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Abstract: We report a Raman characterization of the α borophene polymorph by scanning tunneling
microscopy combined with tip-enhanced Raman spectroscopy. A series of Raman peaks were
discovered, which can be well related with the phonon modes calculated based on an asymmetric
buckled α structure. The unusual enhancement of high-frequency Raman peaks in TERS spectra of α
borophene is found and associated with its unique buckling when landed on the Ag(111) surface.
Our paper demonstrates the advantages of TERS, namely high spatial resolution and selective
enhancement rule, in studying the local vibrational properties of materials in nanoscale.

Keywords: borophene; vibrational modes; tip-enhanced Raman spectroscopy; scanning tunneling
microscopy; density functional theory calculations

1. Introduction

Borophene is an emerging two-dimensional (2D) material with novel properties, such
as structural anisotropy [1], high thermal conductivity [2], metallicity [3,4], possible su-
perconductivity [5] and polymorphism [4,6–8]. The unique polymorphism of borophene
stems from the tremendous possible arrangements of hexagonal holes (HHs) in a planar tri-
angular lattice. However, among the huge number of 2D borophene polymorphs that have
been designed previously [7,9], only a few of them have been realized experimentally [10].
Using molecule beam epitaxial (MBE) to deposit boron on various metal substrates, differ-
ent borophene polymorphs have been found on Ag(111) [4], Ag(100) [8], Cu(111) [11,12],
Ag(110) [13], Au(111) [14], Al(111) [15] and Ir(111) [16,17]. Among them, the most studied
phases are the β12 and χ3 on Ag(111), and both of them can form large-area single phases
with appropriate growth conditions [4]. Their structures and properties have been well
established with different methods, such as in-situ Raman [18], angle-resolved photoemis-
sion spectroscopy (ARPES) [19,20] and high-resolution electron energy loss spectroscopy
(HREELS) [21].

Among various 2D borophene polymorphs, the α phase with three-fold symmetry
and 1/9 HH density is particularly interesting, as it was predicted to be one of the most
stable and fundamental borophene structures [9,10]. Previously, Zhong et al. reported
the observation of small α-phase domains coexisting with β12 and χ3 phases in Ag(111)
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substrate [6]. Recently, Liu et al. reported the observation of bi-layer borophene on Ag(111),
which was assigned to two covalently bonded α-layers [22]. In both cases, the α phase
only exists in small islands of typically nanometer size, and a complete α-layer is still not
available. This poses a great challenge to the understanding of the physical properties of
α borophene, as even microscopic characterization techniques usually require samples of
micrometer size. Thus, the properties of α borophene remain elusive so far.

In this paper, the vibrational properties of the α borophene were studied by combining
scanning tunneling microscopy (STM) with tip-enhanced Raman spectroscopy (TERS).
TERS allows one to detect the local vibrational properties with high spatial resolution
(<0.5 nm) by the help of the strong localized electric field under the probe tip [23]. We
obtained dramatically different Raman spectra from α borophene, as compared with
those from other phases in the previous report [18]. DFT calculations reproduce the
vibrational modes observed by the Raman spectra well, based on a buckled α-phase model
on Ag(111). Our results provide a fundamental data set for further studies of borophene
and demonstrate the capability of TERS in the study of local properties of 2D materials

2. Method

All STM and TERS measurements were performed at 77 K using a home-made STM-
TERS system (located in Institute of Physics, CAS, Beijing, China), the base pressure being
10−8 Pa. The single crystalline Ag(111) surface was cleaned by standard cycles of Ar+ ion
sputtering and annealing at 800 K. Pure boron was evaporated from an e-beam evaporator
to the Ag(111) substrate held at 570 K during deposition [4]. The TERS measurement
was performed with side illumination and backscattering collection configuration [24]. A
532 nm laser was focused at the tunneling gap using aspheric lens attached to the side
of the STM head in the ultrahigh vacuum chamber. The scattered Raman signals were
dispersed by 1200 grooves/mm grating and collected by a liquid-nitrogen-cooled charge
coupled device (CCD) (SP2300i, Princeton Instrument, Trenton, NJ, USA).

The first-principle calculations were performed within the framework of projector-
augmented wave (PAW) method [25], as implemented in Vienna Ab-initio Simulation
Package (VASP) [26,27]. The electronic exchange–correlation interaction was described by
Perdew–Burke–Ernzerhof (PBE) functional [28], and the van der Waals (vdW) correction
was included using DFT-D3 method with Becke-Jonson damping [29]. We set a 500 eV
plane-wave cutoff and adopted a 12 × 12 × 1 k-grid to sample the first Brillouin zone of the
unit cell. All the atomic structures of borophene were fully relaxed on a two-layer Ag(111)
surface until the changes in energy and force between each iteration step were respectively
smaller than 10−8 eV and 0.001 eV/Å. To avoid the interlayer interaction, a 30Å vacuum
interval was set up. With regard to phonon calculations, we employed the frozen-phonon
method with 4 × 4 × 1 supercell and 3 × 3 × 1 k-grid. The phonon dispersion was obtained
based on the frozen-phonon results with the help of Phonopy [30]. Finally, all the models
were shown using VESTA [31].

