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A B S T R A C T   

Childhood maltreatment (CM) is an established major risk factor for a number of negative health outcomes later 
in life. While epigenetic mechanisms, such as DNA methylation (DNAm), have been proposed as a means of 
embedding this environmental risk factor, little is known about its timing and trajectory, especially in very young 
children. It is also not clear whether additional environmental adversities, often experienced by these children, 
converge on similar DNAm changes. 

Here, we calculated a cumulative adversity score, which additionally to CM includes socioeconomic status 
(SES), other life events, parental psychopathology and epigenetic biomarkers of prenatal smoking and alcohol 
consumption. We investigated the effects of CM alone as well as the adversity score on longitudinal DNAm 
trajectories in the Berlin Longitudinal Child Study. This is a cohort of 173 children aged 3–5 years at baseline of 
whom 86 were exposed to CM. These children were followed-up for 2 years with extensive psychometric and 
biological assessments as well as saliva collection at 5 time points providing genome-wide DNAm levels. 

Overall, only a few DNAm patterns were stable over this timeframe, but less than 10 DNAm regions showed 
significant changes. At baseline, neither CM nor the adversity score associated with DNAm changes. However, in 
6 differentially methylated regions (DMRs), CM and the adversity score significantly moderated DNAm trajec
tories over time. A number of these DMRs have previously been associated with adverse prenatal exposures. In 
our study, children exposed to CM also presented with epigenetic signatures indicative of increased prenatal 
exposure to tobacco and alcohol, as compared to non-CM exposed children. These epigenetic signatures of 
prenatal exposure strongly correlate with DNAm regions associated with CM and the adversity score. Finally, 
weighted correlation network analysis revealed a module of CpGs exclusively associated with CM. 

While our study identifies DNAm loci specifically associated with CM, especially within long non-coding 
RNAs, the majority of associations were found with the adversity score with convergent association with in
dicators of adverse prenatal exposures. This study highlights the importance of mapping not only of the epi
genome but also the exposome and extending the observational timeframe to well before birth.  
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1. Introduction 

Exposure to adversities in early life, as early as prenatally, is a major 
risk factor for a variety of negative health outcomes later in life (Gui
nosso et al., 2016). Adverse environmental conditions include exposure 
to toxins and famine but also effects of the social environment including 
socio-economic status (SES; Kumar et al., 2014). Early-life stress (ELS) in 
form of childhood maltreatment (CM) has widely been described to have 
sustained effects that contribute to increased risk for major psychiatric 
disorders later in life (Provençal and Binder, 2015). Examples of CM 
include exposure to neglect and/or physical, sexual or emotional abuse. 

Many studies have presented evidence showing that the epigenome 
is responsive to external environmental conditions including the social 
environment (Szyf et al., 2008; Vineis et al., 2017). As a result, epige
netic mechanisms were proposed as a key factor in the biological 
embedding of ELS (Berens et al., 2017). DNA methylation (DNAm) is one 
of the most commonly studied epigenetic mechanisms in this context 
and describes the addition of a methyl group to a cytosine base in the 
DNA. Recent findings include associations of DNAm patterns with a 
range of environmental factors commencing as early as in utero (Pro
vençal and Binder, 2015; Teh et al., 2014), with some of the strongest 
effects observed for prenatal tobacco and alcohol exposure (Porta
les-Casamar et al., 2016; Reynolds et al., 2011; Richmond et al., 2018; 
Wiklund et al., 2019). These epigenetic alterations can remain stable 
long after the exposure itself has taken place, supporting the role of 
DNAm in the embedding of environmental exposures (Heijmans et al., 
2008). 

To date, over 70 studies have investigated associations between ELS 
and DNAm changes. However, findings remain inconsistent, possibly 
also due to differences in methodology and sample characteristics (Cecil 
et al., 2020). So far, the majority of studies investigating effects of ELS in 
targeted (McGowan et al., 2009) or epigenome-wide association studies 
(EWAS) (Suderman et al., 2014) focused on adults and used retrospec
tive assessment of ELS and measured DNAm in peripheral tissues. Tar
geted approaches investigated epigenetic modifications in genes related 
to the stress hormone system, including the genes encoding the gluco
corticoid receptor (NR3C1), the serotonin system or growth factors. 
Findings for NR3C1 have been replicated by multiple studies across 
different tissues (Turecki and Meaney, 2016), while data for other 
candidates (e.g., SLC6A4, FKBP5, BDNF, OXTR) seem less robust (Cecil 
et al., 2020). 

While EWAS in adults identified some significant associations of 
methylation profiles and childhood adversity (Suderman et al., 2014), it 
is not clear how robust these effects are. In a study investigating DNAm 
in peripheral blood at age 18 in a large cohort of over 2000 individuals 
with repeated assessment of victimization at ages 5, 7, 10, 12, and 18 
years, no robust associations could be identified, and candidate-gene 
level associations could not be confirmed (Marzi et al., 2018). Another 
EWAS for childhood adversity in two adult cohorts measuring DNAm in 
peripheral blood and buccal cells, respectively, did not find any repli
cated associations on the level of individual CpGs but on the level of 
differentially methylated regions (DMRs), encompassing several CpGs. 
These DMRs were associated with specific forms of early adversity, 
mainly parental loss and illness (Houtepen et al., 2018). 

