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Effect direction meta-analysis of GWAS identifies
extreme, prevalent and shared pleiotropy in a large
mammal
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In genome-wide association studies (GWAS), variants showing consistent effect directions

across populations are considered as true discoveries. We model this information in an Effect

Direction MEta-analysis (EDME) to quantify pleiotropy using GWAS of 34 Cholesky-

decorrelated traits in 44,000+ cattle with sequence variants. The effect-direction agreement

between independent bull and cow datasets was used to quantify the false discovery rate by

effect direction (FDRed) and the number of affected traits for prioritised variants. Variants

with multi-trait p < 1e–6 affected 1∼22 traits with an average of 10 traits. EDME assigns

pleiotropic variants to each trait which informs the biology behind complex traits.

New pleiotropic loci are identified, including signals from the cattle FTO locus mirroring its

bystander effects on human obesity. When validated in the 1000-Bull Genome database, the

prioritized pleiotropic variants consistently predicted expected phenotypic differences

between dairy and beef cattle. EDME provides robust approaches to control GWAS FDR and

quantify pleiotropy.
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Genome-wide association studies (GWAS) find mutations
associated with complex traits. A GWAS produces esti-
mates of the effect of each variant on a trait measured by a

regression coefficient b and its standard error (se). From this, a
p value can be calculated for the null hypothesis that the variant
has no association with the trait. Using the p values and the
number of significant variants, it is common to calculate a false-
discovery rate (FDR)1. However, this conventional FDR depends
on the calibration of the p value which in turn depends on the
data conforming to the statistical model assumed in calculating
the p value.

The important implication of FDR is that true discoveries
would be confirmed in a powerful, independent experiment. In
this paper we directly use the ability to confirm a finding in an
independent study to estimate the FDR by using the proportion
of sequence variants which have an effect in the same direction in
two independent datasets. We call this FDRed for ‘effect direc-
tion’ based on a statistical model we call Effect Direction MEta-
analysis (EDME) for effect direction meta-analysis. EDME is
easily extended to calculate the FDR by effect directions (FDRed)
for a multi-trait GWAS. This will allow us to know the number of
traits that a significant variant is associated with and precisely
which traits these are.

Due to the recent availability of many GWAS results with large
sample sizes in humans2,3, meta-analysis of public GWAS sum-
mary statistics significantly improved our understanding of
pleiotropy4–8. Naturally, traits that are genetically correlated must
share part of their causal variants, however, if traits are uncor-
related, can we still detect widespread pleiotropy?

Our study starts with multi-trait GWAS of individual data
where the traits are decorrelated by a Cholesky transformation9.
After GWAS, we focus on using the information of the con-
sistency of variant effect directions to identify pleiotropic variants
associated with uncorrelated traits, instead of distinguishing dif-
ferent types of pleiotropy10. We aim to use: (1) the consistency of
variant effects in different populations to evaluate the FDRed
independent of their p values; (2) the information on the con-
sistency of variant effects for multiple traits across different
populations to quantify pleiotropy at both the variant and trait
levels. We propose an EDME of GWAS of 34 complex traits of
over 44,000 dairy bulls and cows with over 17.6 million sequence
variants. A validation analysis with the 1000-bull genome data-
base confirms the informativeness of pleiotropic variants priori-
tised by the EDME model.

Results
Single-trait GWAS and conventional multi-trait meta-analysis
in bull and cow populations. The phenotype of the cows was
based on their own record for each trait corrected for fixed effects,
while that of the bulls was based on their daughter’s performance.
The phenotype correlation matrix among the 34 traits was cal-
culated separately in the bulls and cows and an average correlated
matrix was derived. This average correlation matrix was used to
calculate a Cholesky factor (L matrix)9 to be applied to the 34
traits. The Cholesky transformation decorrelates the 34 traits by
ordering the traits from 1 to 34 and correcting each trait for all
the traits before it in the list. We use this method because the
traits vary in their completeness, i.e., some traits have more
records than others. By ordering the traits from the trait with
most complete data to the trait with least complete data, we can
make use of all the data because the Cholesky transformation of
the Kth trait in the list only needs data on the K− 1 traits and
individuals with trait K to have data on all K− 1 traits. Thus
the Cholesky transformation produces uncorrelated traits and
makes maximal use of incomplete data (Supplementary Data 1,

Supplementary Figs. 1 and 2). The average relatedness between
the bull and cow populations was around 0 (Supplementary
Fig. 3). The transformation produced traits which were almost
uncorrelated, but the correlations were not exactly zero in either
the cow or bull populations, because the correlation matrices
differed slightly between the sexes (Supplementary Fig. 2). The
variance of each trait was close to 1 (Supplementary Data 1). For
clarity in what follows, when describing results specifically related
to Cholesky-transformed traits, a label ‘CT’ was used. For
example, a trait called CT temperament was interpreted as the
eighth trait in the list corrected for its preceding seven traits.
When describing results related to original traits that were not
Cholesky-transformed, a label ‘raw’ was used, e.g., raw tempera-
ment. The raw protein yield (prot, the first trait) was identical to
the CT protein yield.

On average across 34 CT traits, the heritability was 0.42
(±0.035, standard deviation) in bulls and 0.164 (±0.029) in cows
(Supplementary Data 1), which was expected as bull phenotypes
were more accurate11. On average at p < 1e−6, 1900 (±813)
variants were significant per trait in bulls and 2018 (±795) in
cows. The FDR calculated by conventional methods (Bolormaa
et al.1) at p= 1e−6 was 0.22 (±0.045) for bulls and 0.1(±0.021)
for cows across 34 CT traits.

Using the established meta-analysis method of ref. 1, a multi-
trait GWAS was calculated within the bulls and cows separately
(Supplementary Fig. 4a, b). Overall, many significant variants
(associated with at least one CT trait) detected in one sex were
significant in the other sex (Supplementary Fig. 4c and
Supplementary Data 2). At the p < 1e−6 level, 25,454 variants
were significant in bulls, 31,076 in cows and 14,587 in both bulls
and cows. A weighted meta-analysis combining variant t value
from bulls and cows further increased the number of significant
variants to 93,513 (Fig. 1 and Supplementary Data 2). The
conventional FDR for all types of meta-analysis was smaller
than 0.1% (Supplementary Data 3). A variant clustering analysis
supports the existence of pleiotropic QTL distinguished from
linkage disequilibrium (LD) between sequence variants (see
Methods and Supplementary Fig. 5).

The EDME model. We introduce the EDME model to analyse
GWAS summary statistics for 34 CT traits estimated from the
bull and cow populations separately. In the EDME model, the
trait-associated variants were categorised as: ‘true negative’ (T−)
variants that truly decrease the trait value, the ‘true positive’
(T+) variants that truly increase the trait value and the ‘true
zero’ (T0) variants with no reliable effects on the trait (the left
panel of Fig. 2a). However, the observed effect of each variant on
a trait was classified as positive or negative so that when the
effect of a variant in both bulls and cows was described it fell
into one of the classes ‘++’, ‘−−’, ‘+−’ and ‘−+’ (Fig. 2a and
Methods).

We assume that true positives were always observed in the ++
class and true negatives in the −− class and that true zero effect
variants have one-fourth probability of being in any of the four
classes. This then allowed the calculations

T0 ¼ 2 ´ n Að Þ; ð1Þ

T� þ Tþ ¼ Tr ¼ n Bð Þ � T0

2
; ð2Þ

Single-trait FDRed ¼ T0

n Að Þ þ n Bð Þ ; ð3Þ

Single-trait TDRed ¼ Tr

n Að Þ þ n Bð Þ : ð4Þ
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Where n(A) was the observed number of variants with
inconsistent effect directions (‘+−’ and ‘−+’) and n(B) was
the observed number of variants with consistent effect directions
(‘++’ and ‘−−’) in GWAS of two different populations. Tr
denoted the combined number of T− and T+. Then, the FDR and
TDR by effect directions (single-trait FDRed and TDRed,
respectively) were calculated as Eqs. 3 and 4.

