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Abstract

Background: Why does a tumor start where it does within an organ? Location is
traditionally viewed as a random event, yet the statistics of the location of tumors
argues against this being a random occurrence. There are numerous examples
including that of breast cancer. More than half of invasive breast cancer tumors start
in the upper outer quadrant of the breast near the armpit, even though it is
estimated that only 35 to 40% of breast tissue is in this quadrant. This suggests that
there is an unknown microenvironmental factor that significantly increases the risk of
cancer in a spatial manner and that is not solely due to genes or toxins. We
hypothesize that tumors are more prone to form in healthy tissue at microvascular
‘hot spots’ where there is a high local concentration of microvessels providing an
increased blood flow that ensures an ample supply of oxygen, nutrients, and
receptors for growth factors that promote the generation of new blood vessels.

Results: To show the plausibility of our hypothesis, we calculated the fractional
probability that there is at least one microvascular hot spot in each region of the
breast assuming a Poisson distribution of microvessels in two-dimensional cross
sections of breast tissue. We modulated the microvessel density in various regions of
the breast according to the total hemoglobin concentration measured by near
infrared diffuse optical spectroscopy in different regions of the breast. Defining a hot
spot to be a circle of radius 200 μm with at least 5 microvessels, and using a
previously measured mean microvessel density of 1 microvessel/mm2, we find good
agreement of the fractional probability of at least one hot spot in different regions of
the breast with the observed invasive tumor occurrence. However, there is no reason
to believe that the microvascular distribution obeys a Poisson distribution.

Conclusions: The spatial location of a tumor in an organ is not entirely random,
indicating an unknown risk factor. Much work needs to be done to understand why
a tumor occurs where it does.

Keywords: Breast cancer, Anatomical tumor distribution, Vasculature, Upper outer
quadrant
Background
The question of tumor location: Why does a tumor occur where it does?

While the location of a tumor in an organ is often viewed as random, the statistics of

the anatomical distribution of tumors indicates that tumor location is not random in

the sense that the probability that a tumor will occur in a given region is not propor-

tional to the volume of that region of the organ. For example, more than half of
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invasive breast tumors occur in the upper outer quadrant of the breast near the armpit

(Morris & Kwong, 2004) (see below). Lung tumors occur more than twice as often in the

upper lobe compared to the lower lobe of the lung even though the upper and lower lobes

have roughly the same volume (Byers et al., 1984). Examination of tissue from prophylactic

oophorectomies from women at high risk for ovarian cancer finds that microscopic cancer

most commonly occurs in the fimbrae (Crum et al., 2007), i.e., the distal portion of the fallo-

pian tubes near the ovaries, even though the fallopian tubes are histologically the same

along their entire length. If we divide the colon at the splenic flexure into a proximal and a

distal section (and exclude the rectum), colon cancer tends to be found in the proximal, ra-

ther than in the distal, part of the colon even though these two sections are roughly the

same length. SEER (Surveillance, Epidemiology, and End Results) data (Siegel et al., 2014)

from 2006 to 2010 indicates that 42% of the cases of colon cancer occurred in the proximal

colon compared to 23% in the distal colon. The rest (28%) occurred in the rectum. It should

be noted that the proximal and distal colon differ in terms of development (embryology),

physiology, and molecular biology (Gervaz et al., 2004) but it is not clear whether any of

these differences can account for the preference of tumors to occur in the proximal colon.

So why does a tumor occur where it does? The lack of randomness in the anatomical dis-

tribution of tumors in various organs suggests that there is an unknown microenvironmen-

tal factor that significantly increases the risk of cancer in a spatial manner. Though it has

largely been ignored, this question is important since it implies that it is not simply genes or

toxins that promote tumor initiation preferentially in some regions of a given organ.

In this paper, we propose that the microvessel density could be a predisposing factor. Our hy-

pothesis is that tumors are prone to develop where there is a high concentration of blood flow

that can supply ample oxygen and nutrients to the tumor. We will refer to such regions with a

high concentration of microscopic blood vessels as ‘microvascular hot spots’. We will use the

breast as an example to discuss our proposition that local variations in the microvascular dens-

ity could account for the increased tumor incidence in the upper outer quadrant. (A review of

this paper with more introductory material is contained in a review article that will appear in

Reports on Progress in Physics. The review article is by the same authors as this paper and is en-

titled “The Physical Location of Incipient Cancer: Why Does a Tumor Start Where It Does?”)
Breast tumors occur most frequently in the upper outer quadrant

Since the rest of this article will focus on the occurrence of breast tumors in the upper

outer quadrant, we will begin with a brief introduction to the breast (Schnitt & Collins,

2018; Love et al., 2015) and breast cancer. The function of the mammary gland is to

produce milk. Milk is produced in small grapelike sacs called acini. A cluster of acini is

called a lobule and a cluster of lobules is called a lobe. The milk produced in acini flows

into a small channel called a ductule. Ductules merge to form milk ducts. Each lobe

has one milk duct. If you look at the cross-section of a milk duct (see Fig. 1), it is lined

with mammary epithelial cells. Surrounding the mammary epithelial cells is a layer of

myoepithelial cells that help to squeeze the milk down the duct. Outside the myoe-

pithelial cells is a tough outer sheath called the basement membrane. It is an example

of extracellular matrix and is composed of proteins such as collagen.

Most breast tumors start in the milk ducts or lobules. Typically the mammary

epithelial cells start to proliferate and fill up the luminal space in the duct or acini.



Fig. 1 Cross section of a normal milk duct showing the lumen, mammary epithelial cells, myoepitheial cells,
and basement membrane
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When they do this to a substantial degree, this is known as ductal carcinoma in

situ. This is stage zero cancer. The phrase “in situ” literally means “in place”. In

this case, it means that the cells have not broken through the basement membrane.

If the epithelial cells continue to proliferate and break out of the duct and through

the basement membrane, then this is called invasive ductal carcinoma. “Invasive”

means that the cells have invaded tissue where they do not belong.

Analysis of the data for the location of invasive tumors from approximately 137,000 California

female breast cancer patients between 1988 and 1999 reveals that 57% of these tumors occur in

the upper outer quadrant (UOQ) of the breast near the armpit (Morris & Kwong, 2004). The

three other quadrants and the central/areolar/nipple region each account for 15% or less of the

tumors as shown in Table 1. If the location of breast tumors were random, then we would ex-

pect the probability of a tumor to occur in a region to be proportional to the volume of that re-

gion. However, the UOQ certainly does not contain more than half of the breast tissue.