Only a few studies have examined the effects of ELS in children 
immediately following exposure (Cecil et al., 2020). Most of these 
employed a candidate gene approach, extending some of the findings 
from adult samples to children, namely NR3C1 (Marzi et al., 2018), 
(Romens et al., 2015). Only a handful of studies have employed EWAS in 
samples from children (Cecil et al., 2020) whereby two studies by Weder 
et al., in 2014 and Yang et al., in 2013 are based on the same sample of 
192 children with 96 substantiated cases of abuse and/or neglect over 
the prior 6 months and 96 demographically matched controls. Up to 
now, DNA methylation in two specific loci (NR3C1 and FKBP5) was 
investigated longitudinally in children. Parent et al. examined DNA 
methylation in preschoolers aged 2–5 years (n=260) within 6 months of 

documentation of maltreatment and one year later, showing that NR3C1 
methylation is dynamic over time and the relationship with maltreat
ment is complex (Parent et al., 2017). Another study investigated FKBP5 
methylation in preschoolers (n=231) with moderate to severe 
maltreatment in the past 6 months. Child maltreatment was associated 
with change in FKBP5 methylation over time in a six-month period, but 
only when children were exposed to high levels of other contextual 
stressors (Parade et al., 2017). 

While all of these studies report significant epigenetic associations, it 
is not reported whether similar loci are affected across studies. 

While these findings support some association between ELS and al
terations in DNAm, the specificity to CM is often not clear as potential 
confounding by other life events, current symptoms, SES and other 
factors makes it difficult to attribute the findings solely to CM. In 
addition, the majority of past studies in children have not consistently 
controlled for population stratification or cell-type composition, which 
are important confounders of DNAm levels (Cecil et al., 2020). 
Furthermore, previous studies have varied in age, tissues, measures of 
exposure and how candidate genes were targeted, further limiting the 
conclusions which can be drawn. The lack of longitudinal assessments 
often prohibits inferences about the dynamics over time in childhood. 

To the best of our knowledge, our study is the first longitudinal study 
to analyze the genome-wide effects of CM on DNAm in children (n =
173) within a narrow age range (from 3 to 5 years of age at baseline) 
over the course of 2 years. The cohort’s in-depth assessment of biological 
data, psychiatric diagnostic assessment using the Preschool Age Psy
chiatric Assessment (PAPA), behavioral measures such as the Child 
Behavioral Check List (CBCL) and developmental measures such as the 
Wechsler Preschool and Primary Scale of Intelligence (WSPPI) enables 
the investigation of the association of CM on DNAm as well as a variety 
of different outcomes. In addition, the assessment of other life events, 
SES and contextual stressors were used to develop a cumulative adver
sity score, based on the fact that CM is often embedded in an environ
ment with multiple adversities. Thus, we could assess associations 
between variation in DNAm and CM as well as CM in the context of other 
adversities. The main objectives of this study were to determine, 1) if 
variation in DNAm patterns are specific to CM or more accentuated in 
the context of additional adversity, 2) if ELS-associated variation in 
DNAm is associated with behavioral or biological outcomes and 3) how 
ELS-associated variation in DNAm changes over time. 

2. Material & methods 

2.1. Study population 

The Berlin Longitudinal Child Study (Berlin LCS) cohort consists of 
173 children, who were aged 49 months on average (SD = 9.48) at the 
first visit (Entringer et al., 2020). Participants were recruited via child 
care centers, child and youth social services, child psychiatric de
partments or pediatricians. At baseline, 86 children were included in the 
maltreated group. The inclusion criterion was exposure to at least one 
maltreatment event with sufficient severity as described in the section 
“2.6 Measures of childhood adversity” (Winter et al., unpublished 
work). Maltreatment incidents were assessed by the MMCI and 
maltreatment features were recorded in the Maltreatment Classification 
System (Cicchetti, 1993). The control group included 87 children not 
exposed to maltreatment as verified using the MMCI. After the baseline 
visit, children were assessed every 6 months for 2 years with extensive 
psychometric and biological assessments (see Fig. 1, Supplementary 
Table S1). In addition, DNA from saliva samples was collected at 5 time 
points over the course of the study (every 6 months). Demographics of 
the cohort are summarized in Supplementary Table S1. While we did not 
specifically recruit for sexual abuse, as sexual abuse usually leads to 
removal of the child from the home, eight cases with mild sexual abuse 
were present in our sample. Maltreated children did receive “care as 
usual”, meaning that those children for whom treatment was assessed as 
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necessary were referred to the Social Pediatric Center of the Charité or 
other appropriate facilities. At each visit families received feedback 
about the child’s health and developmental status and recommendations 
for follow-up, where necessary (e.g., psychological consultation, dentist 
visit, etc.). Between 44.7% and 62.2% of the families adhered to the 
recommendations across the time points. 

Approval for the study was obtained from the ethics committee of 
Charité – Universitätsmedizin Berlin. All procedures are in accordance 
with the Ethical Principles for Medical Research as established by the 
Medical Association Declaration of Helsinki. Written informed consent 
was obtained from all participants after the procedures were fully 
explained. Children gave consent by painting or signing a form that was 
appropriate for the children’s age range. Caregivers received monetary 
compensation for participation. Children received a small gift. All 
caregivers received diagnostic results and referral for psychosocial or 
medical follow-up. 

2.2. Saliva samples & biodata assays 

Saliva samples were collected during at each clinical visit at 9, 10 
and 11 am using oral swabs specially designed for small children 
(Salimetrics) and were immediately stored at − 80 ◦C. 

