed bone such that it resembled the 
composition and mechanical properties of native bone. 
The collagen gel supported better soft tissue healing (in the 
calvarial skin flap) when compared to the autologous bone 
grafting; which adds to the scaffold advantages regarding 
multi-tissue regeneration.47 Collagen combined with por-
cine bone particles was studied and reported to enhance 
bone regeneration and reduce bone loss in alveolar defects 
in beagle dogs.48 Moreover, the collagen-porcine bone par-
ticle scaffolds demonstrated greater bone regeneration of 
critical-sized calvarial defects in adult white rabbits as 
compared to β-TCP/hydroxyapatite scaffolds.49,50

In cases of bone osteonecrosis-specifically MRONJ 
(medication related osteonecrosis of the jaw) the use of 
stem cell therapies to reduce the effect of the drug on the 
bone, reducing inflammatory reactions and promoting 
healing. One study identified that MSCs in a mouse 
MRONJ model improved the healing capacity of the 
affected MSCs and so provided a better therapeutic bene-
fit. The effect of MSCs in MRONJ treatment may be 
attributed to their capability of secreting immunomodula-
tory factors and being immunopriviliged.51 On the other 
hand, the local delivery of ASCs and BMP-2 in a hydrogel 
vehicle reinforced with hemicellulose polysaccharide fib-
ers, showed better mucosal recovery, bony reconstruction, 
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and formation of new osteoclasts in a rat model.52 A more 
recent report also confirmed the effectiveness of BM-MSCs 
cultured on β-TCP in improving mucosal coverage with no 
bone exposure and better bony healing in comparison to 
the negative control in rat models.53 This gives hope for 
future better management of MRONJ cases which are a 
clinical dilemma for craniofacial surgeons. The applica-
tion of bone engineering technologies in the craniofacial 
region has had reasonable success. The multiple cell types, 
scaffolds and additions (e.g. growth factors) allow for test-
ing of different combinations to promote bone deposition 
and maturation. The use of 3D printing technologies and 
computer-aided design of scaffolds with specific micro- 
and macro-structure of the scaffolds is now possible and 
has a promising future. A recent study reported acceptable 
primary results using a syringe-extruded hydrogel scaffold 
which was then cured to final setting. Although elastic 
modulus and tensile strengths of the final material still 
needs to be improved; the cellular viability and prolifera-
tion of the used neuronal cells in this study prove potential 
for further use.54 Moreover, the further utilization of addi-
tive manufacturing and computer-aided designing (CAD) 
technologies will allow the specific designing of internal 
micro and macro porosity which could be tweaked accord-
ing to the necessary tissue types. This was tested on a PLA 
printed scaffold with different internal pore morphologies 
and the seeded pre-osteoblastic line showed promising 
proliferation and activity.55

Further research on the application of these technolo-
gies is expected soon. The possibilities of specific design-
ing of the internal architecture of scaffolds to mimic the 
extracellular matrix of target defects in patients are encour-
aging. Combining these methods with more conventional 
grafting procedures or with vascularized grafts may also 
be a possibility in large defects to combine the advantages 
of each of the techniques. Clinically oriented research 
should soon be able to provide evidence on techniques 
suitable for the different types of craniofacial bony defects.

Craniofacial skeletal muscle 
regeneration

Muscles of the craniofacial region are of great importance 
for function and esthetic appearance.56,57 These muscles 
may be subject to trauma, cancer, generalized muscle dis-
orders, surgical resections, or autoimmune diseases neces-
sitating grafting/regenerative procedures. Orofacial 
congenital defects, such as cleft lip and/or palate, are asso-
ciated with impaired muscle regeneration and fibrosis after 
surgery also requiring repair.58

For engineered muscle to be an acceptable option for 
muscle regeneration, the tissue has to have similar to 
native architecture and possess acceptable mechanical 
properties. The muscle healing process starts by activation 
of quiescent myogenic progenitor cells followed by prolif-
eration and differentiation.59 To resemble the regenerative 

process on a larger scale, muscle progenitor cells can be 
extracted and expanded in vitro. The confluent cells may 
then be loaded onto a scaffold, which guides and supports 
early muscle formation and maturation.30 Growth factors 
may also be used to support the muscle regenerative pro-
cess and include fibroblast growth factor (FGF), hepato-
cyte growth factor (HGF), insulin-like growth factor 
(IGF), vascular endothelial growth factor (VEGF), plate-
let-derived growth factor (PDGF), and stromal cell–
derived factor (SDF).60