The single-trait EDME and FDRed. Based on the number of
variants with inconsistent effect directions between sexes (n(A)),
the FDRed and conventional FDR averaged across 34 CT traits
were compared within a range of p value thresholds imposed in
both sexes (Fig. 2b). Across 34 CT traits, the number of variants
significant in both sexes ranged from 241,657(±6071) at p= 0.1,
798(±424) at p= 1e−6, to 14(±12) at p= 1e−100 (Fig. 2b). Both
types of FDR decreased as the p value threshold was made more
stringent, with the FDRed being smaller than the conventional
FDR. At the p= 1e−3 level, amongst 2850(±1218) significant
variants for both sexes, the single-trait FDRed was 0.032(±0.015)
while the conventional FDR was 0.98(±0.015). At the p= 1e−9
level, amongst 408(±213) significant variants for both sexes, the
single-trait FDRed dropped to 0 and the conventional FDR was
1.6e−05(±3.4e−06) (Fig. 2b). When imposing the p value
threshold only in one sex, the FDRed was on average higher than
the conventional FDR until a very small p threshold was achieved
(Supplementary Data 4). This may be due to differences in LD
structure between cows and bulls and/or to the lack of power to
detect real effects in both sexes. However, as shown above, if the
consideration was restricted to sequence variants that were sig-
nificant in both sexes, the agreement in the sign of the effect was
high and hence the FDRed was low.

The multi-trait EDME. The single-trait EDME was extended to
multiple traits (see Methods) to calculate FDRed and quantify
pleiotropy. For each variant, the dot product of the vector of
signed t values of both sexes (Π, Eq. 5, detailed in below) was used
to quantify the overall agreement of the effect directions on
multiple traits per variant. A positive Π indicates effects in the

same direction between bulls and cows, whereas a negative Π
indicates the opposite direction of effect between bulls and cows.

Πi ¼ ti1 � tTi2; ð5Þ

Multi-trait FDRed ¼ ½n variantjΠi ≤ 0ð Þ ´ 2�=nðtotalÞ; ð6Þ

Estimated number of TE ¼ 2 ´
XK
1

n Bð ÞMTR �K; ð7Þ

Number of TCTr ´V ¼ n variantð Þ ´ TE: ð8Þ
For Eq. 5, ti1 was the t value vector for varianti of population 1 with
K elements and ti2 was the t value vector for varianti of population 2
with K elements; K was the total number of traits analysed in each
population (K= 34 in this study). For a group of variants, Π values
allowed the use of the same logic calculating the single-trait FDRed
(Eqs. 1 and 3) to calculate a multi-trait FDRed (Eq. 6). For Eq. 6, n
(total) was the total number of variants selected.

As well as this multi-trait estimate of FDR, it is also possible,
for each sequence variant, to count the number of traits with the
same direction of effect in population 1 (bulls) and population 2
(cows). Allowing for the fact that half the traits were expected to
be in the same direction by chance, the EDME logic can estimate
the number of traits showing a True Effect (TE) for each variant
(Eq. 7). While this estimate was subject to large sampling error
for any variant, its average across a large group of variants was
consistent (as shown in the results described in the following).
For Eq. 7,

PK
1 n Bð ÞMTR was a natural number ranging from 0 to

K, where for each trait (out of K traits), n Bð ÞMTR = 1 if the variant
has the same effect direction and n Bð ÞMTR = 0 if the variant has
different effect directions between the two populations.

The estimated number of TE averaged across a group of
variants TE

� �
× the number of variants in that group (n(variant),

Eq. 8) estimated the number of true combinations (TC) of trait by
variant effects, TCTr ´V . TCTr ´V can be used as a cut-off to
prioritise informative trait-variant combinations. Two additional
pieces of information can be extracted from the prioritised trait-
variant combinations: (i) the observed number of TE for each
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Fig. 1 The Manhattan plot of p values of weighted meta-analysis combining GWAS results from bulls and cows for each CT trait. The blue line indicates
the weighted multi-trait meta-analysis p value= 1e−6.
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variant suggesting the extent of pleiotropy at the variant level;
(ii) the pleiotropic variants related to each trait, variantstrait,
suggesting pleiotropic variants that affect each trait (illustrated in
the following results).

The genome-wide characteristics of multi-trait FDR and
pleiotropy. Similar to the single-trait FDRed described above, the
multi-trait FDRed remained smaller than the conventional FDR
when imposing the multi-trait p value threshold in both sexes
(Fig. 2c). The number of variants significant in both sexes ranged
from 641,399 at multi-trait p= 0.1, 14,587 at p= 1e−6, to 631 at
p= 1e−100 (Fig. 2b). At the multi-trait p= 1e−2 level, amongst
89,223 significant variants for both sexes, the multi-trait FDRed
was 0.02 while the conventional FDR= 1. At p= 1e−3, the
multi-trait FDRed was 0.003 (conventional FDR= 0.49) and it
dropped to 0 at the p= 1e−6 level where the estimated number of
TE per variant was 9.63. That is, the average number of traits
affected by a single-nucleotide polymorphisms (SNP) in this

group is 9.63. Additional analysis with functional data12,13 indi-
cated that both single-trait and multi-trait FDRed can help find
informative variants at lenient p value thresholds where con-
ventional FDR was large (Supplementary Note 1). When
imposing a significance threshold in only one sex, at the multi-
trait p value threshold of 1e−6, the multi-trait FDRed was 0.14 in
bulls and 0.2 in cows (Supplementary Data 5).

To further dissect the pleiotropy with a group of informative
variants, 93,513 variants with the weighted multi-trait p value
(pwm) < 1e−6 from the weighted meta-analysis combining GWAS
results of bulls and cows (Fig. 1), were selected. Applying Eq. 8 to
this group of variants, the number of TC of trait by variant
TCTr ´ vð Þ was estimated as 93,513 × 9.63 estimated TE

� �
=

900,820 at this p threshold. This indicated that 900,820
combinations of trait by variant can be interpreted as ‘true’. To
specify these combinations, we chose those ranked as top 900,820
by their absolute weighted t values combing sexes across 34 CT
traits. These combinations of trait by variant contained 92,537

Fig. 2 The graphical representation of the EDME model and false-discovery rate (FDR). a The model expectations of true positive, zero and negatives in
the left panel are equated with the observation of variant effect directions (the number of ‘++’ in the first quadrant, ‘−+’ in the second quadrant, ‘+−’ in
the third quadrant and ‘−−’ in the fourth quadrant) of GWAS in two populations (e.g., bulls and cows). The grey boxes indicate the first solvable equation
where the number of (‘−+’ and ‘+−’)= T0

2 . b Distribution of FDR effect direction (FDRed) and the conventional FDR for a range of single-trait p value
thresholds imposed for both sexes. At each p value point, the mean of FDR and its standard error across 34 CT traits were given. The single-trait FDRed
was based on the proportion of variants with inconsistent effect directions between sexes (Eq. 3). The grey line indicates the number of variants significant
in both sexes at each p value threshold. c Distribution of FDRed and conventional FDR for a range of multi-trait p value thresholds imposed for both sexes
(grey line). The multi-trait FDRed was based on the dot product (Π) of the variant effects (beta/s.e.) from two sexes (Eq. 5). Using the count of variants
with consistent effect directions across multiple traits, EDME estimates the number of true effects (TE) averaged across a selection of variants (Eq. 7).
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unique variants with Π > 0 (99% of 93,513 variants with pwm < 1e
−6), and their Π values, which indicate the effect direction
agreement for multi-trait analysis, were correlated with their
conventional FDR based on pwm (Fig. 3a).