Salivary C-reactive protein levels (CRP) concentration was deter
mined using a commercial ELISA kit (Salimetrics) with a sensitivity of 
10 pg/ml. Intra-assay and inter-assay coefficients of variability were 6% 
and 13%, respectively. Salivary cortisol (Cort) concentration was 
measured using a commercial ELISA kit (Salimetrics) with a sensitivity 
of 0.007 μg/dL. Intra-assay and inter-assay coefficients of variability 
were 7% and 11%, respectively. Salivary α-amylase (AA) was analyzed 
using a commercially available kinetic enzyme assay kit (Salimetrics) 
according to the manufacturer’s instructions. Intra-assay and inter-assay 
coefficients of variability were 4% and 10%, respectively. AA and Cort 
were measured at three timepoints on the day of assessment (9 a.m., 10 
a.m., 11 a.m.). CRP was measured at the 11 a.m. time point. In this study 
we used to area under the curve (AUC) for each of the markers with 
respect to ground (AUCg) which was computed on flow-rate corrected 
levels (FR) as measured for AA and Cort. We used a log-transformation 
of the CRP values for downstream analyses. 

From our cortisol measurements we could extract following readouts 
of the cortisol dynamics: baseline (9:00 a.m.), peak (10:00 a.m.), in
crease (peak-baseline), AUC with respect to ground, AUC with respect to 
increase. In our study we decided to report the AUCg measure, as it 

significantly correlated with all measures and best with baseline (r =
0.59, p = 6.66*10− 16) and peak (r = 0.76, p < 2.2*10− 26) and was thus 
chosen to reflect HPA-axis activity in this sample. Another reason for us 
to use the AUCg measure is that the other assessments of the children 
could not always been performed in the same order and the AUCg 
measure is robust against this kind of difference. 

Saliva for genomic DNA extraction was collected using ORAgene 
DNA kits (OG500) at 9 a.m. and extracted together for all time points 
(T0-T4). DNA extraction was performed with a standardized and auto
mated procedure based on magnetic beads for 2 × 400 μl saliva samples 
using the PerkinElmer Chemagic360 system. 

2.3. DNA methylation 

The Infinium Methylation EPIC BeadChip (Illumina Inc, San Diego, 
CA, USA) was used to measure DNAm. Samples from all timepoints were 
extracted, plated and run together. We randomized with regards to 
maltreatment, age and sex to avoid confounding between CM and batch 
effects. Hybridization and array processing were performed as specified 
by the manufacturer. Functional normalization implemented by the 
minfi package (Aryee et al., 2014) was used to normalize the data. 
Thirty-four samples with artefacts in the beta-value distribution were 
excluded, another three samples were removed as they presented with 
>5% missing values. Batch effects were identified and removed with the 
Empirical Bayes’ method ComBat (Müller et al., 2016) included in the R 
package sva (Leek et al., 2012). Chip barcode and position were the most 
significant batches and corrected for iteratively. Probes were filtered 
excluding known cross reactive as well as polymorphic probes 
(McCartney et al., 2016).Additionally, probes with detection p-value >
0.01 in more than 25% of the samples were also removed. CpG-sites 
located on the X or Y chromosome were excluded. In total 830,206 
CpGs and 634 samples (by timepoint (case; control) T0: 167(84,83), T1: 
128(63,65), T2: 125(57,68), T3: 104(44,60), T4: 110(46,64)) were used 
for downstream analysis. Cell composition of the buccal swab samples 
was estimated using the deconvolution method described by (Smith 
et al., 2015) and was corrected for in all statistical models. 

2.4. Genotyping and imputation 

Genotyping was performed with the Illumina GSA-24 v2.0 BeadChip. 
After filtering by SNP call rate (exclusion at < 95%), sample call rate 
(exclusion at < 98%) as well as for Hardy-Weinberg Equilibrium (HWE, 

Fig. 1. Study design. Participants were followed for 2 years with extensive biological and psychological assessments at five time points every 6 months. Some of the 
assessments including the structural imaging data were only collected at three time points (T0, T2, T4). 
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p-value for HWE < 10− 5) and minor allele frequency (MAF, MAF <
0.01), 469,592 SNPs remained. Samples were pre-phased with shapeit 
v2 (Delaneau et al., 2008) and imputed with impute 2 (Howie et al., 
2011) using the 1000 genomes phase 3 reference panel (Altshuler et al., 
2010). SNPs were filtered by imputation quality (info-score < 0.6), MAF 
> 0.01 and p-value for HWE < 10− 5 with qctool v2 (Marchini et al., 
2007). 9,522,926 SNPs and 173 IDs were present after quality control 
(QC). Remaining SNPs were pruned for linkage disequilibrium (window 
size = 100, step size = 5, r2 = 0.2) with plink v1.9 (Chang et al., 2015) 
and used to compute principal components. The first three principal 
components explaining 35% of the genotypic variance were used as 
covariates in the analysis to correct for population structure and 
relatedness. 

2.5. Psychopathological and developmental assessments 

The developmental status of the children was assessed using the 
Snijders-Oomen Non-verbal Intelligence Test (SON_IQ; Tellegen and 
Laros, 1993) and the and Wechsler Preschool and Primary Scale of In
telligence (WPPSI; Wechsler, 2002). The SON_IQ was assessed between 
the first (9 am) and second collection (10 am) of saliva samples. The 
WPPSI was assessed after the collection of the third saliva sample (11 
am). Any behavioral problems were identified using the Child Behav
ioral Checklist (CBCL; Aschenbach et al., 2000). Psychopathology was 
assessed using the Preschool Age Psychiatric Assessment (PAPA; Egger 
and Angold, 2004). The PAPA is a structured, glossary-based psychiatric 
interview to assess psychiatric symptoms, symptom scale scores and 
diagnoses according to DSM-IV (Naftolowitz et al., 1995). In this study 
we used the subscales for internalizing symptoms (PAPA_int) and 
externalizing symptoms (PAPA_ext). 