The fabrication of a scaffold mimicking the ECM of the 
native muscle tissue is necessary to enable proper growth 
and angiogenic activity of the central core to provide nutri-
ents to the newly formed muscle and the proliferating 
cells. There are several different biomaterials that have 
been investigated for muscle tissue engineering. 
Biodegradable polyester scaffolds used for muscle regen-
eration include natural compounds, such as α-hydroxy 
acids (polyglycolic acid, poly-L-lactic acid, and polycap-
rolactone) and silk-fibroin.61 Synthetic biomaterial scaf-
folds, such as polyurethanes, polypropylene, silicone,62 
and phosphate-based glasses63,64 are alternative options.65 
Injectable hydrogels have further allowed for simpler 
delivery to sites of defect.65

Different cell sources have also been investigated for 
muscle regenerative approaches including satellite cells, 
ADSCs, BM-MSCs, PVSCs, iPSCs, ESCs, and 
UC-MSCs.66 Umbilical cord mesenchymal stem cells 
(UC-MSC) are a promising source. These can be harvested 
from the umbilical cord without the need for a separate 
biopsy procedure from the child. The umbilical cord blood 
and tissue contain a heterogeneous mixture of stem and 
progenitor cells at different stages of differentiation.67,68 
The use of UCMSCs in cleft lip and palate surgery together 
with anti-inflammatory and antifibrotic agents is a promis-
ing method.69

Pulp stem cells were also reported to have myogenic 
potential when pretreated with 5-Aza (5-aza-2’-deoxycyt-
idine; a modified demethylation agent) in vitro. Treatment 
of the pulp cells with 5-Aza stimulated myotube forma-
tion, myogenic differentiation associated with desmin and 
myogenin expression, and a degree of scaffold contraction. 
The epigenetic modification of these cells (collected from 
premolars) stimulated craniofacial muscle regeneration in 
the masseter and gastrocnemius of adult mice in vivo.70

Human myogenic and non-myogenic craniofacial mus-
cle-derived cells (MDC) extracted from biopsies and 
seeded onto 3D collagen constructs expressed myogenin, 
indicative of myogenic differentiation. Furthermore, there 
was a synergistic effect as the heterogeneous co-culture of 
myogenic and non-myogenic cells generated the highest 
peak force (muscle function) and expressed the most 
MMP-2 mRNA compared to isolated individual cell popu-
lations.71 This may guide further research on muscle 
regeneration by starting off with a mixed co-culture if that 
enhances the final engineered muscle activity. Human 
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masseter muscle-derived cells were also used with phos-
phate-based glass fiber scaffolds in vitro. The scaffolds 
were fabricated with different internal configurations; 
bundle alignment, spread-out, and mesh-like arrangement. 
Microscopic imaging showed that the mesh arrangement 
led to optimal cell attachment and proliferation which may 
have been due to the macrotopography of the scaffolds 
which provided more delicate spaces allowing better cel-
lular grouping and adhesion.72

Creation of a robust craniofacial muscle defect in ani-
mal models has proved challenging—for example, a soft 
palate surgical site was tested in adult rats, but proved too 
small and difficult to handle.58 Therefore, the most com-
mon region to test muscle engineering applications are the 
limb muscles. Although the structural similarities of crani-
ofacial and limb muscle are undeniable, cellular constitu-
ents vary.

Clinical application of muscle regeneration spans a 
wide range of defects with volumetric muscle loss being 
the type of defect immensely requiring intervention 
whether as in grafting with the complications of that73 or 
regeneration.66,74 A recent study reported encouraging 
results in Volumetric Muscle Loss (VML) of rat tibialis 
anterior muscle using amniotic mesenchymal cells. Muscle 

specific markers (MyoD and desmin) were detected at the 
end of the study along with improved angiogenesis and 
local tissue repair74 (Figure 4).

Craniofacial muscle engineering efforts are starting to 
gain more attention with the important clinical solutions 
they offer. Challenges still exist regarding the conductivity 
of scaffolds, vascular ingrowth within the engineered con-
structs and transfer of the in vitro outcomes to the in vivo 
environment to further test the proposed methods.