For each of the prioritised 92,537 variants, we counted the
number of traits with which they were associated among the ‘true’
900,820 combinations of trait by variant and this was defined as
the observed number of TE. The observed number of TE for each
variant ranged from 1 to 22 with a mean of 9.7 (Fig. 3b and
Table 1). Also, these prioritised pleiotropic variants tagged up to
3550 (11.6% of 30,514) and 3958 (13% of 30,440) clusters
representing different QTL in bulls and cows, respectively. Based
on the prioritised pleiotropic variants that were also located
within these clusters, each cluster had 9.79 and 9.71 (ranging
from 1 to 22) observed TE in bulls and cows, respectively. These
results were consistent with the average number of TE per variant
(9.63) estimated previously (Eq. 7, Fig. 4b). The pleiotropic
characteristics of these variants were detailed in Table 1. The pwm
and conventional FDR decreased with the increase of the Π value
which was indicative of the consistency of effect direction

between two populations. A list of the top 500 variants based on
Π value within each category of pleiotropy was shown in
Supplementary Data 6.

The most pleiotropic variants accounting for 0.00003% of the
genome with observed TE on 22 CT traits were close to the GC
region (Chr6:88.8M) (Supplementary Data 6). Variants with TE on
22 CT traits also tagged the gene ZNF613 (Chr18:58.1M) which
was close to the CTU1 region (Chr18:57.5M). Variants from the
CTU1 region had observed TE on 20 CT traits. Both GC and CTU1
loci were reported as lead dairy cattle pleiotropic loci in the 2017
pleiotropy study9. Other commonly known major loci for dairy
cattle (see refs. 9,11,14–16) were also captured, including DGAT1
(Chr14:1.8M) that had TE on up to 17 CT traits, MGST1
(Chr5:93.9M) that had TE on ∼13 CT traits, CSN1S1 (Chr6:87.1M)
that had TE on ∼12 CT traits, GHR (Chr20:32M) that had TE on
∼15 CT traits and ENSBTAG00000048091 (beta-lactoglobulin-2-
like), a potentially duplicated gene of the adjacent PAEP (beta-
lactoglobulin, Chr11:103.2M) that had TE on ∼11 CT traits.

Less known pleiotropic loci were also identified. A highly
pleiotropic loci PC (Chr29:45.6M), coding for the enzyme
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Fig. 3 The distribution and characteristics of pleiotropic variants prioritised by the EDME model in combination with the weighted multi-trait p value.
a Scatter plot for the relationship between the variant Π value and the conventional FDR based on the weighted multi-trait meta-analysis p value.
b Distribution of the estimated and observed number of true effects on traits for each variant. The estimated number (#) of true effects per variant is based
on Eq. 5, and the observed number of true effects for each variant is based on the prioritised trait by variant combinations using Eq. 8. c Boxplots of
averaged effect size (absolute weighted t value of bulls and cows, b/se) across 34 CT traits for each one of the categories of variants with a varied number
of traits truly affected. d Boxplots of standard deviation (SD) of effect size across 34 CT traits for each one of the categories of variants with a varied
number of traits truly affected.
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pyruvate carboxylase which is needed for gluconeogenesis and
lipogenesis, had TE on ∼18 CT traits. A pleiotropic locus with TE
on ∼12 CT traits was SLC22A6 (Chr29:41.9M) which had
reported roles in regulating water metabolism in mammals17. In
addition, variants from the X chromosome (chromosome 30)
with pleiotropic effects were also identified. Tagged genes
included CD40LG (Chr30:20.2M) and ARHGEF6 (Chr30:20.3M),
although these variants only affected 2–3 CT traits (Supplemen-
tary Data 6).

Further analysis of those informative pleiotropic variants
showed that variants affecting a larger number of CT traits had
overall larger effect sizes across 34 CT traits, compared to those
variants that affected a smaller number of CT traits (Fig. 3c).
Many variants that showed widespread pleiotropic effects, i.e., TE
> 8, had large effect size variation across 34 CT traits (e.g., the
outliers in boxplots of Fig. 3d). This meant that these pleiotropic
variants could have large effects on some traits but small effects
on other traits. Some noticeable variants/loci associated with
multiple CT trait groups were detailed in Supplementary Note 2,
Supplementary Figure 6, Supplementary Datas 7 and 8.

Characteristics of trait-related variants. As described above, the
900,820 combinations of trait by variant assigned pleiotropic
variants to each CT trait (variantstrait). Each set of variantstrait was
tested for whether the variantstrait had specific associations with
the trait that they were assigned to. For each trait, the single-trait
FDRed was calculated using the trait-related variantstrait. Such
single-trait FDRed (average < 0.1) was much smaller than the
single-trait FDRed calculated using those general pleiotropic var-
iants associated with any one of the 34 traits (multi-trait pwm <
1e−6, average single-trait FDRed > 0.7) (Supplementary Fig. 7a).
Also, previously identified variants regulating cattle stature18 had
the strongest enrichment (adjusted p= 1.9e–08) in the variantstrait
related to dairy cattle CT stature (trait 19) (Supplementary
Fig. 7b). These results support that the variantstrait had specific
associations with the traits they were related to. However, we note

that these variants were related to CT traits and the interpretation
of them is different from the raw traits.

The sharing of pleiotropic variants between traits. Among the
900,820 combinations of trait by variant, we counted the number
of variants that affected each pair of CT traits (Fig. 4a). Many
pairs of CT traits have higher counts than expected by chance.
While many pleiotropic variantstrait were detected for CT milk
production traits (the first four traits) and they had significant
sharing of pleiotropic variantstrait amongst themselves, CT milk
production traits did not have significant sharing of pleiotropic
variantstrait with every other CT trait. Although traits like CT
body condition score (BCS) had the least amount of pleiotropic
variantstrait, CT BCS had significant sharing of pleiotropic var-
iantstrait with a wide range of other CT traits.

For each CT trait, the pleiotropic variantstrait sharing index, i.e.,
the number of pleiotropic variantstrait overlapping divided by the
number in the union for each trait pair, averaged across the other
33 traits was calculated. As shown in Fig. 4b, the average
pleiotropic variantstrait sharing index was used to rank CT traits
from ‘influential’ (sharing pleiotropic variantstrait with many
traits) to ‘independent’ (sharing pleiotropic variantstrait with few
traits). The first trait protein yield was ranked as the most
influential trait, followed by other CT milk production traits. The
CT type trait Bone (trait 21), the original trait of which indicated
the flatness of legbone of the cattle but is negatively correlated
with fatness, ranked the fifth for its influence. The last CT trait
BCS ranked relatively high for its influence, given its small
number of pleiotropic variantstrait. The CT temperament (trait 8)
and the overall type (OType, trait 25) were ranked as relatively
independent amongst traits analysed (Fig. 4b).

Raw trait relationships informed by Cholesky decorrelation.
The aforementioned results showed that the CT milk production
traits had limited sharing of pleiotropic variantstrait with other CT
traits (Fig. 4a). The Cholesky transformation corrected each

Table 1 Characteristics of selected informative pleiotropic variants.