2.6. Measures of childhood adversity 

Children who were exposed to maltreatment were identified by the 
maltreatment classification system (MCS; Cicchetti, 1993). Maltreat
ment experiences were coded for 7 categories: emotional maltreatment, 
physical neglect with insufficient care and insufficient supervision, 
physical abuse, sexual abuse, moral/legal/educative maltreatment as 
well as education-related maltreatment. The MCS provides operational 
definitions of maltreatment and neglect subtypes (with inclusion and 
exclusion criteria) as well as five different levels of severity for each of 
the subtypes. Further, this assessment includes the measurement of 
onset and for each subtype (individuals can be subjected to multiple 
types) chronicity, severity, developmental period and perpetrator of the 
incident(s). The severity of each maltreatment event was evaluated on a 
5-point scale ranging from mild (1) to severe or life-threatening 
maltreatment (5). Cut-offs of the scores were used to include children 
in the maltreatment group (emotional maltreatment ≥ 2, physical abuse 
≥ 1, physical neglect ≥ 1). This identified 86 children as victims of 
maltreatment, including cases of sexual abuse (n = 8), physical abuse (n 
= 36), physical neglect (n = 29) or emotional maltreatment (n = 85), 
with multiple types of exposure possible (Entringer et al., 2020). A cu
mulative severity score was calculated for each maltreatment incident 
by summing up the severity of the maltreatment event weighted by the 
duration (in months) of the events experienced. 

Further, healthy controls (n = 87) were matched according to age, 
sex and socio-economic status (SES). The socio-economic status was 
assessed according to the Winkler & Stolzenberg Index (Winkler and 
Stolzenberg, 1999). The index score (ranging from 3 to 21) is the sum of 
three components including education and occupational qualification, 
occupational status, and net income of the household. 

In addition, we assessed critical life events apart from CM using the 
life event list provided within the Preschool Age Psychiatric Assessment 
at all time points (T0-T4). The sum of the critical life events was used for 
our analysis and was used as exclusion criterion from the control group. 
This resulted in a control group exposed to few stressful events making 

the control group distinctly different from the maltreated group (Winter 
et al., unpublished work). 

Maltreatment and the burden of stress in general were analyzed 
separately in order to identify alterations which were specific to 
maltreatment. Therefore, we computed a composite adversity score 
reflecting the general burden of stress. The adversity is a composite 
adversity score (ranged: 0–10) based on Adverse Childhood Experience 
(ACE; Felitti et al., 2019) categories: and sums up: low SES (0 or 1, 
Winkler & Stolzenberg Index), exposure to contextual stressors and 
critical life events (0 or 1, list included in the Preschool Age Psychiatric 
Assessment), and exposure to different maltreatment categories (range 
0–7). Children were included into a high or low adversity group by using 
a median split of the adversity score (high: score ≥ 3, low: score ≤ 2). 

2.7. Statistical analysis 

Differentially methylated CpGs were identified using general linear 
models (glm function in R; (McCullagh, 1984). Significant changes over 
time for single CpGs were detected using linear mixed models (lmer 
function from the lme4 package; (Bates et al., 2007). 

All models included age, sex and cell type composition (Buccal, 
CD14, CD34) as well as the first three principal components (PC1, PC2, 
PC3) from the genotypes in order to correct for different ethnicities and 
relatedness. The following models were tested: assessing significant 
DNAm changes occurring over time (model 1), assessing DNAm changes 
over time with additive effect of the environment (maltreatment or 
adversity in general) (model 2) and assessing interactive effects of 
DNAm over time and the environment (model 3).  

1. Model over time: (methylation changes due to the ageing of the 
children)  

Beta ~ age + sex + PC1 + PC2 + PC3 + Buccal + CD14 + CD34 + Time +
(1|Subject)                                                                                             

2. Additive model (changes over time where the environment adds to 
the effect):  

Beta ~ age + sex + PC1 + PC2 + PC3 + Buccal + CD14 + CD34 + Time +
E + (1|Subject)                                                                                     

where E represents the stress measure of the environment (maltreatment 
or adversity score).  

3. Interactive model (the environment modulates the changes over 
time):  

Beta ~ age + sex + PC1 + PC2 + PC3 + Buccal + CD14 + CD34 + Time x E 
+ (1|Subject)                                                                                        

where E represents the stress measure of the environment (maltreatment 
or adversity score). 

P-values were computed by comparing the models with a corre
sponding nested model using ANOVA (model1, model2) and ANOVA 
(model2, model3). 

We then aggregated the results of the linear mixed morels to identify 
DMRs. To do so the p-values for each model of all CpGs available (n =
830,206) were combined into regions using the comb-p software (Ped
ersen et al., 2012) with 1 × 10− 4 as seed p-value. A region was extended 
by a significant neighboring CpG when its distance from the region did 
not exceed 500bp. All results reported were corrected for multiple 
testing at FDR at 10% over all identified regions using the 
Benjamini-Hochberg Method (Benjamini and Hochberg, 1995). 

Top hits (nominal p < 1 × 10− 4) from the DMR analysis were used to 
perform pathway analysis. Enrichment for pathways was computed by 
mapping the CpGs to genes (EPIC array annotation) and then using 
FUMA, a webtool for functional mapping and annotation (Watanabe 
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et al., 2017).Associations between DMRs and other outcome measures 
were reported using Pearson’s correlation coefficient and nominal 
p-values. We investigated the robustness of our findings in multiple 
ways: 

We tested if the DMRs remained stable when correcting for con
founders such as the SES or prenatal smoking exposure (details are 
described in supplementary method 10). 

Further, we performed a sensitivity analysis by re-running the linear 
mixed models described above using only the complete cases at T3 (n =
102) and T4 (n = 83). This was done in order to test the effect of missing 
data over time due to dropouts on the models. 