Cartilage

The craniofacial region has several cartilaginous struc-
tures, such as the articular disc of the temporomandibular 
joint (TMJ), the nose and ears. The avascular nature of car-
tilage and its resulting poor regenerative capacity has 
made the reconstruction of cartilage defects/deformities an 
important area of research.

The TMJ disc is a cartilaginous structure, which is 
integral to the normal mandibular movements pertaining 
to function. Traditional approaches to manage common 
destructive conditions of the TMJ disc, include non-inva-
sive and invasive joint procedures associated with high 
complication and failure rates including diminished 

Figure 4.  hAMCs improved tissue repair on VML. H&E and Masson trichrome staining of 2 and 4 weeks after establishment of 
VML model (blank group), implantation of GelMA gel (GelMA group), GelMA + hAMCs (hAMCs group), and GelMA + 5-Aza-
inducted hAMCs (5-Aza group). The dotted line is the boundary between normal muscle tissue and defect. White arrow shows the 
neovascularization, black arrow shows fused hAMCs and fiber-like tissue. 200×. Adapted from Zhang et al.74
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mobility, prolonged pain episodes, scarring, numbness, 
and bleeding.75 Therefore, investigation into disc regen-
eration utilizing tissue engineering approaches has 
become essential. The direct injection of human mesen-
chymal cells into arthritic joints showed better articular 
cartilage repair and slowing down of the arthritic pro-
gression.76 However, there is still a need to produce carti-
lage discs in the presence of advanced destruction, and 
many approaches have also utilized scaffolds loaded with 
cells. Nasal chondrocytes extracted from nasal cartilage 
of adult female white rabbits were reported to success-
fully treat a knee articular disc defect in an adult rabbit 
model when used with an injectable hydrogel scaffold. 
Although this was tested in an osteochondral knee defect; 
the principle was reported to be applicable in other simi-
lar joints.77 Moreover, Chondrogenic differentiation of 
rabbit adipose stem cells seeded on PLA scaffolds ena-
bled fabrication of articular discs.78

Scaffold-free tissue engineered implants were con-
structed from costal chondrocytes of minipig ribs. After ex 
vivo testing of the technique of the tissue-engineered con-
struct implantation; the constructs were placed in a 
designed intralaminar defects of TMJ discs of minipigs. 

The efficacy of these constructs to repair thinning discs 
was assessed by gross inspection, histologic assessment, 
and osteoarthritis scoring. All these criteria showed better 
disc repair using the tissue engineered constructs as 
opposed to the empty controls.79

An injectable mixture of fibrin, thrombin, and differen-
tiated chondrocytes was reported to enable fabrication of 
cartilage-like structures in adult rabbit heads. The origin 
of these chondrocytes was septal/auricular and the recipi-
ent sites were the forehead and interocular regions.80 The 
inflammatory events that occur within the temporoman-
dibular joint are now proven to be a primary cause of the 
pain, functional limitation, and degenerative procedures 
that occur. The use of cell-laden biomaterials as vehicles 
for drug delivery intra-articularly has shown superior 
results to conventional injections due to the longevity of 
its action and the regenerative capacity it enforces81 
(Figure 5). Moreover, hUC-MSCs injected into osteoar-
thritic rabbit joints, showed significant regenerative 
capacity and anti-inflammatory action comparable to that 
of the Dexamethasone injection control. Growth factors, 
ECM markers and anti-inflammatory cytokines exhibited 
upregulated expression while pro-inflammatory cytokines 

Figure 5.  (a) Schematic image of the anatomical structure of temporomandibular joint (TMJ) and the most common target sites 
for treating temporomandibular disorder (TMD). The image shows components of normal joint anatomy, including the articular disk 
of TMJ, mandibular fossa, the head of the mandibular condyle, lateral pterygoid muscle, and TMJ capsule enclosing the disk. (b) TMD 
morphology; the head of the mandibular condyle and the articular disk lose their structures and functions. Intra-articular injection: 
injection with syringe and needle can deliver proper biomolecules into TMJ capsule for treating TMD as adapted from Dashnyam 
et al.81
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expression was reduced.82 This was also proven with 
Dental Pulp stem cells in arthritic rat joints83,84 human 
shed deciduous SCs in mice arthritic joints84 and human-
derived ESCs in rats.85 Although clinical trials have not 
yet reported the use of these technologies to fabricate 
human cartilage clinically; reports of the differentiation 
and implantation of human bone marrow cells to engineer 
cartilage have emerged.86