Observed TE type # Variants Genome fraction (%) pwm (se) Conventional FDR (se) Π (se)

1 3 0.00002 1.0E−09(9.9E−10) 1.1E−07(1.0E−07) 20.7(0.9)
2 116 0.0007 1.7E−07(2.5E−08) 3.8E−05(1.4E−05) 24.8(1.1)
3 666 0.0038 1.1E−07(8.3E−09) 4.4E−05(4.5E−06) 30.1(0.5)
4 2195 0.012 9.0E−08(4.0E−09) 2.1E−05(1.8E−06) 34.7(0.5)
5 5040 0.029 1.2E−07(3.2E−09) 1.5E−05(9.7E-07) 36.3(0.5)
6 6264 0.036 8.5E−08(2.4E−09) 1.8E−05(9.2E-07) 45(0.4)
7 8323 0.047 1.2E−07(2.3E−09) 2.0E−05(8.8E−07) 48(0.4)
8 9540 0.054 1.3E−07(2.5E−09) 3.4E−05(1.4E−06) 52.5(0.4)
9 11,035 0.063 1.6E−07(2.5E−09) 5.4E−05(2.1E−06) 52.1(0.4)
10 11,354 0.064 2.0E−07(2.8E−09) 5.1E−05(1.6E−06) 54.3(0.5)
11 12,622 0.071 1.8E−07(2.4E−09) 5.6E−05(1.7E−06) 49.8(0.5)
12 9589 0.054 1.4E−07(2.4E−09) 5.8E−05(2.0E−06) 63.2(1.2)
13 6791 0.038 1.2E−07(2.7E-09) 5.4E−05(2.5E−06) 67(1.8)
14 4289 0.024 1.1E−07(3.4E−09) 5.1E−05(3.4E−06) 168.2(6.7)
15 1834 0.010 8.9E−08(4.6E−09) 3.7E−05(3.4E−06) 129.4(9.9)
16 1072 0.006 5.5E−08(5.1E−09) 1.9E−05(1.9E−06) 160.3(14.1)
17 817 0.0046 1.4E−08(1.5E−09) 9.4E−06(8.8E−07) 176.8(17.4)
18 304 0.0017 8.1E−09(4.2E−09) 5.0E−06(1.9E−06) 120.7(10.3)
19 448 0.0025 1.4E−10(6.2E−11) 5.3E−07(2.2E−07) 140(1.2)
20 130 0.0007 3.9E−20(3.9E−20) 2.9E−17(2.9E−17) 144.8(1.5)
21 99 0.0006 6.0E−25(4.2E−25) 1.7E−22(1.2E−22) 143(1.2)
22 6 0.00003 2.4E−31(1.9E−31) 8.8E−29(7.0E−29) 155.4(18.8)

For each pleiotropy category, i.e., the observed number of true effects (TE) for each variant, the number (#) of variants for each type of TE, the number of variants relative (genome fraction) to the total
number sequence of variants (∼17M), averaged weighted multi-trait p value (pwm), conventional false-discovery rate (FDR) and the dot product of t value between sexes (Π, Eq. 5) are shown with their
standard error (se) in parenthesis.
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Fig. 4 The sharing of pleiotropic variants between Cholesky-transformed (CT) traits. a The sharing of pleiotropic variants related to each CT trait,
variantstrait, between pairs of CT traits. The numbers in parentheses are the assigned pleiotropic variantstrait for each CT trait based on the true
combinations of trait by variant prioritised by EDME. The numbers in boxes are the number of variants in the overlap between pairs of CT traits. Red boxes
indicate that the sharing of pleiotropic variantstrait between CT traits is significantly different from random based on hypergeometric tests (accounting for
the number of pleiotropic variantstrait assigned for each trait and the total number of selected variants). b The ranking of CT traits using the sharing index of
pleiotropic variantstrait, calculated as the number of overlap over the number of union for each CT trait pair, averaged across the other 33 traits. The y-axis
has three columns separated by ‘|’ that are defined from left to right as: the CT trait name, the order of the Cholesky transformation and the number of
pleiotropic variantstrait assigned to that CT trait. The x-axis indicates the average sharing index of pleiotropic variantstrait. Error bars indicates the standard
error of the average of the sharing index of pleiotropic variantstrait across 33 CT traits.
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target raw trait for all preceding raw traits. For instance, the CT
survival (trait 7) was corrected for raw traits 1–6 which included
the trait protein yield (trait 1). The correction used the overall
regression coefficient. Therefore, a sequence variant that affected
protein yield and raw survival by the amount predicted by the
regression of raw survival on protein predicts, had no effect on
the CT survival (trait 7). If all variants that affected raw protein
yield had the predicted effects on raw survival, then none of them
would have an effect on CT survival. This is indeed almost what
we observe (Fig. 5a, b). The simplest interpretation of this pattern
of effects is that these variants only affected raw survival because
of their effects on protein yield. In other words, protein yield
tends to cause raw survival, or farmers cull cows with low protein
yield. Figure 5a, b highlights the effects of variants from key genes
associated with the raw trait of protein yield and survival.

To verify this causal inference, bidirectional Mendelian Rando-
misations19 (MR) using variants as instrumental variables imple-
mented in GSMR20 were conducted for 50 raw trait pairs that had
the least amount of variant sharing after Cholesky transformation
(Supplementary Data 9). Defined as the Bonferroni-correction

adjusted pMR < 0.05 for forward MR and adjusted pMR≥ 0.05
for reverse MR, 8 putative causal relationships were identified

(Supplementary Data 9), including protein �!cause survival (Fig. 5c, d).
Additional plots of the MR analysis indicated the existence of
directional pleiotropy20,21 in the MR of survival protein, but not in

the MR of protein �!cause survival (Supplementary Fig. 8). Given that
there were a total of 218 pairs with adjusted pMR < 0.05 for forward
MR and adjusted pMR≥ 0.05 for reverse MR and that a total of 2664
MR tested, the enrichment of the 8 putative causal pairs out of 50
was small but different from chance (poverlap= 0.043 based on
hypergeometric test). Raw somatic cell count (SCC) also had some
putative causal effects on raw mammary related traits (Supplemen-
tary Data 9).

Pleiotropic variants. To the best of our knowledge, we defined the
novel pleiotropic variants as those which were outside the ±2Mb
region of the 1181 pleiotropic SNPs with pwm < 1e−6 in the
2017 study9 that used high-density SNP array genotypes to analyse
25 dairy cattle traits. These previously detected 1181 pleiotropic
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Fig. 5 An example of the putative causal association between protein (trait 01) and raw survival (trait 07). a scatter plot of GWAS t (b/se) value of raw
traits of protein and survival. Correlation (r) of effects between traits were indicated. b Scatter plot of GWAS t (b/se) value of Cholesky traits of protein
and survival. c Plot of effect sizes of forward Mendelian Randomisation using raw trait protein as exposure (x, causal variable), raw trait survival as
outcome (y, effect variable) and non-pleiotropic variants as instrumental variables (z)20. Bonferroni multi-testing adjusted p value of Mendelian
Randomisation (pMR) is indicated. d Plot of effect sizes of reverse Mendelian Randomisation using raw trait survival as the exposure and raw trait protein as
the outcome.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0823-6

8 COMMUNICATIONS BIOLOGY |            (2020) 3:88 | https://doi.org/10.1038/s42003-020-0823-6 | www.nature.com/commsbio

www.nature.com/commsbio


SNPs tag 65,420 sequence variants out of the 92,537 informative
pleiotropic variants identified in the current study. According to the
annotation of Ensembl VEP22, the remaining 27,117 pleiotropic
variants were related to 1347 Ensemble genes and around 10% of
these variants were not intergenic or intronic variants. An LD
pruned set (LD r2 < 0.1 in 2Mb sliding windows) of these variants
were detailed in Supplementary Data 10. These pleiotropic QTL
included variants close (<0.5Mb) to IGFBP7 (Chr6:74.5M)23,
DNMT3B (Chr13:62.6M)24, SLC24A4 (Chr21:57.6M)25, SLC37A126

and FTO (Chr18:22.1M)27 which were reported as single-trait or
production trait QTL previously. However, there were also many
loci not previously reported in cattle, such as intergenic variants
tagging MCF2 (ChrX:23M), CTNNA2 (Chr11:54.9M), NSF
(Chr19:46M) and KRT14 (Chr19: 42.4M).