If one considers different types of breast cancer, then almost all types of breast tu-

mors occur most frequently in the upper outer quadrant as shown in Fig. 2. The only

exception is Paget’s disease which is a type of cancer of the nipple.
Methods
Hypothesis: Tumors preferentially form in regions with high microvascular density

Tumors must have blood vessels supplying oxygen and other nutrients if they are to grow be-

yond a few cubic millimeters. (However, the lack of oxygen, a condition known as hypoxia,
Table 1 Location of invasive breast tumors. Data from 137,000 California female beast cancer
patients between 1988 and 1999 (Morris & Kwong, 2004). These include stage 1 and higher stages
as well as different types of breast cancer

Upper Outer Upper Inner Lower Outer Lower Inner Nipple, Areola

57% 15% 10% 8% 11%



Fig. 2 Anatomical site distribution of different types of breast tumors (Morris & Kwong, 2004). Note that almost
all types of tumors occur most frequently in the upper outer quadrant (UOQ) with the exception of Paget’s
disease (PD) which corresponds to nipple cancer. UIQ = upper inner quadrant, LIQ = lower inner quadrant and
LOQ = lower outer quadrant. DC = ductal carcinoma, LC = lobular carcinoma, DLC = ductal lobular carcinoma,
CC = comedocarcinoma, MMA =mucinous and mucin-producing adenocarcinoma, MC=medullary carcinoma,
IC = inflammatory carcinoma, TC = tubular carcinoma, and PA = papillary adenocarcinoma
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can also promote tumor growth. Possible mechanisms for how hypoxia could promote

tumor growth include impeding the immune system, selecting for hardier cancer cells that

can resist radiation and chemotherapy drugs, and encouraging cancer cells to migrate and in-

vade other tissues (Jain, 2014; Blagosklonny, 2004)). Since oxygen only diffuses 100–150 μm

(Fidler et al., 2002; Gray et al., 1953; Tannock, 1968; Brown & Giaccia, 1998; Thomlinson &

Gray, 1955), and cytokines like vascular endothelial growth factor (VEGF) diffuse even less

due to their size, there must be microvessels within this distance of an incipient tumor. More

tissue in the UOQ means more microvessels near which tumors could grow. However, as-

suming uniform perfusion, the fraction of microvessels in the UOQ should be proportional

to the fraction of tissue in that quadrant. So if 35–40% of the tissue is in the upper outer

quadrant, then 35–40% of the vasculature (and tumors) should be in the UOQ. However,

perfusion is not uniform as indicated by optical measurements (Parbhoo & Seifalian, 1998;

Shah et al., 2004; Svensson et al., 2005). Both laser Doppler imaging (Parbhoo & Seifalian,

1998), which measures the skin blood flow, and near infrared diffuse optical spectroscopy

(DOS) measurements (Shah et al., 2004; Svensson et al., 2005), which penetrates into the tis-

sue and can measure total hemoglobin concentration in a volume of about 10 cm3, find vari-

ations in the blood flow between different quadrants of the breast as well as the areolar

region. However, prima facie, these variations do not appear to be large enough to account

for the preponderance of tumor incidence in the UOQ.

Our hypothesis is that incipient tumors preferentially tend to form at ‘microvascular

hot spots’ that correspond to small regions of tissue with a high concentration of

microvessels. We hypothesize that perhaps small incipient tumors are more likely to

flourish and be vascularized if they are located at “microvascular hot spots” where there

is a particularly high density of microvessels. We are referring to hot spots present in

disease-free/cancer-free tissue that has not been remodeled by proliferating neoplastic

tissue (Carpenter et al., 2011).
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We would like to calculate the probability of such hot spots in the different quadrants to

see if there is a higher probability for such hot spots in the upper outer quadrant, and to de-

termine if this higher probability is consistent with the higher incidence of tumors in this

quadrant. Unfortunately, there are no measurements of the microvascular distribution in the

breast, nor have there been measurements of the fraction of breast tissue in each quadrant.

However, as a simple example of such a calculation, we will imagine two-dimensional (2D)

cross sections of tissue that have been stained to reveal microvessels as discrete points. Our

goal is to calculate the probability Q that at least one hot spot occurs in a region of surface

area A. To illustrate our method of calculation, consider marking a spot on a table, drawing a

circle of radius R centered at the spot, sprinkling salt on the table and asking what is the

probability P that at least n grains of salt are within the circle. The larger the number of

grains required to be in the circle, the smaller the probability of a small circle enclosing that

many grains of salt. Suppose we define a hot spot as such a circle with many grains of salt. If

we have a big table, divide it into 4 unequal regions and sprinkle the salt evenly on the table,

then the probability of at least one hot spot in a region is roughly proportional to the area of

the region (as long as NP < < 1 where N is the number of nonoverlapping circles blanketing

the region). In order for the probability to not be proportional to the size of the region, the

salt must be sprinkled unevenly. The table represents the breast. The four unequal regions

represent the four quadrants of the breast. The grains of salt represent the microvessels in a

cross section of tissue. The center of the circle represents the tumor location.

Mathematically, suppose we define a hot spot as a circle of radius R that contains at

least n microvessels. Then N=A/(πR2) is the number of non-overlapping circles (regard-

less of whether they are a hot spot) that can blanket an area A. (Note that N may not be

an integer.) Let P be the probability that a circle is a hot spot. Then (1 – P) is the probabil-

ity that a circle is not a hot spot. (1 – P)N is the probability that there are no hot spots in

N circles. Q = 1 - (1 – P)N is the probability that there is at least one hot spot in N circles.

Thus, Q ≈NP ∝AP if NP < < 1. A plot of Q versus NP is shown in Fig. 3.