The regeneration of ramus-condyle units (RCU) has 
been reported to be the solution in cases of TMJ degenera-
tive disease. Scaffolds were milled into anatomically 
identical forms using decellularized bone matrix and 
impregnated with adipose-derived chondrogenic and oste-
ogenic cells. The constructs were implanted in minipig’s 
jaws after culturing for 5 weeks. The constructs main-
tained their forms and showed better full-thickness regen-
eration and mechanically comparable cartilage formed 
over a bony stump than acellular scaffolds and bone-only 
engineered grafts. This provided an opportunity for multi-
ple tissue regeneration. Inclusion of the adjacent tissues 
such as soft connective tissues and the TMJ disc could 
further extend the functional integration of engineered 
RCUs with the host.87

Nasal reconstruction historically involved autogenous 
grafting to attain an aesthetic alar/nostril configuration 
especially in cleft patients.88 This has evolved recently with 
the use of 3D printing technologies to improve post-surgi-
cal outcome.89 Septal chondrocytes harvested from healthy 
human candidates showed regenerative capacity and 
resulted in neocartilage constructs of significant volume in 
vitro.90 A cell-homing procedure was reported where nasal 
dorsum progenitor cells were recruited and chondrogeni-
cally differentiated onto a bi-layered alginate and PGLA 
scaffold leading to the formation of cartilage-like con-
structs 10 weeks later in rat models.91 A recent report on a 
3D printed nasal cartilage augmentation technique has 
shown promising results when the printed scaffold impreg-
nated with hASCs implanted subcutaneously in female 
athymic mouse backs. The use of such technology carries a 
promise for better postoperative esthetics and shorter heal-
ing periods which are crucial in esthetic surgery.92

With the improved esthetics and patient satisfaction, 
similar techniques were used for auricular cartilage recon-
struction.93,94 Human auricular chondrocytes (hAuC),95 
monkey-derived perichondrium progenitor cells,96 and 
porcine chondrocytes were all tested for their regenerative 
capacity.97 The cells in these studies were harvested, grown 
in vitro then implanted in vivo. The harvested tissue 
showed organized arrangement of cartilage mimicking 
auricular composition. Ex vivo testing of scaffolds versus 
scaffold-less injectable techniques showed primary results 
of the possibility of using such techniques for articular 
regeneration.98

Although research is targeted towards cartilage regen-
eration in several parts of the human body (in vitro and in 

vivo preclinical testing), the applications in the craniofa-
cial region are in the early stages. Clinical reports on TMJ 
disc regeneration are yet to provide evidence of success. 
Improving mechanical properties of the engineered carti-
lage and further testing of its long-term survival and func-
tion is also yet to be improved.

Craniofacial nerve tissue engineering

Peripheral nerve injuries generally require a complicated 
grafting procedure to return to pre-injury sensation/func-
tion in sensory and motor neurons, respectively. The graft-
ing procedures carry increased risk of infection, graft 
rejection, and donor site morbidity.99,100 Craniofacial 
nerves are of specific importance. They are either sensory, 
motor, or carry both types of fibers. These nerves play an 
integral part in the sensory detection and reaction to inter-
nal and external stimuli. They also have a key role in motor 
control of the masticatory muscles, extraocular muscles, 
and muscles of facial expression.101 Craniofacial nerve 
injury is not uncommon due to the prevalence of facial 
trauma/tumors affecting the related neural structures.102 
The facial nerve, in particular, is responsible for facial 
expression—injury of the facial nerve causes facial asym-
metry and esthetic deficits, which are managed by primary 
surgical nerve repair or nerve grafting.103,104 These tech-
niques are quite complex and require expensive equipment 
and training to enable the surgeon to perform the delicate 
microsurgical anastomosis.105,106