Two examples of the less reported pleiotropic loci in cattle are
given in Fig. 6a, b and the variant effects on 37 original traits were
detailed. On cattle chromosome 18 (22.5M), the top variant
within the intronic region of FTO gene had pleiotropic effects on
raw fat percentage, milk yield and many raw linear assessment
traits, including likeability (Like), rear teat placement (TeatPR)
and teat length (TeatL) (Fig. 6a). Variants with stronger
pleiotropic effects than the FTO variants were found from the
intergenic region between the adjacent IRX3 and IRX5 and
between AKTIP and RPGRIP1. Variant clustering (see Methods)
already indicated the existence of multiple QTL in this region
(Fig. 6a). To further verify if these three variants mark more than
one causal variant, we fitted all three simultaneously. Although
close to FTO, all three variants were significant when fitted
together and all three had different patterns of effects across raw
traits (Fig. 6a). This observation appeared to mirror the bystander
gene case of the human FTO where the regulatory effects of FTO
on human body index and obesity risks are dependent on its
neighbour genes28–30. All three loci had effects on raw
temperament (Temp).

On chromosome 19, many pleiotropic variants were identified
from the 42.2 to 42.4M region (Fig. 6b), tagging a cluster of
keratin genes, usually making up the cornified surface of rumen
and skin31, including KRT9, KRT14, KRT15, KRT16, KRT19,
KRT35, and KRT36. Again, cluster analysis indicated the
existence of several QTL in this region. The joint analysis showed
that selected top variants had a correlated pattern of effects on

milk production traits. These same variants had a less correlated
pattern of effects on raw traits of SCC, temperament and many
raw linear type traits of the mammary gland (Fig. 6b), although
these effects were relatively small.

Validating the pleiotropic variants prioritised by EDME and
p value. Three sets of pleiotropic variants were selected for vali-
dation analysis with 37 raw traits (see Methods and Supple-
mentary Data 11): (1) the 92,537 informative pleiotropic variants
prioritised by the EDME model after pwm < 1e−6 selection, (2)
93,513 variants prioritised by pwm < 1e−6 alone and (3) a random
set of 93,513 variants. Overall, both the EDME with pwm and pwm
alone prioritised pleiotropic variants predicted that dairy cattle
were genetically better than the beef cattle for dairy traits and the
difference in predictions between beef and dairy was generally
lowest in the Random set (Fig. 7). Note that for raw SCC, fertility
(Fert), temperament (Temp), milking speed (MSpeed) and like-
ability (Like), larger gEBV indicates poorer dairy trait perfor-
mance. Based on our knowledge, larger gEBV in dairy than beef
cattle is expected for 13 raw traits (Supplementary Data 12). For
these 13 traits, variants prioritised by EDME combined with
p value showed the most frequent (9/13 in bulls and 7/13 times in
cows) prediction of the largest advantage in gEBV of dairy over
beef cattle (Fig. 7) compared to other sets.

Discussion
In this paper, we focus on finding pleiotropic variants and iden-
tifying the traits that each variant affects using EDME. Our
approach differing from other published studies in three respects.
Firstly, we use individual animal data rather than GWAS sum-
maries. This is partly out of necessity because few summary data
are available for cattle and most non-human species, but also,
because some information is lost in summaries, it is better to start
with individual data when this is available. Secondly, we use
uncorrelated traits by applying a Cholesky transformation to the 34
raw traits. The choice of Cholesky transformation maximises the
amount of data used by ordering the traits from the trait with the
most complete data to the trait with the least complete data. Each
CT trait is the raw trait corrected for all traits before it in this order.
Transformed traits are always difficult to interpret but some
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Fig. 6 Examples of pleiotropic variants. a The regional Manhattan plot for the pi value of the AKTIP-FTO-IRX3-IRX5 locus together with the heatmap of
effect sizes (t values, b/se) across 37 raw traits shown for top pleiotropic variants labelled by an arrow, triangle, and diamond. b The regional Manhattan
plot for the pi value of the KRT35-KRT14-KRT16 loci together with the heatmap of effect size across 37 raw traits shown for top pleiotropic variants labelled
by an arrow, triangle, and diamond. In small heatmaps, the t values were calculated by fitting three targeted variants jointly for each raw trait (GCTA-
COJO37). Larger dots had smaller p values of the weighted multi-trait meta-analysis. Dot colour represented the pruned variants from different clusters of
variant pairs (see Methods).
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interpretation of the CT traits is still possible. For instance, survival
corrected for milk production traits focusses on reasons for death
or culling other than milk production. However, when the number
of traits considered increases, CT traits ordered late in the list
would have reduced interpretability, but this does not affect the
estimation of the multi-trait p value, FDRed and number of traits
associated with each variant. Where GWAS is already conducted
for many potentially correlated traits, it is also possible to dec-
orrelate the variant-trait association matrix as reported by Jordan
et al.7. However, as the Jordan et al. stated, traits decorrelated using
their approach do not necessarily correspond to any specific bio-
logical traits of interest7. While we do not aim to distinguish
between horizontal and vertical pleiotropy, CT traits have a natural
interpretation for vertical pleiotropy or Mendelian randomisation
where the causal trait precedes targeted traits. However, we have
limited power to distinguish cause and effect. Thirdly, we use two
separate populations (bulls and cows) to estimate the FDR and the
number of true discoveries. This method does not depend on the
exact calculation of p values which depends on a statistical model
that may not describe the data exactly.

The metric FDRed provides an alternative and powerful
approach to controlling GWAS false discoveries. The FDRed
estimated from the sign agreement between results from bulls and

cows is smaller than the conventional FDR when variants are
chosen that pass a significance test in both sexes. It is possible that
variants with small effects but enriched in functional variants can
be prioritised by the FDRed (Supplementary Note 1). When
variants are selected based on one population only, FDRed is
higher than the conventional FDR. This is probably explained by
slight differences between the bulls and cows. The bulls come
from a slightly different population (e.g., older) and therefore the
pattern of LD was different between cows and bulls. Also, the
phenotypic values in cows contained larger error variances than
bulls11, therefore, the power for detecting lead variants across 34
traits was different between these two populations, as shown in
heritability estimates (Supplementary Data 1), and the correla-
tions between traits were slightly different (Supplementary Fig. 2).
These findings suggest that when validating variants using GWAS
summary statistics from different populations, the definition of
the trait and LD within the populations should be as similar as
possible. The genetic correlation between a trait measured in
males and females is not always 1.0 and this could create another
difference between GWAS results from the two sexes. However,
this did not apply in our case because the ‘phenotype’ of the bulls
came from the performance of their daughters. These insights are
important for the FDR control and validation of GWAS.

Fig. 7 Validation of variant selections. Each bar represents the t value calculated as the mean difference (Δ) of the genomic estimated breeding value
(gEBV) between dairy and beef cattle in the 1000-bull database divided by the standard error (se) of that mean difference. One can interpret each bar as a
signed t value for the difference of gEBV between dairy and beef cattle and the reference for the mean difference comparison was the beef cattle. The
gEBVs were predicted by variants selected using the variant × trait cut-off estimated by the EDME model on top of pwm < 1e−6 (blue bars), by pwm < 1e−6
alone based on weighted meta-analysis (green bars), and random variants (yellow bars). The predictive equations were trained in bulls (a) and cows (b).
As labelled by black ×, some comparisons have the value of the mean differences between dairy and beef cattle not significantly different from 0. Bars with
thick black borders are the raw traits expected to have larger gEBV in dairy cattle compared to beef cattle. Note that for raw SCC, fertility Fert, Temp,
MSpeed and Like, larger gEBV indicates poorer dairy trait performance.
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EDME quantifies the number of traits associated with variants
in general and with particular variants based on the agreement of
variant effect-directions for multiple traits across two populations.
This unique analysis provides additional quantities for pleiotropy
which fills a gap in our previous methods where only the multi-
trait p value was estimated to describe the overall magnitude of
variant effects on multiple uncorrelated traits9. As mentioned
above, Jordan et al.7 decorrelated a variant-trait association matrix
to study horizontal pleiotropy where they quantified the magni-
tude and number of associated traits for all variants that entered
the study. Our analysis focuses on identifying pleiotropic variants
for uncorrelated traits in general and uses the multi-trait p value to
prioritise a set of credible pleiotropic variants that were analysed
by EDME to eliminate false discoveries (Π > 0) and dissect
pleiotropy. The two types of analysis serve different purposes and
data availability in two species.