As a simple example, suppose a two dimensional cross-section of breast tissue

has microvessels distributed according to a Poisson distribution. Then the probabil-

ity pm(R,i) that there are m microvessels in a circle of radius R in the ith region of

the breast is given by the Poisson distribution: pm R; ið Þ ¼ mh ii=m!
� �

e‐ mh ii where 〈m〉

i = ρ(i)πR2 is the average number of microvessels in a circle of radius R and ρ(i) is

the areal density of microvessels in the ith region of the breast. We divide the

breast into five regions: the upper outer quadrant (UOQ), the upper inner quad-

rant (UIQ), the lower outer quadrant (LOQ), the lower inner quadrant (LIQ), and

the areolar region (AR). Then the probability qn(R,i) that there are at least n

microvessels in a circle of radius R is given by

qn R; ið Þ ¼ 1‐
Xn‐1

m¼0

pm R; ið Þ ð1Þ

To relate this to the notation above, if we define a hot spot as a circle of radius R0
with at least n0 microvessels, then the probability P that a circle is a hot spot is P ¼ qn0
R0; ið Þ . So the probability Q(i) that there is at least one hot spot in the ith region is

given by



Fig. 3 Plot of Q vs the product NP of the number N of trials and the probability P. Note that Q ~ NP for
NP < < 1 and Q ~ 1 for NP > > 1. The crossover occurs for NP ~1. Note that the number N of circles filling
the region is proportional to the area A of the region. For this plot we used P = 1%
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Q ið Þ ¼ 1‐ 1‐qn0 R0; ið Þ� �N ið Þ ð2Þ

where N(i) = A(i)/πR0
2 is the number of circles that fit in the area A(i) of the
ith region. (Note that N(i) may not be an integer.)
P

i¼1

5
A ið Þ ¼ AT where AT is the

total area of a cross section of the breast. Once we obtain Q(i), we normalize it

by the sum over Q(i) to obtain the fractional probabilities Qf(i) that there is at

least one hot spot in the ith region: Qf ið Þ ¼ Q ið Þ=P
i¼1

5

Q ið Þ.
We modulated the density of microvessels in each region of the breast using

infrared measurements of the total (both oxygenated and deoxygenated) mean

hemoglobin concentration in the various breast regions for postmenopausal

women (Shah et al., 2004). To calculate the microvessel density modulation factor

f(i) for the ith region, we do the following. Let h(i) be the total mean hemoglobin

concentration measured in the ith region. We estimated the hemoglobin mass

mh(i) in the ith region using mh(i) = h(i) Vb b(i) where Vb is the volume of the

tissue in the entire breast, and b(i) is the fraction of tissue in the ith region of

the breast. The total breast volume Vb will cancel out later so its value does not

matter. The total hemoglobin mass Mh in the breast is MT ¼
X

i

mh ið Þ . The

mass fraction Fh of hemoglobin in the ith region is Fh(i) =mh(i)/MT. We take the

ratio the hemoglobin mass fraction to the breast tissue fraction to get f(i), the

microvessel density modulation factor: f(i) = Fh(i)/b(i). The microvessel density

ρ(i) in the ith region is given by ρ(i) = f(i)ρ0 where ρ0 is the measured areal dens-

ity of microvessels. Measurements of the 2D density ρ0 of microvessels in breast
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tissue have found values of 1 microvessel/mm2 (Carpenter et al., 2011) and 61

microvessels/mm2 (El-Gohary et al., 2009).
Results
Using the procedure described above, we have calculated the fractional probabilities for

at least one hot spot in the various regions of the breast assuming a Poisson distribu-

tion of microvessels in a 2D cross section of breast tissue. A hot spot was defined as a

circle of radius 200 μm with at least 5 microvessels. Our results are shown in Fig. 4

along with the observed tumor incidence (Morris & Kwong, 2004) from Fig. 2.

Notice that there is good agreement of the observed tumor incidence location in the

case of 1 microvessel/mm2 (Carpenter et al., 2011).
Parameter dependence

The sensitivity of our analysis to model parameters is implicitly contained in the equa-

tions. Human anatomy and physiology as well as experimental measurements restrict

many of the parameters to a rather narrow range, e.g., the radius of the breast, the frac-

tional amount of tissue in the quadrants of the breast, the variation in the total
Fig. 4 Comparison of the observed distribution of breast tumor locations from (Morris & Kwong, 2004) with
the fractional probability of at least one hot spot in the different regions of the breast assuming a Poisson
distribution of microvessels in 2D. In our simulation, the sampling circles had a radius of 200 μm. A hot spot
was defined as a sampling circle with at least 5 microvessels. The overall cross section of the breast was
assumed to be a circle with a radius of 7 cm. The fraction of tissue in the upper outer quadrant (UOQ),
upper inner quadrant (UIQ), lower outer quadrant (LOQ), lower inner quadrant (LIQ), and central (nipple)
region were assumed to be 0.38, 0.14, 0.24, 0.19, and 0.05, respectively. (Since the fraction of breast tissue in
the different regions of the breast has not been measured, these numbers are based on estimates from Dr.
Karen Lane, a breast surgeon at the University of California Irvine Medical Center.) To test our model, we
used the two published 2D mean microvessel densities of 1 (Carpenter et al., 2011) and 61 (El-Gohary et al.,
2009) microvessels/mm2. We modulated the microvessel density in various regions of the breast according
to the total hemoglobin concentration measured by near infrared diffuse optical spectroscopy in different
regions of the left breast of postmenopausal women (Shah et al., 2004), i.e., we used the following values
for the total hemoglobin: h(UOQ) = 16 μM, h(LOQ) = 12 μM, h(LIQ) = 13 μM, h(UIQ) = 15 μM,
and h(AR) = 19 μM
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hemoglobin in various regions of the breast, etc. We are free to choose the parameters

associated with our definition of a sampling circle and a hot spot. In the supplement

(Additional file 1), we show that our results are rather insensitive to the radius of a hot

spot and to the minimum number of microvessels in a hot spot as long as n ≥ 4. For n

< 4, it is easy to meet the requirements for a microvascular hot spot and there is a high

probability that every region of the breast will have at least one hot spot.
Discussion
Microvessel density and the oxygen diffusion length

We found good agreement between the observed tumor incidence location and the frac-

tional probability of hot spots for a density of 1 microvessel/mm2 (Carpenter et al., 2011).

However, this would imply a mean spacing of 1 mm between microvessels, a value that

seems slightly high if the oxygen diffusion length is 100 to 200 μm (Fidler et al., 2002;

Gray et al., 1953; Tannock, 1968; Brown & Giaccia, 1998; Thomlinson & Gray, 1955).

Keep in mind that the oxygen diffusing into a space between 2 microvessels covers about

200–400 μm. A microvessel density of 61 microvessels/mm2 (El-Gohary et al., 2009) cor-

responds to a mean spacing of 128 μm, which seems more consistent with 100 to 200 μm

as the oxygen diffusion length (see below), but leads to a high probability of a hot spot oc-

curring in each region with our definition of hot spots.