Finally, we performed a post-hoc power-analysis in order to inves
tigate if our findings are reasonable considering the sample size. We 
performed a power-analysis using the longpower package in R, which is 
especially tailored to longitudinal linear mixed models (Lu et al., 2008). 
Mixed effect model parameters (e.g. random intercept and/or slope) of a 
pilot model (we used the fitted model of the CpG with median effect size) 
are translated into marginal model parameters so that the formulas can 
be applied to investigate the power-sample size relationship for two 
sample longitudinal designs assuming known variance. We estimated 
the power for our given sample size of the smaller group (n = 81) for 
each of our models (parameters of interest being: time, time + adversity 
and time x adversity) with an effect size estimate for a 5% methylation 
change in the pilot model. 

2.8. DNA methylation based-scores for prenatal exposures 

Risk scores for prenatal smoking- and alcohol exposure were calcu
lated based on previous epigenetic studies. We estimated prenatal 
smoking exposure using a DNAm score based on 15 CpG-sites identified 
by Richmond and colleagues (Richmond et al., 2018) and maternal 
alcohol intake during pregnancy using a DNAm score including 658 
CpGs from a fetal alcohol syndrome (FAS) study by (Portales-Casamar 
et al., 2016). For the construction of the epigenetic scores for prenatal 
alcohol and smoking exposure, we used the CpGs identified in the pre
vious studies: n=658 differentially methylated CpGs in FASD cases re
ported by Portales-Casamar et al. (2016) and n=15 that were identified 
as strong predictors for prenatal smoke exposure by Richmond et al. 
(2018). For the prenatal alcohol exposure score we weighted the 
beta-values measured in the Berlin_LCS cohort of the 658 CpGs with the 
effect size reported by Portales-Casamar et al. and then summed up the 
weighted CpGs to construct the epigenetic scores. For the prenatal 
smoking exposure, we followed a similar procedure using the weights 
provided by the authors in the supplement of Richmond et al. (2018). 

2.9. Weighted correlation network analysis (WGCNA) 

We selected the most variable 10% of all CpGs (n = 83,021) that 
passed QC for downstream analyses by filtering by median absolute 
deviation (MAD; Rousseeuw and Croux, 1993) and taking the CpGs 
presenting with a MAD-score > 90th percentile into further analyses. 

Weighted correlation network analysis (WGCNA; Langfelder and 
Horvath, 2008) was conducted on the baseline DNAm levels (T0) to 
identify co-methylation structures. The best soft thresholding power was 
determined to be 5 and the tree-cut height was set to 0.25. As recom
mended by the authors, we constructed a signed network. For down
stream analysis, we mapped the modules correlated with interesting 
outcomes to pathways. Stability analysis of the results were performed 
using a bootstrap approach (detailed description in supplementary 
method S11). 

3. Results 

3.1. Effects of early life adversity on longitudinal epigenetic trajectories 

We first performed association analyses with the baseline data 

comparing methylation levels between the maltreated (n = 86) and the 
control group (n = 87) as well as the groups with high (n = 81) and low 
adversity score (n = 92) for each single CpG (n = 830,621). We then 
computed linear mixed models in order to test for associations of 
childhood maltreatment (CM) or adversity in general (adversity score) 
with longitudinal epigenetic trajectories: (1) a model over time (Model 
1) estimating the general effects over time occurring due to the ageing of 
the children, (2) an additive model (Model 2) estimating the effects 
where maltreatment or adversity add to the effects over time and finally 
(3) an interactive model (Model 3) estimating the effects over time that 
are moderated by CM or adversity in general. 

All of the effects on each single CpG identified by the different linear 
mixed models were then aggregated into DMRs as this approach has 
more power than the analysis of individual CpGs (Gu et al., 2010). 
Starting from a seed CpG with p < 1 × 10− 4, a region was constructed by 
adding all CpGs within 500bp distance with a nominal p-value < 0.05. 
We found no significantly DMRs with CM nor adversity when aggre
gating the results of the association studies at baseline. 

3.1.1. Effect of ageing 
In order to assess changes over time, we applied Model 1 to the 

DNAm data from all 5 time points. Aggregating these results yielded 7 
DMRs with significant DNAm changes over the total observation period. 
These DMRs mapped onto six genes (GSTM3/5, MCCC1, GSDMS, 
KCNQ1, AURKC, BLCAP) and one long coding RNA (LINC22001). We 
also applied Model 1 to the first three time points only, to assess short- 
term effects over time due to the low sample size at the last two time 
points (n(T3) = 111 and, n(T4) = 90). Here, we identified 9 DMRs 
mapping onto C5orf63, RUFY1, HLA response elements, NPY, RP11- 
73B2.6, MESTIT1, PIWIL2, CIDEB and AIRE. Due to the small sample 
sizes at time points 4 (n = 111) and 5 (n = 90), we only used the first 
three time points for the DMR analysis in Model 2 and Model 3. 

3.1.2. Additive effects of time and CM or the adversity score 
Using Model 2, which tests additive effects of time and CM or the 

adversity score, we identified 2 significant DMRs with additive effects of 
time and CM. The two DMRs mapped onto the HLA-B gene (dmr1_m2) 
and ZFP91 pseudogene (dmr2_m2). The same two DMRs emerged for 
additive effects of time and the adversity score (Table S3). For these 
DMRs, effects of time were observed in non-exposed group, but blunted 
in the exposed individuals (see Fig. 2, left panel). These DMRs also 
showed associations with sex (Fig. 3) with lowest methylation levels 
over time in exposed boys and highest in non-exposed girls for both 
DMRs. 