Among variants with p < 1e−6 in both sexes we estimate that
the average number of traits affected per variant (TE) was 9.6 and
this supports the conclusion that pleiotropic effects on uncorre-
lated traits are widespread. This conclusion is also reached by
Jordan et al.7 using a different analysis in humans. Widespread
pleiotropy was also found by analyses of GWAS of correlated
traits in humans6,8. However, EDME showed that variants varied
widely in the number of traits affected from 1 to 22. In general,
variants with a large effect on one trait tended to have small
effects on many traits (Fig. 4c, d). In additional, EDME assigned a
set of pleiotropic variants to each CT trait (trait-related variants,
variantstrait) to inform trait biology which is supported by pub-
lished data18 (Supplementary Fig. 7).

We discovered that the lack of sharing of variants between CT
traits can to some extent inform causal relationships between raw
traits, as supported by MR analysis (Fig. 5 and Supplementary
Fig. 8 and Supplementary Data 9). However, a more systematic
analysis of raw and CT trait relationships aiming at under-
standing biology between specific trait groups with larger sample
size is required in the future.

A key assumption for conducting EDME is that the GWAS
results are obtained for the same traits in two independent
populations. It is relatively easy to meet this assumption in dairy
cattle since matched phenotypes in independent bull and cow
populations are common. It is probably also relatively easy to
meet the assumption in humans and mice since large GWAS
resources are available2,3,32. However, it is not clear how easy this
assumption can be met in species like beef cattle, chicken, fish,
flies and plants. Future research applying EDME to these species
will help better understand the usage of the information of variant
effect-direction agreement from GWAS between populations in
eliminating false discoveries.

Our study identifies pleiotropic loci that provide biological
insights beyond cattle, including the AKTIP-FTO-IRX3-IRX5 loci
where the pleiotropic effects on dairy cattle traits were stronger at
the non-FTO regions (Fig. 6a). Another noticeable loci is the
region on cattle chromosome 19 (42.2–42.4M) enriched with
keratin genes (KRT35-14-16, Fig. 6b). Since KRT genes are highly
expressed in epithelial systems31 and it is mammary epithelial
cells that secrete milk, mutations in KRT genes might be asso-
ciated with mammary traits and SCC.

In conclusion, we introduce a set of methods for the EDME using
GWAS summary statistics to quantify FDR independent of p values.
The multi-trait EDME quantifies the pleiotropy where extreme,
prevalent and unevenly distributed pleiotropic effect patterns are
comprehensively described. EMDE reliably identifies trait-related
variants which help to inform the biology behind complex traits.
Identified pleiotropic loci including FTO and KRT update our
fundamental knowledge of pleiotropy and gene regulation in large

mammalian species. Prioritised pleiotropic variants are supported
by our validation with the 1000-bull Genome data.

Materials and methods
Animals, phenotype and genotype data. No live animals were used in this study.
Phenotype data was based on trait deviations for cows and daughter trait deviations
for bulls (Supplementary Data 1). Daughter trait deviations were the average trait
deviations of a bull’s daughters and all phenotypes were pre-corrected for known
fixed effects, with processing done by DataGene, Australia for the official release of
National bull breeding values (http://www.datagene.com.au/). Only those bulls’
phenotypes which were based on records from more than 15 progeny were
included. Phenotype data of up to 11,923 bulls included 6569 CRV bulls (https://
www.crv4all-international.com/) with phenotypes derived from their Interbull
MACE breeding values (https://interbull.org/ib/interbullactivities) degressed on the
Australian scale and converted to the scale of the daughter trait deviation. The
remaining 5354 bulls and all 32,347 cows were from DataGene. All these animals
included Holstein (9739 ♂ / 22,899 ♀), Jersey (2059 ♂ / 6174 ♀), cross breed (0 ♂ /
2850 ♀) and Australian Red dairy breeds (125 ♂ / 424 ♀).

The genotypes for the above-described bulls and cows included a total of
17,669,372 imputed sequence variants with Minimac333,34 imputation accuracy
R2 > 0.4. Genotypes were imputed using Run6 version of the 1000-bull genome
data18,35 as the reference set, using Eagle36 to first phase the data and then
Minimac3 for imputation. Sequence variants with minor allele frequency > 0.001 in
11,923 bulls and in 32,347 cows were used in the GWAS.

Phenotype decorrelation was conducted using Cholesky transformation, with
the formula of Cn ¼ L�1gn (Eq. 9, published in ref. 9). Cn was a K (number of
traits)×1 vector of Cholesky scores for animal n; L was the K × K lower triangular
matrix of the Cholesky factor which satisfied LLt= COV, the K × K covariance
matrix of raw scores after standardisation as z-scores, gn was a K × 1 vector of traits
for animal n. Cholesky transformation decorrelated all traits at once. However, as a
result, the Kth Cholesky-transformed trait can be interpreted as the Kth original
trait corrected for the preceding K− 1 traits and each Cholesky-transformed trait
had a variance of close to 1 (Supplementary Data 1). The reason for the choice of
these 34 traits and the trait order to conduct Cholesky transformation was to fully
utilise the dataset containing the varying number of phenotypic records. A free
consideration of the trait order would require all traits to have complete records
(e.g., ref. 9) and this would result in sample size for all traits being determined by
the trait with the smallest number of records, i.e., 1439 bulls and 4086 cows.
Another condition required to be met for the current Cholesky transformation was
that the same descending order of the selected traits matches between the bull and
the cow data sets. This allowed that CT traits were the same in bulls and cows such
that the GWAS of one trait in two sexes were comparable.

Single-trait GWAS. The 34 decorrelated traits were analysed one trait at a time
independently in each sex with linear mixed models using GCTA37

y ¼ meanþ breedþ bx þ aþ error; ð10Þ
where y= vector of phenotypes for bulls or cows, breed= three breeds for bulls,
Holstein, Jersey and Australian Red and four breeds for cows (Holstein, Jersey,
Australian Red and MIX); bx= regression coefficient b on variant genotypes x; a=
polygenic random effects ∼N(0, Gσg2) where G= genomic relatedness matrix based
on all variants. The above GWAS model was also applied to estimate the total
genomic variance for heritability calculations for all traits, but without including
the “bx” term in the model.

The conventional multi-trait meta-analysis of single-trait GWAS. The multi-
trait χ2 statistic for the ith variant was calculated based on its signed t values
generated from each single-trait GWAS: χ2 ¼ t0iV�1ti (Eq. 11, published in ref. 1).
ti was a K (number of traits= 34) × 1 vector of the signed t values of varianti effects,
i.e., b/se, for the K traits; ti′ was a transpose of vector ti(1 × K); and V−1 was an
inverse of the K × K correlation matrix where the correlation was calculated over
the all estimated variant effects (signed t values) of all trait pairs. The χ2 value of
each variant was examined for significance based on a χ2 distribution
with k degrees of freedom to test against the null hypothesis that the variant had no
significant effects on any one of the Kth traits. The conventional FDR of χ2 tests
were calculated following1.