The values we used for the microvessel density were measured in breast tissue so

they are both physiologically realistic. However, although the value of 100 to 200 μm is

widely cited (Fidler et al., 2002; Gray et al., 1953; Tannock, 1968; Brown & Giaccia,

1998; Thomlinson & Gray, 1955), we know of no direct measurements of the diffusion

length of oxygen in living tissue. The values cited in the literature are inferred from in-

direct measurements. For example, Fidler et al. (Fidler et al., 2002) note that dividing

tumor cells tend to be within 75 μm of a blood vessel while apoptotic cells in a tumor

are twice as far (160–170 μm) from a blood vessel. Earlier researchers reported that

non-necrotic cells in corded tumors (i.e., tumors in the shape of a solid rod) were never

further than 100–200 μm from a blood vessel (Thomlinson & Gray, 1955). However,

these indirect measurements assume that oxygen is the limiting factor whereas lack of

an essential nutrient like glucose or the accumulation of high concentrations of lactic

acid could result in necrosis (Thomlinson & Gray, 1955). In addition, the microvessel

density varies from organ to organ due to the differing oxygen demands of different

types of cells and tissues. For example, fat does not need as much oxygen as muscle.
The need for measurements of the microvessel density distribution and fraction of breast

tissue in various regions

The simple example above assumed a Poisson distribution, but this is not a crucial as-

sumption. Indeed, there is no reason to believe that the Poisson distribution is the actual

microvessel density distribution. Other spatial distributions of the microvasculature could

also give the observed tumor incidence. That is why it would be useful to measure the

microvessel density distribution in all five regions for both 2D and 3D in normal breast

tissue obtained from autopsies and prophylactic mastectomies as well as breast reduction

surgery. It is important to use normal breast tissue that has not been remodeled by prolif-

erating neoplastic tissue. For 2D tissue slices, the blood vessels could be stained and then
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one could count the number of blood vessels in a series of non-overlapping circles to ob-

tain a histogram of the density distribution in units of number of microvessels per unit

area, e.g., per square mm. The radii of the circles could be comparable to the oxygen dif-

fusion length.

The 3D microvessel density is defined as the length of microvessels per unit volume.

Imagine having a 3D vascular network and filling the space with nonoverlapping sam-

pling spheres. The microvessel density equals the length of microvessels inside a sphere

divided by the volume of the sphere. A map of the 3D vascular network in breast tissue

has never been conducted because of the prohibitive cost of examining a z-stack of 5-

μm thick tissue slices using traditional methods. However, it should be possible to map

out the 3D vascular structure using advanced optical methods similar to those that

have been used to map out a cubic millimeter of the 3D angioarchitecture of the mur-

ine vibrissa cortex (Blinder et al., 2013).

We made estimates of the fraction of tissue in each of the 4 quadrants and in the nip-

ple/areolar/central region because this has not been previously measured. However,

measurements can and should be done on disease-free human specimens using tissue

from prophylactic mastectomies and autopsies. Images from breast magnetic resonance

imaging (MRI) are another way to determine the fraction of tissue in different quad-

rants. Patients undergoing a breast MRI lie prone with their breasts hanging in a pen-

dulous fashion. However, in MRI images, it is sometimes difficult to know exactly

where to delineate the boundary between the different quadrants since patients may be

slightly tilted, e.g., because they lean more on one elbow than the other.
Modulation of microvessel density

We modulated the density of microvessels in each region of the breast using infrared

measurements of the total mean hemoglobin concentration in the various breast re-

gions for postmenopausal women (Shah et al., 2004). The total hemoglobin measured

using near infrared imaging is in both capillaries and larger blood vessels. (Note that

oxygen diffuses out of both capillaries as well as pre-capillary vessels (arterioles) (Pitt-

man, 2011). This is why we refer to microvessels rather than capillaries.) In our calcula-

tion we do not need to assume that the total hemoglobin is contained entirely in the

microvessels. Rather we just assumed that the region-to-region variation of the micro-

vessel density is mirrored in the spatial modulation of the total hemoglobin.
Previous hypotheses for increased breast tumor incidence in UOQ are problematic

There have been a number of other hypotheses to explain why the preponderance of

breast tumors are found in the upper outer quadrant. These include the following:

[A] Distribution of breast tissue mass: The conventional wisdom is that there are

more tumors in the upper outer quadrant because there is more tissue in that

quadrant since the breast is shaped like a teardrop with axillary tissue under

the arm in the vicinity of the armpit (Haagensen, 1986; Lee, 2005). However,

our analysis indicates that if the 57% tumor incidence were random, this would

require 64% of the breast tissue to be in the upper outer quadrant, while

certainly less than half of the breast tissue is in the upper outer quadrant.
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Furthermore, it is not clear that bigger breasts have a higher risk of breast

cancer than smaller breasts (Jansen et al., 2014). Several studies find no

evidence that increased breast size is associated with increased risk of breast

cancer (Wynder et al., 1960; Katariya et al., 1974; Kolonel et al., 1986; Senie

et al., 1993; Koch et al., 2004), while others found indications of a positive

correlation (Scutt et al., 1997; Hsieh & Trichopoulos, 1991; Joensuu et al., 1992;

Kato et al., 1995). Still other studies found that women with smaller breasts

were at increased risk (Tavani et al., 1996; Thurfjell et al., 1996). It is worth

noting that compared to small breasts, large breasts tend to have more fat but a

comparable amount of fibroglandular tissue. (Fibroglandular tissue is where tumors

tend to start.) This is consistent with the fact that women with large breasts and small

breasts tend to produce the same amount of milk (Edgar, 2005).

[B] Food additives and environmental toxins: A higher incidence in the upper outer

quadrant has also been documented in third world countries, e.g., the upper outer

quadrant incidence is ~51% in India (Dinshaw et al., 2005), ~40% among West

Indian women in Trinidad (Raju & Naraynsingh, 1989), ~54% in Goiania in Brazil

(Nunes et al., 2011), ~30–48% in Nigeria (Adesunkanmi et al., 2006), and ~50%

between 1927 and 1946 in Costa Rica (De Girolami & Luros, 1958). These

percentages are all comparable to that found in the large study of California breast

cancer patients between 1988 and 1999 (Morris & Kwong, 2004). This implies that

modern food additives and environmental toxins cannot explain the higher tumor

incidence in the upper outer quadrant. Interestingly, the tumor incidence in the

UOQ in England and Wales has slowly been rising from 48% in 1979 to 53% in

2000 (Darbre, 2005).