An intact endoneurium is necessary to bridge gaps 
between the distal and proximal edges of a nerve injury. The 
use of conduits for neural repair is a common strategy where 
different materials and/or grafts are implanted at the injury 
site to guide the neuronal regeneration.107 Different addi-
tives have been tested on the fabricated scaffolds for neu-
ronal regeneration, such as fibroblast growth factor,108 IL-6, 
neurotrophins, glial-derived neurotrophins, and perse-
phin.109 Most of the reported studies have used pluripotent 
stem cells because they are easy to harvest and readily dif-
ferentiate to nerve tissue. A few studies have reported the 
use of ADSCs, BMSCs, or dental pulp cells in facial nerve 
regeneration with varying success.110–112 Dental pulp stem 
cells have a common ectodermal origin making these cells a 
logical source for nerve tissue engineering. These cells were 
tested in vitro and showed encouraging results in terms  
of stimulating neurogenesis in adult mice ex vivo.113,114 
Isolated muscle stem cells have also shown ability to regen-
erate nerve cells in murine xenotransplantation models.115,116 
Moreover, recent murine studies have demonstrated that 
cells of the immune system, specifically regulatory T cells, 
play a critical role in nerve regeneration following acute 
chemical injury.115–118 The utilization of recent technologies 
has not been disregarded in neural regeneration attempts; 
recently a 3D engineered functional human peripheral nerve 
was tested on a novel nerve-on-a-chip platform with very 
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encouraging results119 (Figure 6). With most of these trials, 
especially targeting craniofacial nerve engineering, being in 
vitro; translational and in vivo trials are much needed. 
Further assessment of the proposed methods, their longevity 
and long-term results and whether they may also aid in 
myogenic regeneration of target muscles is crucial. 
Moreover, clinical application remains largely unattained to 
with it being the most important target of all neural regen-
eration research.

Engineering the salivary glands

The craniofacial region has multiple major and minor sali-
vary glands, which may be affected by conditions, such as 
auto-immune disorders (Sjogren’s disorder) and tumors. 
The result of these conditions is salivary gland dysfunction 
leading to hyposalivation or xerostomia. Patients have a 
poorer quality of life, because of poor masticatory and 
taste ability, and the increased risk of fungal infections and 
dental caries due to loss of the protective and lubricant 
quality of saliva. Conventional management is with sialog-
ogues and salivary substitutes, which require strict patient 
compliance. Sialogogues are associated with complica-
tions, such as muscle aches and pains.120

Attempts to regenerate the damaged salivary paren-
chyma started by isolation of primary human-salivary cells; 

the culture of isolated cells was reported as early as 
2007.121,122 Parotid specimens of healthy consenting adults 
were collected and the epithelial cells were isolated and 
cultured on collagen scaffolds. A rise in amylase produc-
tion was noted in the cultured salivary epithelial cells indi-
cating the organization and activity of acinar cells. These 
were compared with human bladder cells as a control group 
over a 6-day culture period. Ogawa et al. (2015) isolated 
germ cells from the submandibular, parotid, and sublingual 
glands of mice and demonstrated epithelial bud formation 
after 2 days in organ culture.123 When transplanted back 
into salivary gland defects in mice, better salivary flow was 
noted when compared to the no-intervention control.123 A 
mixture of epithelial and mesenchymal cells extracted from 
submandibular, parotid, and sublingual salivary glands of 
adult mice were used to regenerate an organ germ which 
was then implanted onto a masseter defect in female mice 
after extraction of their submandibular, sublingual, and 
parotid glands. The implanted gland had an extending 
Polyglycolic acid (PGA) guide which was inserted into the 
host parotid duct. Saliva was collected from the oral cavity 
with and without stimulation proving the functional capac-
ity of the bioengineered salivary glands. No significant dif-
ference in salivary flow and content between the 
bioengineered glands and those in natural mice was noted 
(Figure 7).124 Correct acinar/glandular cellular orientation 