3.1.3. Interactive effects of time and CM or the adversity score 
There were no significant results for Model 3 investigating the 

changes over time moderated by CM (time x CM). The model time x 
adversity score (Model 3) on the other hand yielded 4 significant DMRs 
mapping to the genes GAREML (dmr1_m3), P3H2 (dmr2_m3), ZNF562 
(dmr3_m3) and GSTT1(dmr4_m3) (Fig. 2, right panel). Baseline 
methylation levels within all these regions were negatively associated 
with the adversity score (Supplementary Figure S4, Figs. 2 and 3). For 
dmr1_m3 and dmr2_m3, methylation changes over time were reduced in 
the exposed group (3.0% and 1.2% difference in exposed vs 2.6% and 
0.4% difference in non-exposed). Dmr3_m3 showed small changes over 
time but different directions for the high adversity group (hyper
methylation of 0.2%) and low adversity group (demethylation of 0.1%). 
Dmr4_m3 is demethylated over time with larger changes over time in the 
high adversity group (0.09%) compared to the low adversity group 
(0.05%). 

At baseline, the DMR mapping to GSTT1 (dmr4_m3) was correlated 
with externalizing symptoms (Pearson correlation r = 0.14, nominal p =
0.03), cortisol- (Pearson correlation r = 0.13, nominal p = 0.04) and 
CRP levels (Pearson correlation r = 0.14, nominal p = 0.03). 

All results from the DMR analyses are summarized in Figs. 2 and 3 
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Fig. 2. Differentially methylated regions (DMRs) over time. Distribution of mean methylation across the respective DMRs, split by adversity score (the high 
scoring group is shown in red, the low scoring group in grey) and time points. The DMRs from the time + adversity model (Model 2) are shown in the left panel, and 
the DMRs from the time x adversity model (Model 3) are shown in the right panel. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 3. Summary of correlations within the 
baseline data (T0). Correlations at baseline be
tween significant hits from differentially methyl
ated regions (DMRs; across 3 time points), age, sex, 
ethnicity, maltreatment, socio-economic status 
(SES), composite adversity score and maltreatment 
severity, developmental outcomes (SON_IQ, 
WPPSI), psychiatric assessments (CBCL, PAPA 
internalizing subscale, PAPA externalizing sub
scale), biodata (alpha-amylase (AA), C-reactive 
protein (CRP), Cort (cortisol)) as well as prenatal 
exposure. Significant correlations are marked “* “, 
correlations with 0.05 ≤ nominal p ≤ 0.10 are 
marked " † “.   
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and Supplementary Tables S2 and S3. Many of the DMRs described 
above mapped to genes previously reported to be associated with pre
natal exposures (Jiang et al., 2020; Kunkle et al., 2017; Leighton et al., 
2019; Roberson-Nay et al., 2020; Terasaki and Schwarz, 2016), 
including maternal smoking and FAS as shown in Supplementary 
Table S3. 

3.2. Epigenetic signatures of prenatal exposure 

Given the above described putative link to prenatal exposure, we 
next investigated established epigenetic markers of prenatal adversity 
such alcohol and tobacco exposure in our cohort. The epigenetic pre
natal smoke exposure score and the epigenetic prenatal alcohol exposure 
were highly correlated (Pearson correlation r = 0.89, nominal p < 2.2 ×
10− 16). However none of the CpGs used to compute the scores (prenatal 
alcohol exposure score: n = 658, prenatal smoke exposure score: n = 15) 
overlapped, and only one pair of CpGs were located within the same 
locus (MYO1G), suggesting correlations of the exposures themselves. 

Individuals with documented prenatal smoke exposure (n = 23) and 
with missing information (n = 36) on average had a higher epigenetic 
score for smoking exposure as compared to those without reported 
exposure (t-test, n = 108, mean (smoking/missing) = 0.143, mean(non- 
smoking) = 0.139, nominal p = 0.14; documented smoking yes vs no: 
nominal p = 0.07). This finding validates the score in this cohort. At 
baseline, maltreated children had a significantly higher epigenetic score 
for prenatal smoke exposure (nominal p = 0.03) than non-maltreated 
children (Fig. 4). Epigenetic scores for prenatal smoke exposure were 
positively correlated with the adversity score (Pearson correlation r =
0.16, nominal p = 8.8*10− 5). Similarly, maltreated children had a 
significantly higher epigenetic score for prenatal alcohol exposure at 
baseline than non-maltreated individuals (nominal p = 0.04) (see 
Fig. 4). Both epigenetic prenatal exposure scores correlated with the 
adversity score, however these correlations were not significant (smoke 
exposure: r = 0.12, nominal p = 0.11 and alcohol exposure: r = 0.14, 
nominal p = 0.05). 

We then investigaed the relationship between the scores, DMRs and 
other outcomes. The epigenetic prenatal smoke exposure score posi
tively correlated with the baseline cortisol AUC (Pearson correlation r =
0.14, nominal p = 7.6*10− 4), and psychiatric symptoms (Pearson cor
relation r = 0.16, p = 0.04). Both DMRs measures at baseline from 
Model 2 and 3 DMRs of Model 3 that reflect additive or interactive as
sociations of time and adversity score correlated with prenatal smoke 
exposure (strongest correlation r = 0.78, nominal p < 2.2 × 10− 16) – see 
Fig. 3. There was no overlap between the CpGs included in the prenatal 
smoke exposure epigenetic score and the CpGs within the DMRs 

identified. 
The epigenetic prenatal alcohol exposure score also positively 

correlated with the AUC of cortisol at T0 (Pearson correlation r = 0.09, 
nominal p = 0.03), CRP levels (Pearson correlation r = 0.09, nominal p 
= 0.03), AA levels (Pearson correlation r = 0.15, nominal p = 0.04) and 
low maternal SES (Pearson correlation r = − 0.12, nominal p = 0.002). 
Furthermore, the epigenetic prenatal alcohol exposure score was asso
ciated with cognitive impairment reflected by the WPSSI (Pearson cor
relation r = − 0.14, nominal p = 0.05). Children with high prenatal 
alcohol exposure score scored lower at the WPSSI. Children with high 
prenatal exposure scores also presented with significantly more exter
nalizing symptoms captured by the PAPA subscale (Pearson correlation 
r = 0.19, nominal p = 0.01). 