[C] Deodorants and antiperspirants: It has been suggested that the aluminum salts in

underarm antiperspirants and deodorants can mimic estrogens and increase the risk

of cancer (Darbre & Charles, 2010), but there is no real evidence to support this

and it has largely been discounted (Namer et al., 2008). In addition, the higher

tumor incidence in the UOQ in third world countries (Dinshaw et al., 2005; Raju &

Naraynsingh, 1989; Nunes et al., 2011; Adesunkanmi et al., 2006; De Girolami &

Luros, 1958) and between 1927 and 1946 in Costa Rica (De Girolami & Luros,

1958) implies that deodorants and antiperspirants are not the cause. Furthermore,

in mammals other than humans, spontaneous mammary tumors are most likely to

occur near the legs. (Spontaneous mammary tumors refer to those not caused

artificially, e.g., by introducing by a virus.) In dogs, 40–60% of mammary tumors

occur in the pair of glands located most caudally, i.e., near the hind legs (Bostock,

1975; Cotchin, 1958; Fidler & Brodey, 1967; Cotchin, 1957; Huggins & Moulder,

1944). In cats (Cotchin, 1957; Hayden & Nielsen, 1971) and mice (Prehn et al.,

1954; Pullinger, 1952), most spontaneous mammary tumors occur in the anterior

mammary glands, i.e., those closest to the front legs. Most tumors in female rats are

benign mammary tumors, and the most common locations of these tumors are in

the armpits and in the belly or groin area (Ducummon, 1995). Since the use of
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antiperspirants and deodorants cannot explain the higher incidence of spontaneous

tumors in the mammary glands near the limbs of mammals (Bostock, 1975;

Cotchin, 1958; Fidler & Brodey, 1967; Cotchin, 1957; Huggins & Moulder, 1944;

Hayden & Nielsen, 1971; Prehn et al., 1954; Pullinger, 1952), this is unlikely to be

the explanation.

[D] Mechanical motion: The upper outer quadrant is closer to the arms and

shoulders. Furthermore, as we mentioned above, spontaneous tumors in other

mammals tend to occur near the limbs (Bostock, 1975; Cotchin, 1958; Fidler &

Brodey, 1967; Cotchin, 1957; Huggins & Moulder, 1944; Hayden & Nielsen,

1971; Prehn et al., 1954; Pullinger, 1952). So one might wonder whether arm

motion could be linked to breast cancer. However, we do not believe that arm

motion is a risk factor because, to the best of our knowledge, there does not

appear to be any dorsal-ventral asymmetry in the occurrence of breast tumors,

i.e., there does not seem to be any increased tumor incidence near (or far

from) the chest wall muscles.

[E] Temperature: One might argue that the upper outer quadrant is near the

armpit which is warmer other parts of the body. However, temperature does

not appear to be a factor. Infrared imaging measurements indicate that the

upper outer quadrant is neither hotter nor colder than the three other

quadrants (Head et al., 2001).

[F] Lymph: The lymph system can be thought of as a sewage system for the cells,

though it is also a crucial component of the immune system. Cells dump waste

products into the surrounding interstitial fluid which is mostly taken up by the venous

system with a few percent taken up by the lymph microvessels as lymph fluid. One

might be concerned that the toxins and waste products in the lymph could be

carcinogenic. In most women, all the areas of the breast drain through the lymph

vessels in the upper outer quadrant to the axillary lymph nodes under the arm, and to

a lesser extent to the lymph nodes in the internal mammary chain along the sternum

(Estourgie et al., 2004; Suami et al., 2008). Lymph drainage through the upper outer

quadrant may mean that there is a higher concentration of waste products in this

quadrant, but it is not clear how this drainage could adversely affect mammary

epithelial cells and other cells outside of the lymph vessels. (As an analogy, the sewage

system in your home does not affect your health as long as the sewage stays in the

sewage pipes.) Furthermore, ductal carcinoma in situ (DCIS) and lobular carcinoma in

situ (LCIS) only involve the lymph system in 1–2% of cases (Wax, 2012), and yet both

DCIS and LCIS occur more often in the upper outer quadrant than anywhere else

(Morris & Kwong, 2004). (Recall that DCIS and LCIS are confined within the milk

ducts and lobules, and have not broken through the basement membrane. So the

abnormal cells associated with DCIS and LCIS are not in contact with lymph fluid

that is confined in lymph vessels.)
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Implications

If our hypothesis is correct, then this means that the regions with a high density of

microvessels are at a greater risk of developing tumors. This would apply not just to

breast cancer but to other organs as well. Microvascular hot spots would also increase

the risk of being sites of metastasis. This may explain why tumors that metastasize to

the breast from an extramammary primary tumor elsewhere in the body preferentially

occur in the upper outer quadrant (Toombs & Kalisher, 1977; Lee et al., 2010) with an

UOQ incidence of about 66% (Toombs & Kalisher, 1977).

If our hypothesis that tumors are prone to form where there are microvascular hot

spots proves true, then there could be important clinical implications. For example, it

might help to explain why wounding the cellular microenvironment promotes tumori-

genesis (Dolberg & Bissell, 1984). While wounding promotes inflammation and inflam-

mation is known to increase cancer risk (Coussens & Werb, 2002), the remodeling of

the vasculature during healing could produce microvascular hot spots that would also

promote tumor recurrence. This could help to explain the peak in cancer relapses

within 2 to 3 years after resection of tumors in breast (Retsky et al., 2012), prostate

(Hanin & Zaider, 2011; Weckermann et al., 2009), lung (Demicheli et al., 2012) and

pancreatic (Deylgat et al., 2011) cancers as well as osteosarcoma (Tsunemi et al., 2003)

and melanoma (Tseng et al., 2009). If microvascular hot spots increase the risk of re-

currence of cancer, then perhaps therapeutics could be found to prevent the formation

of microvascular hot spots during wound healing after surgery. In the case of breast

cancer a small clinical study has shown that one-time perioperative use of the non-

steroidal anti-inflammatory drug (NSAID) ketorolac cuts the risk for early recurrence

by half (Retsky et al., 2012; Forget et al., 2010). This could be due to a reduction in the

inflammatory response and/or in the regrowth of vasculature without generation of

microvascular hot spots.
Diffuse optical spectroscopic imaging could identify hot spots

Infrared imaging in the form of Diffuse Optical Spectroscopic Imaging (DOSI) could be

used to identify microvascular hot spots and hence, patients and regions with a higher

risk of cancer. This technique uses diffuse scattering of near-infrared light to assess the

local concentrations of metabolites such as oxygenated and deoxygenated hemoglobin

with a spatial resolution of approximately 1 cm (Shah et al., 2001; Cerussi et al., 2001;

O'Sullivan et al., 2013). Hand-held DOSI scanning devices have been developed to per-

form whole breast scanning of normal breast tissue (Tromberg et al., 2016). If imaging

techniques such as DOSI could identify hot spot regions at high risk for breast cancer,

then local treatment could be applied to minimize risk. For example, milk ducts

could be ablated in these hot spot regions using breast-conserving prophylactic

intraductal therapy. In this therapeutic approach, selected agents are injected into

designated ducts, resulting in extensive destruction of mammary epithelial cells

(Murata et al., 2006; Stearns et al., 2011).
Application of hypothesis to tumors in other organs

While we believe that our hypothesis of microvascular hot spots can be applied to tu-

mors in other organs, we are not able to apply our simulation to other types of tumors
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due to a lack of data on the spatial distribution of blood flow in other organs. The per-

fusion data (Shah et al., 2004) that we used for the breast was obtained with near infra-

red diffuse optical spectroscopy (Shah et al., 2001; Cerussi et al., 2001). Infrared

radiation can penetrate a small distance below the skin, making the blood flow in the

breast is accessible but this is not practical for organs such as the colon, lungs, etc.