To fully utilise the GWAS summary data obtained in bulls and cows separately,
a weighted multi-trait meta-analysis of the signed t values of bull GWAS and cow
GWAS results was performed using the formula

tw ¼ bw
sew

¼

bbull
se2
bull

þ bcow
se2cow

1
se2
bull

þ 1
se2cowffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1
se2
bull

þ 1
se2cow

r ; ð11Þ

(published in ref. 12). Where tw was the weighted t value for bulls and cows
accounting for the phenotypic error differences between bulls and cows11,
calculated as the quotient of the weighted variant effects Bw and the weighted effect
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error sew; bbull and sebull were the variant effects and errors obtained from single-
trait GWAS in bulls and bcow and secow were the variant effects and errors from
cow GWAS. Once the tw of each trait was obtained, the multi-trait meta-analysis
was performed using Eq. 11. This weighted meta-analysis approach was also used
to analyse the GWAS summary statistics data of the 2017 study of cattle
pleiotropy9, where over 630,003 SNPs from the high-density SNP chip panel were
used for GWAS with 25 traits in bulls and cows.

The sliding-window variant clustering. The use of sequence variants led to a
large number of variants in high LD. Consequently, a single QTL might be tagged
by many sequence variants. To give an indication of the differentiation of pleio-
tropic QTL from sequence variants, a sliding-window (5Mb) variant clustering was
conducted. All calculations regarding this clustering were done separately in each
sex. Firstly, variants were ranked by their multi-trait p values adjusted (divided) by
their functional-and-evolutionary trait heritability (FAETH) score13. Then, var-
iants ranked within the top 10% within each sex were selected for LD pruning,
using Plink 1.938 with r2 > 0.95 within 5Mb windows. For pruned variants, in each
5Mb window, with the overlapping size of 2.5 Mb, we calculated ρij ¼
rcorðtvarianti ; tvariantj Þ ´ rLDðvarianti; variantjÞ; where rcorðtvarianti ; tvariantj Þ was the
correlation between two vectors of t values (beta/s.e. from GWAS described above)

of 34 CT traits for varianti and variantj; rLD varianti; variantj
� �

was the LD (r)

measured as the correlation between the genotypes of varianti and variantj. These
ρ values were clustered using graph based Random Walks determining densely
connected subgraphs (clusters)39 implemented in igraph40. On average there were
12 variants per cluster in bulls and cows. The clustering of the variants aimed at
finding groups of variants tagging the same QTL. Normally, variants with strong
LD were considered as tagging the same QTL. However, variants tagging one QTL
should also show similar effect patterns across multiple traits (correlated GWAS
t values). Therefore, by adding the correlation of effect t value, i.e.,
rcorðtvarianti ; tvariantj Þ on top of the rLDðvarianti; variantjÞ, we expect the metric ρij to

better group variants tagging the same QTL than using rcor or rLD alone. After
clustering, up to 50 clusters were retrieved within each window. To verify if
identified clusters can represent local QTL, the top 100 variants from clusters based
on their FAETH adjusted multi-trait p value were selected. These 100 top variants
were used to conduct a conditional analysis of GWAS37 of 34 traits in each sex. A
meta-analysis of the conditional GWAS results used Eq. 11.

Meta-analysis of the conditional GWAS results showed that pleiotropic effects
dramatically dropped, but only for those variants from the clusters with which the
top 100 variants were selected (Supplementary Fig. 5). However, the pleiotropic
effects of those variants from the clusters not used to select the top 100 variants did
not show significant drops (Supplementary Fig. 5). These results support the
hypothesis that, in general, pleiotropic QTL can be differentiated from sequence
variants, but no doubt there were exceptions to this conclusion.

The single-trait EDME model. The R code of EDME can be downloaded from
https://figshare.com/s/42017bcae071d24639f4 and an online tutorial for conduct-
ing EDME of GWAS is available at: https://ruidongxiang.com/effect-direction-
meta-analysis-edme-of-gwas/. In theory, there should be three categories of var-
iants associated with a given trait: (1) variants with ‘true negative’ effects on the
trait, i.e., T− variants that truly decrease the trait value, (2) variants with ‘true
positive’ effects on the trait, i.e., T+ variants that truly increase the trait value and
(3) variants with ‘true zero’ effects on the trait, i.e., the T0 variants that had no
effects on the trait. In practice, a GWAS conducted for the same trait in two
different populations would have four categories of variant effect directions: (1) the
‘−−’ where the effect was consistently negative for the trait in two populations, e.g.,
bulls and cows in this study; (2) the ‘++’ where the effect was consistently positive
for the trait in bulls and cows; (3) the ‘+−’ where the effect was positive for the
trait in bulls but negative in cows; and (4) the ‘−+’ where the effect was negative
for the trait in bulls but positive in cows.

If there were T0 variants which should have no TE, they were expected to
be randomly distributed across the four observed categories (‘++’, ‘−−’, ‘+−’ and
‘−+’) of variants. This meant that each one of the four categories of the ‘++’,
‘−−’, ‘+−’ and ‘−+’ variants contain an equal amount of the T0 variants (i.e., one-
fourth). Therefore, the total number of ‘+−’ and ‘−+’ variants observed was equal
to one-half of the total number of T0 variants expected. This then allowed the
deduction of model Eq. 1, as described in the section ‘Results’, to calculate the
number of T0. Once the number of T0 was known, the total number of T− and T+
variants can be determined by equating the expectation with the observed number
of ‘++’ and ‘−−’ variants (n(B)) as described in the first and the third quadrant of
the right panel of Fig. 2a

n Bð Þ ¼ Tþ þ T0

4
þ T� þ T0

4
¼ Tþ þ T� þ T0

2
;

then

n Bð Þ � T0

2
¼ T� þ Tþ ¼ Tr : ð2Þ

Once the number of T0 and Tr were determined, the false discovery rate by effect
direction (FDRed) and true discovery rate by effect direction (TDRed) can be

calculated based on the total number of variants entered the analysis in the two
populations (n(A)+ n(B)) as described in Eqs. 3 and 4 (see Results section).

The EDME model for multi-trait analysis. For equation Πi ¼ ti1 � tTi2 (5), the Π
value was calculated as the dot product of the vectors of t values of bulls and cows
with the same length of K, where K is the total number of traits. The idea was that
the effect direction across multiple traits, i.e., the sign of the Π value, was not driven
by the small trait effects which were more likely to arise from noise. Instead, the
sign of the Π value was driven by relatively large trait effects which were likely to be
robust. Then, the number of variants with negative Π values were used to calculate
the multi-trait FDRed in Eq. 6.

For one variant analysed in K traits across the two populations, the single-trait
Eq. 2 can be extended as

n Bð ÞMTR¼ PTr
þ PT0

2

� �
´K; ð13Þ

where n Bð ÞMTR was the multi-trait version of n(B) that was equivalent toPK
1
n Bð ÞMTR (in Eq. 7), where n Bð ÞMTR = 1 if the variant has the same effect

direction and n Bð ÞMTR = 0 if the variant has different effect directions between the
two populations. PT0

was the proportion of the total number of variants with zero
effects (T0) and PTr

was the proportion of the total number of variants with TE
(Tr). As PTr

+ PT0
¼ 1; Eq. 13 was solvable and can be re-arranged as

PTr
¼ 2 ´ n Bð ÞMTR

K
� 1 ¼

2 ´
PK
1
n Bð ÞMTR

K
� 1 ¼ multi-trait TDRed;

then

multi-trait TDRed ´K ¼ 2 ´
PK
1
n Bð ÞMTR �K ¼ estimated number of TE ¼ Eq: 7 ;

where TE is the True Effect of a variant on traits. Note that if the number of traits
considered was one (K= 1), the multi-trait Eq. 13 was then identical to single-trait
Eq. 2 at the probability level. TDRedMTR was the multi-trait version of TDRed for
Eq. 4.