One DMRs from Model 2 and all DMRs of Model 3 correlated with 
prenatal alcohol and smoke exposure (strongest Pearson correlation r =
0.71, nominal p < 2.2*10− 16), suggesting again convergence of prenatal 
and postnatal exposures on DNAm. There was no overlap between the 
CpGs included in the prenatal alcohol exposure score and the CpGs 
within the DMRs identified. 

In order to disentangle the effects of prenatal exposure and 
maltreatment on the DMRs identified, we re-ran models 2 (time +
adversity score) and 3 (time x adversity score) with prenatal exposure 
(smoking + alcohol score) as covariates. Correcting for prenatal expo
sure 13 of 17 CpGs from model 2 (additive model) remained significant 
after correcting for prenatal exposures with some of the CpGs having 
even lower p-values as compared to when not correcting for prenatal 
exposures (lowest nominal p = 1.1*10− 12). Similarly, 25 of 31 CpGs 
from model 3 (interaction model) remained significant after correcting 
for prenatal exposures (lowest nominal p = 1.4*10− 38). 

3.3. Weighted correlation network analysis (WGCNA) reveals 
maltreatment specific differential methylation 

We next performed WGCNA on baseline DNAm levels using the 10% 
most variable CpGs (n = 83,021) to cluster changes in the variable 
methylome and associate obtained CpG modules with differences in 
environmental factors including CM, adversity score, SES, and prenatal 
exposure scores. This analysis identified 9 co-methylated modules (plus 
one module containing the unassigned CpGs), the number of CpGs in the 
respective modules ranged from 56 to 56,344. We performed module 
stability analysis by resampling 50 times and repeating network con
struction with 66% of the samples. Nine modules remained stable across 
all 50 runs and were consistent with modules identified in the complete 
data set (Supplementary Figure S9 and Supplementary Comment S10). 
The tenth module (56 CpGs) was unstable and thus excluded from the 

Fig. 4. Prenatal exposure. DNA methylation-based scores for prenatal exposure was compared between the group exposed to maltreatment (red, n = 84) and the 
non-maltreated group (grey, n = 83). On average, cases had higher levels of smoke exposure (nominal p = 0.03) and alcohol exposure (nominal p = 0.04) compared 
to controls. The documented cases of smoke exposure (n = 23 + 36 with missing information) had a higher DNAm based score than children without exposure (n =
120). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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downstream analyses. 
One module (green module) was associated with CM (Pearson cor

relation r = 0.17, nominal p = 0.04) specifically and neither adversity 
nor prenatal exposures (Fig. 5). This module consisted of 268 CpGs 
which map to 165 unique genes (listed in Supplementary Table S8). 
These genes showed no significant overlap with any specific pathway or 
result from genome-wide association studies (GWAS). A large portion of 
the genes in the module, however, mapped to non-coding RNA genes (47 
lincRNA, 3 snoRNA and 3 microRNA). It also included interesting genes 
from the C21-steroid biosynthesis pathway (CYP1A1, CYP2A6, CYP2A7) 
and genes which have been reported to be important in early develop
ment (such as DNM1, FOXR1, ZNF570). The mean methylation of the 
green module was lower in maltreated children across all five time 
points as compared to non-maltreated children (Fig. 6). 

Interestingly, the green module also showed a strong negative cor
relation with sex (Pearson correlation r = − 0.79, nominal p = 2*10− 35). 
Methylation levels were lowest in exposed boys. Two other modules (red 
and brown) were correlated with developmental (SON_IQ, WPPSI) or 
behavioral measures (CBCL). None of the modules were associated with 
the adversity score or SES. The turquoise module (the largest module, 
consisting of 56,344 CpGs) was nominally significantly associated with 
the AUC of cortisol and externalizing symptoms (PAPA subscale). As
sociations for all modules are summarized in Fig. 5. 

We functionally annotated the modules that were associated with 
interesting outcomes or environment variables. Small modules (black, 
pink, red, yellow and green) with less than 500 CpGs showed no sig
nificant enrichments. The other modules were mainly enriched for im
mune signaling and cytoskeleton organizational pathways 
(Supplementary Tables S6 and S7). An overview of all modules is shown 
in Table S5. 

4. Discussion 

To date, most studies focusing on the effect of CM on DNAm have 
been performed in adults using retrospective measures. Only a few 
studies have examined the effects of CM in children and this is the first 
study on the longitudinal effects of CM on DNAm at the critical time 
period of early childhood. In addition, CM often occurs in the context of 
multiple other adversities and in our study, we tried to identify whether 
there are DNAm changes specific to CM or whether they are more 
reflective of overall adversity, including prenatal exposures. 

4.1. DNAm changes over time in the context of CM and adversity 

We first investigated the association of DNAm levels with exposure to 
CM as well as a more global adversity score that included CM severity as 
well as SES, other life events and contextual stressors. We used linear 
mixed models with data from the first three time points spanning a time 
frame of 18 months as well as from all five timepoints (30 months) to 
investigate short-term and long-lasting alterations of longitudinal 
DNAm level trajectories. We focused our analysis on DMRs. Observed 
methylation changes in DMRs are more credible as neighboring sites 
must show similar changes because CpGs are expected to function in 
groups to regulate gene expression (Jiang et al., 2020; Kunkle et al., 
2017). 