Conclusions
Although tumor location is viewed as random, the statistics of the anatomical location

of tumors in organs such as the breasts, lungs, colon and fallopian tubes/ovaries indi-

cate a preference for some anatomical regions over others. The question of why a

tumor occurs where it does in an organ cannot be addressed solely in terms of genetics

or environmental factors, implying that there is another risk factor for cancer that is

not appreciated.

Our hypothesis is that tumors tend to occur at ‘microvascular hot spots’ where there

is an unusually high microvessel density in normal tissue. These microvessels would

supply ample oxygen and nutrients to a budding tumor, as well as have receptors for

factors that promote angiogenesis such as VEGF. In this paper we focused on breast

cancer and the observation that about 60% of breast tumors occur in the upper outer

quadrant (Morris & Kwong, 2004) even though the upper outer quadrant comprises

only 35–40% of the breast tissue.

To demonstrate the plausibility of our hypothesis, we did a calculation to estimate

the fractional probability that there is at least one microvascular hot spot in each region

of the breast assuming a Poisson distribution of microvessels in 2D cross sections of

breast tissue. We modulated the microvessel density in various regions of the breast ac-

cording to the total hemoglobin concentration measured by near infrared diffuse op-

tical spectroscopy in different regions of the breast of postmenopausal women (Shah

et al., 2004). For a mean microvessel density of 1 microvessel/mm2 (Carpenter et al.,

2011), we find good agreement of the fractional probability of at least one hot spot with

the observed invasive tumor occurrence (Morris & Kwong, 2004) in different regions of

the breast. Of course, there is no reason to believe that microvessels have a Poisson dis-

tribution, and much work needs to be done to measure the microvessel density distri-

bution as well as the fraction of breast tissue in different regions of the breast.

If our hypothesis that tumors are prone to form where there are microvascular hot

spots proves true, it might help to explain explain why wounding the cellular micro-

environment promotes tumorigenesis (Dolberg & Bissell, 1984) and why cancer recur-

rence is highest in the first 2 to 3 years after tumor resection (Retsky et al., 2012;

Hanin & Zaider, 2011; Weckermann et al., 2009; Demicheli et al., 2012; Deylgat et al.,

2011; Tsunemi et al., 2003; Tseng et al., 2009). While inflammation is associated with

wound healing and is known to increase cancer risk (Coussens & Werb, 2002), the re-

modeling of the vasculature during healing could produce microvascular hot spots that

could also promote tumor recurrence. If hot spots are a risk factor, then near infrared

imaging such as DOSI could be used to identify hot spots and prophylactic measures

could be implemented.

In summary, our paper is largely speculative. Our goal has not been to solve a prob-

lem, but rather to point out that there is an important problem that has largely been ig-

nored. Namely, that tumor location in an organ is not entirely random, indicating that
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there are cancer risk factors that have largely been ignored. Our hope is that much

more research will be done to understand why tumors occur where they do.
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Abbreviations
2D: Two-dimensional; 3D: Three-dimensional; CC: Comedocarcinoma; DC: Ductal carcinoma; DCIS: Ductal carcinoma in
situ; DLC: Ductal lobular carcinoma; DOS: Diffuse Optical Spectroscopy; DOSI: Diffuse Optical Spectroscopic Imaging;
IC: Inflammatory carcinoma; LC: Lobular carcinoma; LCIS: Lobular carcinoma in situ; LIQ: Lower outer quadrant;
LOQ: Lower outer quadrant; MC: Medullary carcinoma; MMA: Mucinous and mucin-producing adenocarcinoma;
PA: Papillary adenocarcinoma; PD: Paget’s disease; TC: Tubular carcinoma; UIQ: Upper inner quadrant; UOQ: Upper
outer quadrant; VEGF: Vascular endothelial growth factor

Availability of data and materials
All relevant data are within the paper.

Authors’ contributions
Conceptualization, calculation and analysis of computational results, funding acquisition, writing original draft,
supervision: CCY. Researching background material: CCY and JKM. Writing – editing and review: CCY and JKM. Both
authors read and approved the final manuscript.

Funding
CCY was supported in part by The V Foundation for Cancer Research SU2C-TVF Convergence Scholar Award (D2015–
024) and by the Stand Up to Cancer (SU2C) Convergence Scholar Award (SU2C-BCRF-2015-001). CCY wrote most of
this paper at the Aspen Center for Physics which is supported by National Science Foundation grant PHY-1607611.
The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA. 2Present address:
Department of Physics, Harvard University, Cambridge, MA 02138, USA.

Received: 7 July 2017 Accepted: 27 November 2017

References

Adesunkanmi AR, Lawal OO, Adelusola KA, Durosimi MA. The severity, outcome and challenges of breast cancer in

Nigeria. Breast. 2006;15(3):399–409.
Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell. 2004;5(1):13–7.
Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. The cortical angiome: an interconnected vascular

network with noncolumnar patterns of blood flow. Nat Neurosci. 2013;16(7):889–97.
Bostock DE. The prognosis following the surgical excision of canine mammary neoplasms. Eur J Cancer. 1975;11(6):389–96.
Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer

Res. 1998;58(7):1408–16.
Byers TE, Vena JE, Rzepka TF. Predilection of lung cancer for the upper lobes: an epidemiologic inquiry. J Natl Cancer

Inst. 1984;72(6):1271–5.
Carpenter PM, Chen WP, Mendez A, McLaren CE, Su MY. Angiogenesis in the progression of breast ductal proliferations.