3. Results and Discussion

After the deposition of about 0.8 ML boron atoms on the Ag(111) substrate, the Ag(111)
surface was covered mainly with the β12 borophene islands, which exhibited parallel
Moiré stripes in parallel with the high-symmetry orientations of the Ag(111) substrate.
Meanwhile, small domains with hexagonal Moiré patterns are frequently found to coexist
with the β12 phase, an example of which is shown in Figure 1a. The high resolution STM
image in Figure 1b shows the hexagonal structure of this phase, with the lattice constant
a = 0.52 ± 0.01 nm. This structure is consistent with the previously reported α borophene
on Ag(111) [6].
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Figure 1. (a) STM image (1.3 V, 190 pA) of monolayer borophene sheet grown on Ag(111), showing
an α domain between β12 islands. (b) High-resolution STM image (−0.8 V, 190 pA) of the surface of
α borophene; the unit cell is marked by a blue rhombus. (c) The model of planar α phase, shown
together with the symmetric buckled α phase (relaxed without Ag(111) substrate) and asymmetric
buckled α phase (relaxed on Ag(111) substrate). (d) The simulated electronic band structure of
asymmetric buckled α phase.

To understand the structure and properties of the α phase, it is worth noting that a
completely flat α structure is unstable because of a large negative phonon frequency [9].
Instead, a symmetric and slightly buckled α phase with a vertical distance from the plane of
about ±0.16 Å is found to be stable in the freestanding form [9]. The upward buckled boron
atom in this model is marked by A, while the downward one is marked by B (Figure 1c).
Furthermore, after relaxing the symmetric buckled α phase on the Ag(111) substrate, we
found that the vertical distance of two buckled boron atoms from the plane further increased
to 0.36 Å and −0.51 Å, exhibiting an asymmetric buckled structure. The electronic band
structure of this asymmetric buckled phase is shown in Figure 1d. Its metallic properties
are also consistent with previous STS result [6]. The asymmetric buckling is found to be
critical for the vibrational properties of α borophene on Ag(111), as will be shown and
discussed below.

TERS measurement was performed to obtain the vibrational information from the α

borophene. As Figure 2a shows, when the STM tip is far from the surface, the far-field Ra-
man signal is very weak due to the small Raman scattering cross-section of borophene [18].
When the STM probe tip is brought close to the surface of α borophene, a dramatic en-
hancement of Raman signal is observed, exhibiting a strong increment with the decrease
in gap distance. The near-field TERS spectra clearly show a series of characteristic peaks,
as illustrated in the background subtracted spectrum (the red curve in Figure 2b). Five
strong peaks are found, located at 116.8 cm−1, 157.3 cm−1, 339.0 cm−1, 702.6 cm−1 and
920.4 cm−1, together with three weak peaks at 406.4 cm−1, 446.8 cm−1 and 1230.0 cm−1.
For comparison, the TERS spectrum of α borophene is quite different from that of β12
phase (blue curve in Figure 2b), as well as from that of χ3 phase reported in our previous
study [18]. In particular, we observe significant enhancements of high-frequency peaks over
500 cm−1, in contrast with the cases of β12 and χ3 phases, where only the low-frequency
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peaks are enhanced [18]. In view of the selective enhancement mechanism of TERS [18,23],
only vibration modes that contain out-of-plane components can be enhanced effectively.
For completely flat 2D borophene phases, such as β12 and χ3, their high-frequency vibra-
tional modes contain only in-plane components, and thus cannot be enhanced in TERS [18].
Therefore, we speculate that the obvious enhancement of the high-frequency Raman modes
in α borophene implies that these vibrational modes contain out-of-plane components.
This perfectly agrees with the fact that the α borophene is significantly buckled on Ag(111),
according to DFT calculations.

Figure 2. (a) Gap distance-dependent TERS spectra of α borophene (10 mW, 0.3 V, the accumulation
time for each spectrum is 50 s). The tip-sample distance was controlled by first decreasing the
tunneling current from 300 pA to 25 pA, and then the tip was retracted from the surface in 100 pm
steps with the feedback loop off. (b) Comparison of the TERS spectra of α and β12 phases after
background subtraction and normalization. (c) TERS spectra were taken along the yellow line,
crossing the α borophene domain. The Raman intensity map was plotted in the right panel, where
two dotted lines are the TERS intensity profiles of the two characteristic peaks of α borophene (red)
and β12 borophene (black), respectively.