Figure 6.  Schwann cells migrated out of the spheroid and elongated along the axons. (a) Image showing how human Schwann cells 
(hSCs) stained for the hSC marker S100 (green) migrated out of the spheroid along with growing axons stained for βIII-tubulin 
(red) over a period of 4 weeks. Nuclei were labeled with DAPI (blue). Scale bar: 1000 µm. (b) High-magnification image of inset from 
image A. Scale bar: 25 µm. (c) 3D image showing close-up of the relationship between hSCs (green) and myelinated axons (red). 
Slice size was 368.36 × 368.36 × 34.00 µm. Adapted from Sharma et al.119
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Figure 7.  (a) Schematic representation of the transplantation procedure using the interepithelial tissue-connecting plastic method 
with the bioengineered salivary gland germ. (b) Phase-contrast images of the bioengineered salivary gland germ containing a PGA 
monofilament guide. Scale bar, 200 μm. (c) Photographs of bioengineered salivary gland germ transplantations in salivary gland defect 
mice. The three major salivary glands were extracted and a bioengineered salivary gland germ was transplanted. Scale bar, 1 mm. 
(d) Photographs of the natural submandibular gland (left) and the bioengineered salivary gland at days 0 and 30 after transplantation 
(second and third figure from the left). FITC-gelatine conjugate was injected into the bioengineered submandibular gland from the 
host parotid duct (right). Scale bar, 1 mm. (e) Histological images of the duct connection between the host duct and epithelial duct 
of the GFP-labelled bioengineered salivary gland (left). Higher magnification images in the box area are shown (right). Bioengineered 
salivary glands developed in vivo with the correct connection to the recipient parotid gland duct (arrowhead). Scale bar, 150 μm. 
(f) Photographs of the bioengineered salivary gland, which was reconstituted from GFP-transgenic mice-derived epithelial cells and 
normal mice-derived mesenchymal cells (left: merged with the stereomicroscope image and the GFP image, second figure from the 
left: GFP image). Scale bar, 1 mm. The section images of hematoxylin and eosin (HE) staining (third figure from the left) and GFP 
fluorescence (right) are shown. Scale bar, 200 μm. (g) Histological analysis of the submandibular gland (upper columns) and the 
sublingual gland (lower columns), including the natural (upper) and bioengineered (lower) salivary glands. Images of HE staining (left 
three) and periodic acid and Schiff (PAS) staining (right two) are shown. Higher magnification images in each box area are shown 
(second and third panels from the left, right figure). Scale bar, 100 μm in the left column and 25 μm in the second and subsequent 
columns. (h) Wet weights of natural and bioengineered salivary glands. The data are presented as the median ± max, min; n = 6 
for the natural parotid, submandibular and sublingual glands, n = 20 for the bioengineered submandibular glands and n = 9 for the 
bioengineered sublingual glands. PG: parotid gland; SLG: sublingual gland; SMG: submandibular gland. Adapted from Ogawa et al.124
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is crucial to provide proper salivary function. Researchers 
have been able to achieve this through the layering of cells. 
When implanted into a mouse model, a double layer of cul-
tured submandibular gland cells showed superior regenera-
tive properties with organization of the cells into acini-like 
structures compared to a single layer of cells.125

Hydrogel scaffolds were used in mouse submandibular 
gland injury models to prove their efficiency in promoting 
regeneration of salivary gland injury. Laminin-fibrin 
hydrogel scaffolds were used in a wound-healing model 
of mouse submandibular glands.126 Laminin is a protein of 
the extracellular matrix that showed capacity to improve 
growth organization and differentiation of salivary cells in 
vitro.127 Histologic assessment showed that the laminin-
fibrin hydrogels guided organized salivary regeneration 
as opposed to the disorganized collagen formation in the 
untreated model. The defect treated with fibrin hydrogel 
alone showed some salivary organization, but was said to 
be worse than that seen with the laminin-fibrin group.126 
Any scaffolds to be used for salivary regeneration must 
allow for proper structural integrity for the heterogenic 
population the naturally occurring salivary glands. This 
was reported to be achieved by nature-inspired catechol-
conjugated hyaluronic acid environment (NiCHE) forma-
tion. This was said to mimic the hyaluronic acid rich 
mesenchymal environment in embryonic submandibular 
glands. When tested on previously discussed scaffolds 
(PCL, hydrogels, polycarbonate membrane) led to better 
cellular adhesion, proliferation, angiogenesis, and struc-
tural branching in vitro.128 Surgical access to cells of the 
minor salivary glands of the lips and cheeks is easier and 
safer than those of the parotid, submandibular, and sublin-
gual salivary glands. Recently, cultured stem cells 
extracted from human labial tissue discarded during den-
tal surgery were injected into the blood stream of irradi-
ated mice. Better salivary flow was noted in the salivary 
glands of the injected subjects at 9 weeks than those of the 
sham control group.129

The use of different stem cell reservoirs to enable sali-
vary differentiation and the combinations with different 
scaffold materials allows for a great deal of flexibility in 
research design. With the promising results seen in large 
animal studies, the transition into clinical trials is in the 
near-future and may finally provide a satisfactory solution 
for patients with salivary hypofunction.