For Eq. 8, when many variants were selected, the estimated number of TE
averaged across a group of variants, i.e., TE, became stable. Thus, the number of
variants with positive Π values n(variant) multiplied by the number of TE will
inform the TC of trait by variant, TCTr ´V . For single-trait GWAS of K traits, each
one of the total X number (e.g., 17 mil) of variants would have K number (e.g., 34)
of t values. Then, for a total X number of variants by K number of traits, a X × K
length (e.g., 17 mil × 34) vector of t values can be obtained. If
TCTr ´V ¼ n variantð Þ ´TE= 80,000 × 10= 800,000, then the top 800,000
combinations of trait by variant ranked by their t value (absolute value) in the X ×
K vector would be prioritised by Eq. 8. The unique variants with Π > 0 in these
combinations of trait by variant were the prioritised pleiotropic variants.

Once a prioritised set of X × K TC of trait by variant was achieved, two
additional pieces of information can be estimated. One was the count of the traits
assigned to each variant in the X × K vector and this was the observed TE for each
variant. The other was the count of the variants with positive Π assigned to each
trait in the X × K vector and this was the identification of the pleiotropic variants
related to each trait, variantstrait. See the online tutorial for using EDME to quantify
pleiotropy and to do other related analyses at https://ruidongxiang.com/effect-
direction-meta-analysis-edme-of-gwas/.

Sharing of trait-related variants (variantstrait). The number of pleiotropic var-
iantstrait in overlaps between 34 CT trait sets were counted. The significance of
overlaps were compared with the expected number using the hypergeometric test
(p) using the variant-overlap matrices generated by GeneOverlap41 in R. This
analysis required four types of counts: the size of overlap between set A (e.g.,
variants assigned to trait 1) and set B (e.g., variants assigned to trait 2), the size of
set A, the size of set B and the size of background (92,537 prioritised by EDME).
The number of variants in the overlap and in the union of pleiotropic variantstrait
between traits was obtained. The number of overlapping dividing the number of
the union was used to calculate the sharing index for each trait pair. For each trait,
its sharing indices with the other 33 traits (excluding self-pair) were averaged and
the averaged sharing index was then used to rank each trait.

Conventional hierarchical cluster analysis. This clustering was based on the
correlation matrices for weighted t values (Eq. 11) of variants between bulls and
cows. The correlation matrices were used to perform hierarchical clustering and
were shown as heatmaps using ‘complexHeatmap’42 in R v3.4.1.

Variant annotation. Variants were annotated using the Variant Effect Prediction
of Ensembl22 and NGS-SNP43 based on the Run 6 version of the 1000-bull
genome data.
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Mendelian randomisation. This analysis was conducted using GSMR20. Summary
statistics of GWAS of raw traits (daughter trait deviations, not Cholesky trans-
formed) for those 93,513 variants prioritised by p value and multi-trait EDME were
used as variant input for GSMR. Settings of MR followed the default options of
GSMR, including the threshold of HEIDI outlier test being p < 0.01. Both forward
and reverse analysis were conducted. GSMR generated MR p values were corrected
for multi-testing by the Bonferroni method. A putative causal relationship was
defined as the forward MR was significant and the reverse MR was not significant
at Bonferroni corrected p < 0.05 level.

Further analysis of variantstrait. For each set of variantstrait identified by the
multi-trait analysis, their single-trait GWAS from bulls and cows were mapped and
were analysed for single-trait FDRed using Eq. 3. Totally, 164 previously prioritised
variants for cattle stature were retrieved from ref. 18 and their enrichment in each
set of variantstrait was tested using the hypergeometric test. The p value of
enrichment was adjusted for multi-testing.

Joint analysis. The joint analysis was conducted using GCTA-COJO37 function.
The model for the joint analysis was the same as Eq. 10 expect that selected variants
were fitted together. The joint analysis was carried out for each one of the 37 raw
traits in bulls and cows. The weighted t value was re-calculated based on the beta
(‘bJ’) and se (‘seJ’) generated from the joint analysis for each trait using Eq. 11.
Then the weighted t values were presented in Fig. 6a, b.

Validation in the 1000-bull genome data. The 1000-bull genome database (Run
618,35) contained the whole genome sequence of cattle independent of the Aus-
tralian data with no phenotype but with breed information. To perform a vali-
dation test without phenotype in the validation population, we used the genotypes
of selected variants and 37 raw traits (Supplementary Data 11) of the Australian
dairy cattle to generate genomic prediction equations separately in the bull and cow
populations. Then we used these prediction equations to predict the phenotype of
each 1000-bull individual (i.e., generating two sets of genomic estimated breeding
values, gEBV, for every raw trait). If a variant selection was informative, the average
gEBV of the 1000-bull genome dairy cattle (e.g., Holstein breed) was expected to be
better than the average gEBV of 1000-bull genome beef cattle (e.g., Angus).

The genomic best linear unbiased prediction (gBLUP) implemented in MTG244

was used to train genomic prediction equations in each of the Australian bull and
cow data sets. The genomic prediction equations were generated for three different
variant sets: (1) prioritised by EDME and p value, (2) prioritised by p value alone
and (3) a random set of variants with the matching variant number. These 3 sets of
genomic prediction equations were generated for each of the 37 original traits (raw
daughter trait deviations, not Cholesky transformed) in both the bull and cow data
sets. The summary statistics of these 37 raw traits were given in Supplementary
Data 11. The gBLUP model was the same as Eq. 10 except that no individual
variants were fitted (i.e., removing “bx”). This estimated the total genetic value of
Australian bulls and cows and allowed back-solving for the variant effect solutions
in the Australian data (-sbv option). Then, the variant effect solutions were then
used to calculate gEBV of the dairy and beef breed individuals in the 1000-bull
genome (Run 6, N= 2334).

The dairy cattle in the 1000-bull genome included Holstein (N= 567), Jersey
(N= 66), Brown Swiss (N= 148), Finnish Ayrshire (N= 25), Normandy (N= 44),
Norwegian Red (N= 24), Swedish Red (N= 16). The 1000-bull beef cattle included
Angus (N= 272), Beef Booster (N= 29), Belgian Blue (N= 16), Blonde
d’Aquitaine (N= 26), Braunvieh Beef (N= 4), Charolais (N= 128), Hereford
(N= 75), Limousin (N= 82), Maine Anjou (N= 5) and Simmental (N= 225). The
mean of gEBV of the 1000-bull dairy and beef cattle were compared using a t test.
For the t test of each trait between dairy and beef cattle, a t value was calculated as
the mean difference (with reference level set to beef cattle) divided by the standard
error and this t value was presented in Fig. 7.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The DNA sequence data as part of the 1000-bull genome project18,35,45 included
PRJNA431934, PRJNA238491, PRJDB2660, PRJEB18113, PRJEB1829, PRJEB27309,
PRJEB28191, PRJEB9343, PRJNA210519, PRJNA210521, PRJNA210523, PRJNA279385,
PRJNA294709, PRJNA316122, PRJNA474946, PRJNA477833, PRJNA494431,
PRJDA48395, PRJNA431934 and PRJNA238491. The variant FAETH score is available
at https://doi.org/10.26188/5c5617c01383b. All other data supporting results and figures
are shown in the Supplementary Data and Figures.

Code availability
The GWAS was conducted using public software Plink38 and GCTA37. Variant
annotation used public Variant Effect Prediction of Ensembl22 and NGS-SNP43. The
code of EDME software implemented in R with sample datasets and demo workflow can
be downloaded from https://figshare.com/s/42017bcae071d24639f4. An online tutorial

showing how to use the code and sample data to conduct EDME of GWAS is available at
https://ruidongxiang.com/effect-direction-meta-analysis-edme-of-gwas/.
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