We also emphasize that our TERS measurement renders Raman spectrum with ex-
tremely high spatial resolution. A series of TERS spectra were taken along the yellow
line in the STM image shown in Figure 2c, crossing β12-α-β12 regions as the α domain
is surrounded by β12 domains. One can see that when the STM tip moves from β12 to α

phase, the intensity of the characteristic B3g
2 peak from the β12 phase drop immediately,

accompanied by the appearance of the characteristic 116.8 cm−1 peak from α borophene
(the right panel of Figure 2c). Therefore, the high spatial resolution of TERS allows us to
well separate the Raman signal of α borophene from that of surrounding β12 phase, even
though the size of the α borophene domain is only a few nanometers.

To account for these TERS peaks, we performed DFT calculations. The phonon spectra
of both symmetric buckled α phase and asymmetric buckled α phase were simulated by
VASP, respectively. The phonon spectrum of symmetric buckled α phase was found to
largely deviate from our experimental TERS spectra. The phonon modes are completely
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absent in the vicinity of 116.8 cm−1, 157.3 cm−1, 339.0 cm−1, 406.4 cm−1, 1230.0 cm−1 at
the Γ point. In contrast, after relaxing the structure to the asymmetric buckled α phase, its
symmetry changes from D3d to C3v, causing the change of phonon spectrum. As shown
in Figure 3a, the phonon spectrum of asymmetric buckled α phase shows no obvious
negative phonon frequencies, indicating a stable structure. Importantly, most peaks in
experimental TERS spectra can be assigned to phonon modes at the Γ point, as shown in
Figure 3b. A detailed comparison of experimental and simulated peaks is shown in Table 1.
The five low-frequency peaks located at 116.8 cm−1, 157.3 cm−1, 339.0 cm−1, 406.4 cm−1,
446.8 cm−1 peak can be associated with E7, E6, A4

1, A3
1, A3

2 and phonon modes, respectively,
within a reasonable error range. The atomic displacements of these peaks, as shown in
Figure 3c, are composed of nearly pure out-of-plane vibrational components, which accords
with the selective enhancement rule in TERS. For the two high-frequency peaks located
at 702.6 cm−1 and 920.4 cm−1, we can assign them to two phonon modes E4 and E3. The
schematics of atomic displacements show that these two modes are composed of nearly
in-plane vibrational components; however, the out-of-plane vibrational components still
exist because of the two buckled boron atoms. Therefore, the enhancement of these two
peaks in TERS accords with our model.

Figure 3. (a) The calculated phonon dispersion curves of asymmetric buckled α phase. (b) The
near-field TERS signal of α phase, E7 and E6 peaks are fitted by red dashed curve. (c) Vibration
modes of unit cell associated with TERS peaks. (d) The vibration mode of supercell associated with
the 1230 cm−1 peak in TERS.
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Table 1. TERS modes of the α phase, as compared with the calculation, cm−1.

TERS Simulation Modes

116.8 107.85 E7

157.3 188.6 E6

339.0 352.94 A4
1

406.4 425.2 A3
1

446.8 507.83 A3
2

702.6 684.32 E4

920.4 907.16 E3

1230.0 1199.10 Vibration of SC

Finally, the TERS peak located at 1230 cm−1 is about 90 cm−1 above the highest phonon
mode at Γ in the phonon spectrum. To account for this peak, we attribute it to a vibration
mode of a supercell. Here, a 4 × 4 × 1 supercell is considered because the periodicity of
Moiré pattern of the α phase is about four times that of unit cell. Due to the Brillouin zone
folding, the M point of the unit cell will be folded to the Γ point in the new Brillouin zone
of the 4 × 4 × 1 supercell. The E1 mode at the M point contributes to a supercell vibrational
mode with a frequency of 1199.10 cm−1 (Figure 3d), which matches our measurement
better than any other modes contained in such a supercell. In addition to the frequency
consistency, this mode also contains the out-of-plane vibration component. Therefore, it
very likely corresponds to the 1230 cm−1 TERS peak.

4. Conclusions

In conclusion, we determine the characteristic Raman spectrum of α borophene with
the help of high spatial resolution of TERS, combining with DFT calculations. All Raman
peaks can be well associated with the phonon modes calculated based on an asymmetric
buckled α structure. The unusual enhancement of high-frequency Raman peaks in TERS
spectra of α borophene is also related to its unique buckling when landed on the Ag(111)
surface. Our work provides not only the basic Raman characterization of the highly
interesting α borophene, but also demonstrates the high prospect of TERS in studying local
vibrational properties of nanoscale structures.
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