Mucosa, periodontal, and skin tissue 
engineering

The periodontal interface consists of bone, dentin, cemen-
tum, and the periodontal ligament. Periodontitis is a 
chronic disorder with progressive inflammation and dam-
age of the tooth-supporting structures, eventually leading 
to tooth loss.130 Treatment of the resulting defects must 
include regeneration of the alveolar bone and adjacent 
periodontal ligament (PDL). One of the earliest forms of 

craniofacial tissue engineering was the guided regenera-
tion achieved by using membranes (such as GorTEX) in 
periodontal defects whereby unwanted cells were excluded 
from the regenerative field and the healing process was 
“guided” as needed. Several reports claim it a possible 
method of PDL regeneration.131–134 A 5-year clinical trial 
reported the successful restoration of periodontal defects 
with the use of GorTEX membranes, bovine xenograft, 
enamel derivative, or a combination.135 Regeneration of 
periodontal defects is a distinct process due to the com-
plexity of the structures of the periodontal interface. Young 
native PDL stem cells (PDLSCs) derived during tooth 
extraction were investigated for their ability to regenerate 
the PDL structures. These cultured cells showed the ability 
to differentiate into osteogenic, cementogenic, and fibro-
genic lineages enabling periodontal regeneration.136 
PDLSCs were also compared with dental follicle cells 
(DFCs) in their ability to restore periodontal defects in 
adult dogs. Although periodontal reattachment was seen in 
both groups, it was reported that the DFC group showed 
more organized periodontal regeneration.137

Regeneration of facial skin has a great impact on the 
patient’s quality of life and psychological health. Skin 
engineering was one of the earliest tissues investigated. 
As a result, skin tissue grafts are commercially available 
reducing the need for autologous grafts from other sites 
and the associated morbidity.138,139 However, limitations 
will always exist necessitating continual improvement. 
Acellular membranes, such as human acellular amniotic 
membranes separated from consenting mother placentas, 
have been used in clinical trials. When compared to 
Vaseline® gauze treatment, the human acellular mem-
branes showed better hemostasis and pain scores.140 
Unfortunately, due to their acellular nature, these grafts 
show high resorption and infection rates.141 Dermal sub-
stitutes, such as Integra®, have been used successfully in 
cases of traumatic defects of large areas of facial skin. 
Defect size shrinkage of up to 40% have been reported, 
but graft take, infection, time to treatment, and cost are 
some of the disadvantages.142 Allograft dermal tissue is 
another method for mucosal defect coverage in various 
locations, such as the tongue, vestibule, floor of the 
mouth, palate, and lips. Although 90% of the patient  
population showed complete graft take and epithelializa-
tion, contracture, scarring, pain, and infection were also 
reported.143 To further improve facial aesthetics and 
patient satisfaction, CAD/CAM applications and recent 
3D bioprinting were used to produce patient-specific 
facial skin based on a CT images. Researchers have bio-
printed “facial masks” composed of a tri-layer of polyu-
rethane (PU), a keratinocyte-laden hydrogel, and a 
fibroblast-laden hydrogel and tested it within facial 
defects in adult mice with promising results (Figure 8).144 
Recently, culturing of keratinocytes and fibroblasts was 
reported on de-epithelialized human amniotic mem-
branes with favorable results. A largely keratinized layer 
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Figure 8.  (A) Schematic illustration of facial skin wound animal model creation and implantation: (a) fabrication and (b) 
implantation of pre-fabricated face-shaped construct, (c) wound creation on the face-shaped construct after 4-week implantation, 
and (d) BioMask application. (B) Surgical procedure of BioMask application: (a) face-shape construct, (b) face creation after 4-week 
implantation, (c) 70% skin wound on the face-shaped construct, and (d) BioMask application. Adapted from Seol et al.144

was achieved on the epidermal surface of the membrane 
with a structured fibrous surface on the other side.145

Wound healing of the oral mucosa is generally faster 
and associated with less scarring than in the skin. This may 
be attributed to the simple epithelial differentiation and 
lower inflammatory cascades that occur.146 Culture of 
mucosal cells (whether in vitro or in vivo) are therefore a 
logical goal. Oral mucosa cell sheets were grown from 
human and rat donor keratinocytes and fibroblasts. These 
were isolated from oral mucosal, pharyngeal, esophageal, 
and neck skin biopsies. Implantation in a skin model 
wound of adult rats demonstrated enhanced primary 
wound healing with less scar tissue formation in compari-
son to the no intervention control group.147 Cell feeder sys-
tems were also proposed to fabricate mucosal tissue148 

with long-term cryogenic storage (up to 204 days) of fabri-
cated oral mucosa epithelial cell sheets opening up more 
possibilities in clinical application.149

Recently, a biomimetic engineered human mucosal 
equivalent was produced from fish collagen. Histologic 
assessment of the produced construct showed a fully dif-
ferentiated and stratified epithelial layer and a dermal-epi-
dermal junction similar to that of human oral mucosal 
tissue.150 The enhancement of the physical properties of 
this construct remains an issue that must be solved before 
clinical use.