Int J Surg Pathol. 2011;19(3):335–41.
Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, et al. Sources of absorption and scattering contrast

for near-infrared optical mammography. Acad Radiol. 2001;8(3):211–8.
Cotchin E. Spontaneous mammary neoplasms of the domestic animals. Proc Royal Soc Med. 1957;50(8):557–60.
Cotchin E. Mammary neoplasms of the bitch. J Comp Pathol Ther. 1958;68:1–22.
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

dx.doi.org/10.1186/s41236-017-0006-7


Yu and Mitchell Cancer Convergence  (2017) 1:4 Page 15 of 16
Crum CP, Drapkin R, Kindelberger D, Medeiros F, Miron A, Lee Y. Lessons from BRCA: the tubal fimbria emerges as an
origin for pelvic serous cancer. Clin Med Res. 2007;5(1):35–44.

Darbre PD. Recorded quadrant incidence of female breast cancer in great Britain suggests a disproportionate increase
in the upper outer quadrant of the breast. Anticancer Res. 2005;25(3c):2543–50.

Darbre PD, Charles AK. Environmental oestrogens and breast cancer: evidence for combined involvement of dietary,
household and cosmetic xenoestrogens. Anticancer Res. 2010;30(3):815–27.

De Girolami E, Luros P. Malignant tumors of the breast in Costa Rica, 1939-1953 English summary. Rev Biol Trop. 1958;6(2):205–40.
Demicheli R, Fornili M, Ambrogi F, Higgins K, Boyd JA, Biganzoli E, et al. Recurrence dynamics for non-small-cell lung

cancer: effect of surgery on the development of metastases. J Thorac Oncol. 2012;7(4):723–30.
Deylgat B, Van Rooy F, Vansteenkiste F, Devriendt D, George C. Postsurgery activation of dormant liver micrometastasis:

a case report and review of literature. J Gastrointest Cancer. 2011;42(1):1–4.
Dinshaw KA, Budrukkar AN, Chinoy RF, Sarin R, Badwe R, Hawaldar R, et al. Profile of prognostic factors in 1022 Indian women

with early-stage breast cancer treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys. 2005;63(4):1132–41.
Dolberg DS, Bissell MJ. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature. 1984;309(5968):552–6.
Ducummon D. Tumors in Rats. Rat & Mouse Gazette [Internet]. 1995. Available from: http://www.rmca.org/Articles/tumors.htm.
Edgar A. Anatomy of a working breast. New Beginnings. 2005:44–50.
El-Gohary YM, Metwally G, Saad RS, Robinson MJ, Mesko T, Poppiti RJ. Significance of periductal lymphatic and blood

vascular densities in intraductal carcinoma of the breast. Breast J. 2009;15(3):261–7.
Estourgie SH, Nieweg OE, Olmos RA, Rutgers EJ, Kroon BB. Lymphatic drainage patterns from the breast. Ann Surg.

2004;239(2):232–7.
Fidler IJ, Brodey RS. The biological behavior of canine mammary neoplasms. J Am Vet Med Assoc. 1967;151(10):1311–8.
Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD. The seed and soil hypothesis: vascularisation and brain metastases.

Lancet Oncol. 2002;3(1):53–7.
Forget P, Vandenhende J, Berliere M, Machiels JP, Nussbaum B, Legrand C, et al. Do intraoperative analgesics influence

breast cancer recurrence after mastectomy? A retrospective analysis. Anesth Analg. 2010;110(6):1630–5.
Gervaz P, Bucher P, Morel P. Two colons-two cancers: paradigm shift and clinical implications. J Surg Oncol. 2004;88(4):261–6.
Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of

irradiation as a factor in radiotherapy. Br J Radiol. 1953;26(312):638–48.
Haagensen CD. Diseases of the breast. 3rd ed. Philadelphia: Saunders; 1986. xiii, 1050 p. p.
Hanin L, Zaider M. Effects of surgery and chemotherapy on metastatic progression of prostate cancer: evidence from

the natural history of the disease reconstructed through mathematical modeling. Cancer. 2011;3(3):3632–60.
Hayden DW, Nielsen SW. Feline mammary tumours. J Small Anim Pract. 1971;12(12):687–98.
Head JF, Lipari CA, Elliot RL, editors. Determination of Mean Temperatures of Normal Whole Breast and Breast

Quadrants By Infrared Imaging and Image Analysis. Proceedings of the 23rd Annual EMBS International
Conference; 2001; Istanbul, Turkey: IEEE.

Hsieh CC, Trichopoulos D. Breast size, handedness and breast cancer risk. Eur J Cancer. 1991;27(2):131–5.
Huggins C, Moulder PV. Studies on the mammary tumors of dogs: I. Lactation and the influence of Ovariectomy and

Suprarenalectomy thereon. J Exp Med. 1944;80(5):441–54.
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26(5):605–22.
Jansen LA, Backstein RM, Brown MH. Breast size and breast cancer: a systematic review. J Plast Reconstr Aesthet Surg.

2014;67(12):1615–23.
Joensuu H, Tuominen J, Hinkka S, Klemi P, Toikkanen S, Rasanen O, et al. Risk factors for screen-detected breast cancer.

A case-control study. Acta Oncol. 1992;31(7):729–32.
Katariya RN, Forrest AP, Gravelle IH. Breast volumes in cancer of the breast. Br J Cancer. 1974;29(3):270–3.
Kato I, Beinart C, Bleich A, Su S, Kim M, Toniolo PG. A nested case-control study of mammographic patterns, breast

volume, and breast cancer (new York City, NY, United States). Cancer Causes Control. 1995;6(5):431–8.
Koch AD, Nicolai JP, de Vries J. Breast cancer and the role of breast size as a contributory factor. Breast. 2004;13(4):272–5.
Kolonel LN, Nomura AM, Lee J, Hirohata T. Anthropometric indicators of breast cancer risk in postmenopausal women

in Hawaii. Nutr Cancer. 1986;8(4):247–56.
Lee AH. Why is carcinoma of the breast more frequent in the upper outer quadrant? A case series based on needle

core biopsy diagnoses. Breast. 2005;14(2):151–2.
Lee SK, Kim WW, Kim SH, Hur SM, Kim S, Choi JH, et al. Characteristics of metastasis in the breast from extramammary

malignancies. J Surg Oncol. 2010;101(2):137–40.
Love SM, Love E, Lindsey K. Dr. Susan Love's breast book. 6th ed. Boston, MA: Da Capo Press; 2015.

Morris CR, Kwong KL. Breast cancer in California, 2003. California Department of Health Services, Section CS:
Sacramento, CA; 2004.

Murata S, Kominsky SL, Vali M, Zhang Z, Garrett-Mayer E, Korz D, et al. Ductal access for prevention and therapy of
mammary tumors. Cancer Res. 2006;66(2):638–45.

Namer M, Luporsi E, Gligorov J, Lokiec F, Spielmann M. The use of deodorants/antiperspirants does not constitute a risk
factor for breast cancer. Bull Cancer. 2008;95(9):871–80.

Nunes RD, Martins E, Freitas-Junior R, Curado MP, Freitas NM, Oliveira JC. Descriptive study of breast cancer cases in
Goiania between 1989 and 2003. Revista do Colegio Brasileiro de Cirurgioes. 2011;38(4):212–6.

O'Sullivan TD, Leproux A, Chen JH, Bahri S, Matlock A, Roblyer D, et al. Optical imaging correlates with magnetic
resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy. Breast
Cancer Res. 2013;15(1):R14.

Parbhoo SP, Seifalian AM. Distribution of breast skin blood flow in patients with breast cancer. Breast. 1998;7:201–5.

Pittman RN. Regulation of tissue oxygenation. Morgan & Claypool Life Sciences: San Rafael, CA; 2011.
Prehn RT, Main JM, Schneiderman M. Factors influencing tumor distribution among the mammary glands of the

mouse. J Natl Cancer Inst. 1954;14(4):895–904.
Pullinger BD. A gland of predilection for mammary nodules in a strain of mice deprived of the milk agent. Br J Cancer.

1952;6(1):78–9.

http://www.rmca.org/Articles/tumors.htm


Yu and Mitchell Cancer Convergence  (2017) 1:4 Page 16 of 16
Raju GC, Naraynsingh V. Breast cancer in west Indian women in Trinidad. Trop Geogr Med. 1989;41(3):257–60.
Retsky M, Demicheli R, Hrushesky WJ, Forget P, De Kock M, Gukas I, et al. Promising development from translational or

perhaps anti-translational research in breast cancer. Clin Transl Med. 2012;1(1):17.
Schnitt SJ, Collins LC. Biopsy interpretation of the breast. Philadelphia: Wolters Kluwer; 2018.
Scutt D, Manning JT, Whitehouse GH, Leinster SJ, Massey CP. The relationship between breast asymmetry, breast size

and the occurrence of breast cancer. Br J Radiol. 1997;70(838):1017–21.
Senie RT, Saftlas AF, Brinton LA, Hoover RN. Is breast size a predictor of breast cancer risk or the laterality of the tumor?

Cancer Causes Control. 1993;4(3):203–8.
Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, et al. Noninvasive functional optical spectroscopy of human

breast tissue. Proc Natl Acad Sci U S A. 2001;98(8):4420–5.
Shah N, Cerussi AE, Jakubowski D, Hsiang D, Butler J, Tromberg BJ. Spatial variations in optical and physiological

properties of healthy breast tissue. J Biomed Opt. 2004;9(3):534–40.
Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104–17.
Stearns V, Mori T, Jacobs LK, Khouri NF, Gabrielson E, Yoshida T, et al. Preclinical and clinical evaluation of intraductally

administered agents in early breast cancer. Sci Transl Med. 2011;3(106):106ra8.
Suami H, Pan WR, Mann GB, Taylor GI. The lymphatic anatomy of the breast and its implications for sentinel lymph

node biopsy: a human cadaver study. Ann Surg Oncol. 2008;15(3):863–71.
Svensson T, Swartling J, Taroni P, Torricelli A, Lindblom P, Ingvar C, et al. Characterization of normal breast tissue

heterogeneity using time-resolved near-infrared spectroscopy. Phys Med Biol. 2005;50(11):2559–71.
Tannock IF. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour.

Br J Cancer. 1968;22(2):258–73.
Tavani A, Pregnolato A, La Vecchia C, Negri E, Favero A, Franceschi S. Breast size and breast cancer risk. Eur J Cancer

Prev. 1996;5(5):337–42.
Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for

radiotherapy. Br J Cancer. 1955;9(4):539–49.
Thurfjell E, Hsieh CC, Lipworth L, Ekbom A, Adami HO, Trichopoulos D. Breast size and mammographic pattern in

relation to breast cancer risk. Eur J Cancer Prev. 1996;5(1):37–41.
Toombs BD, Kalisher L. Metastatic disease to the breast: clinical, pathologic, and radiographic features. AJR Am J

Roentgenol. 1977;129(4):673–6.
Tromberg BJ, Zhang Z, Leproux A, O'Sullivan TD, Cerussi AE, Carpenter PM, et al. Predicting responses to Neoadjuvant

chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging. Cancer Res. 2016;76(20):
5933–44.

Tseng WW, Doyle JA, Maguiness S, Horvai AE, Kashani-Sabet M, Leong SP. Giant cutaneous melanomas: evidence for
primary tumour induced dormancy in metastatic sites? BMJ Case Rep. 2009;2009

Tsunemi T, Nagoya S, Kaya M, Kawaguchi S, Wada T, Yamashita T, et al. Postoperative progression of pulmonary
metastasis in osteosarcoma. Clin Orthop Relat Res. 2003;407:159–66.

Wax A. Ductal Carcinoma (Invasive and In Situ): Web MD; 2012 [Available from: http://www.webmd.com/breast-cancer/
ductal-carcinoma-invasive-in-situ?page=2.

Weckermann D, Polzer B, Ragg T, Blana A, Schlimok G, Arnholdt H, et al. Perioperative activation of disseminated tumor
cells in bone marrow of patients with prostate cancer. J Clin Oncol. 2009;27(10):1549–56.

Wynder EL, Bross IJ, Hirayama T. A study of the epidemiology of cancer of the breast. Cancer. 1960;13:559–601.

http://www.webmd.com/breast-cancer/ductal-carcinoma-invasive-in-situ?page=2
http://www.webmd.com/breast-cancer/ductal-carcinoma-invasive-in-situ?page=2

	Abstract
	Background
	Results
	Conclusions

	Background
	The question of tumor location: Why does a tumor occur where it does?
	Breast tumors occur most frequently in the upper outer quadrant

	Methods
	Hypothesis: Tumors preferentially form in regions with high microvascular density

	Results
	Parameter dependence

	Discussion
	Microvessel density and the oxygen diffusion length
	The need for measurements of the microvessel density distribution and fraction of breast tissue in various regions
	Modulation of microvessel density
	Previous hypotheses for increased breast tumor incidence in UOQ are problematic
	Implications
	Diffuse optical spectroscopic imaging could identify hot spots
	Application of hypothesis to tumors in other organs

	Conclusions
	Additional file
	Abbreviations
	Availability of data and materials
	Funding
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