Although there has been expansive research in skin/
mucosal tissue engineering; the integration of these tech-
niques clinically will only be acceptable when issues of 
infection, scarring, and cost are completely resolved. On 
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the other hand, periodontal tissue regeneration is becom-
ing more and more predictable in preventing tooth loss 
secondary to periodontal disease.

Engineering of multiple tissues

The craniofacial region as discussed earlier consists of 
several different tissue types. Regeneration procedures in 
many of the clinical scenarios requires regeneration of 
more than a single tissue type. The most common explain 
for this is the engineering of the periodontium. In this case 
a bone, periodontal ligament, dentin, and cementum 
should be regenerated. Research has proven that is possi-
ble especially with the advances in scaffold fabrication. 
Multilayering of scaffolds to fit the different necessities 
for each tissue type has proven to be of acceptable results. 
Different materials and fabrication technologies have 
been used to fabricate multilayered scaffolds and all 
showed primary promising results in vitro.151,152 An ear-
lier attempt reported the use of a biphasic scaffold to engi-
neer the bony and periodontal components of a periodontal 
defect. The scaffold consisted of an FDM fabricated part 
coated with Calcium phosphate, seeded with osteoblasts 
and cultured for 6 weeks. The resulting construct was then 
augmented with PDL cell sheets onto the electrospun 
scaffold surface and implanted into rats for a total of 
8 weeks. The results showed good regeneration in the 
bony and periodontal compartments and high vasculariza-
tion.153 Fabricating scaffolds such that each part fits the 
target tissue needed. This was tested by fabricating 
PCL-HA scaffolds in three different phases each with 
internal porosities differing according to the tissue type 
and DPSCs, PDL stem cells, ABSCs were cultured. The 
results of this study also supported the evidence suggest-
ing that multi-layered/configured scaffolds can indeed be 
used to produce constructs of different tissue types.154

The concept of simultaneous multi-tissue engineering 
is of great clinical importance. Most craniofacial defect 
caused by tumor ablation or trauma consist of several tis-
sue types requiring regeneration whether bone, PDL, and 
mucosa or muscle and skin for example. Providing clini-
cians with well tested choices to regenerate these tissues 
rather than resort to much dreaded grafting procedures is 
target to lots of ongoing research.

Conclusions and future perspectives

The clinical condition of patients with craniofacial defects 
necessitates reconstruction utilizing the most cost-efficient 
and cost-effective approaches. Complexity of the recon-
struction is paramount due to the different tissue types usu-
ally involved in such defects. The necessity for simple 
effective regenerative procedures is paramount and the 
results discussed in this review confirm the potential of 
craniofacial tissue engineering strategies as an alternative to 
avoid the problems of currently employed reconstructive/

grafting techniques (Table 1). With the variety of scaffold 
materials, cell origins, growth factors, drug molecules, and 
gene modification possibilities; a wide range of application 
is feasible. Research targeting specific tissue type or a multi-
tissue engineering are to be proven in vivo. Furthermore, 
recent advances in 3D printing and scanning technologies 
open the opportunity for fabrication of patient-specific tis-
sue engineered constructs. This should allow launching of in 
vivo and clinical trials assessing what has already been 
proven in vitro. The translation of the research has shown 
that some of the successful in vitro approaches do not really 
work in vivo due to the complexity of natural cellular and 
extracellular microenvironments. The importance of vascu-
lar ingrowth (angiogenesis) in vivo is another area that 
needs more work. It remains one of the main reasons scaf-
fold-cell construct implantations fail due to the necrosis of 
the inner portions of the constructs not receiving sufficient 
blood supply from the surrounding host tissue. There are 
still many challenges ahead and it is clear that further 
research is essential in order to catch up with engineering of 
other parts of the human body.
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