In our analysis, we observed relatively few DMRs changing over 24 
or 12 months, suggesting that overall DNA methylation pattern in saliva 
is rather stable over this developmental time frame. The changes over 24 
months included 9 DMRs mapping to regions associated with early-onset 
forms of psychiatric disorders (Jiang et al., 2020; Kunkle et al., 2017) 
and impairments during early development (Leighton et al., 2019; 
Terasaki and Schwarz, 2016). The changes over 12 months included 7 
DMRs, of which 5 mapped to regions that were previously associated 

Fig. 5. Module Trait Relationship. Associations at baseline between assigned weighted correlation network analysis (WGCNA) modules and general traits, different 
measures of exposure: adversity score, maltreatment, socio-economic status (SES) and prenatal exposure proxies: alcohol and smoking. Additionally, correlations 
between the modules and developmental outcomes (SON_IQ, WPPSI), psychiatric assessments (CBCL, PAPA internalizing subscale, PAPA externalizing subscale) and 
biodata (alpha-amylase (AA), C-reactive protein (CRP), Cort (cortisol)) are shown. Shown on the right are the number of CpGs included in each module. The coloring 
of the tiles reflects the Pearson correlation, the number within the tile is the nominal p-value. 
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with prenatal exposures (tobacco; Alexander et al., 2013, alcohol; 
Nguyen et al., 2018, lead and beta blockers; Rojas et al., 2015). Effects 
over time were moderated by exposure. Two DMRs showed significant 
additive effects of time and both adversity and maltreatment. These 
DMRs mapped to HLA-B an immune related gene which previously has 
been associated with psychopathology (Engström et al., 2015; Resendiz 
et al., 2013) and ZFP91 pseudogene. For time × exposure interactions, 
significant results were only observed for the adversity score and not for 
CM. Here 4 DMRs were identified, which mapped to genes which pre
viously have been associated with prenatal alcohol exposure (Reynolds 
et al., 2011; J. Yang et al., 2015), childhood abuse (Fang et al., 2020; B. 
Z. Yang et al., 2013) and early onset MDD (Roberson-Nay et al., 2020; 
Zhu et al., 2003). 

It should be noted that the effects sizes of the DMRs in our study are 
comparatively large for social epigenetics studies (Breton et al., 2017; 
Marzi et al., 2018) with up to 7% difference in DNAm levels between the 
groups with high and low adversity scores (see Supplementary 
Figure S4). Interestingly, exposure to adversity or CM appeared to lead 
to blunted dynamics of DNAm changes over time. Such blunted re
sponses with exposure to ELS have been described for cortisol responses 
as well as heart rate changes and reward-related brain activity (Ago
rastos et al., 2019; Hanson et al., 2016). Between the measurements of 

cortisol (at 9,10 and 11am), the children completed assessments, which 
could be perceived as stressors and therefore elicit a cortisol response. 

Two of the DMRs from Model 3 (dmr1_m3 and dmr4_m3) signifi
cantly correlated with the number of externalizing symptoms 
(PAPA_ext). Both DMRs map onto genes (GAREML, GSTT1) that have 
previously been associated with psychopathology (Masliah et al., 2013; 
Narayanan et al., 2014; Saadat et al., 2007). Two of the DMRs (dmr2_m3 
and dmr4_m3) also significantly correlated with WPPSI, a develop
mental measure. Interestingly, both DMRs map onto genes which have 
previously been associated with cognitive decline in Alzheimer’s Disease 
(Sun et al., 2019). One of these DMRs (dmr4_m3) also correlated with 
cortisol and CRP levels. Dmr4_m3 maps onto GSTT1, which encodes for 
a protein with protective function against oxidative stress and inflam
mation (Tang et al., 2010). 

4.2. Prenatal exposures 

The fact that a number of the identified DMRs lie in regions previ
ously associated with prenatal exposures, prompted us to investigate 
epigenetic proxies of such exposures in our cohort. For this we con
structed two DNAm exposure scores, for prenatal tobacco exposure and 
prenatal alcohol exposure based on previous findings (Portales-Casamar 

Fig. 6. Green module mean methylation over time. Across all time points mean methylation of CpGs in the green (n = 256) module is lower in children exposed to 
maltreatment (red) than in non-maltreated children (grey). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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et al., 2016) given that this information was incomplete in our study and 
such scores are also less biased than self-reports (McCartney et al., 2018) 
on smoking or alcohol consumption during pregnancy. Indeed, both the 
DNAm based smoking score and alcohol exposure scores were higher in 
CM-exposed children. In addition, of the six DMRs of Model 2 and Model 
3 associated with additive and interactive effects of time and maltreat
ment or adversity score, five significantly correlated with both prenatal 
exposure measures (strongest correlation r = 0.71, p < 2.2 × 10− 16). 
These findings suggest that maltreated children might present with a 
higher extent of prenatal exposures as compared to controls and that this 
might also influence DNAm pattern, possibly with larger effect sizes than 
maltreatment itself. 

To disentangle effects of adversity/maltreatment from prenatal ex
posures, we reran models 2 and 3 correcting for prenatal exposure and 
found that the majority of CpGs within the DMRs remained significantly 
associated with adversity/maltreatment. This supports independent ef
fects of adversity on DNA methylation, even if there seems to be a cor
relation of DNA methylation at these sites with prenatal exposures (see 
Fig. 3). 

4.3. Findings from the weighted correlation network analysis (WGCNA) 

We also performed WGCNA in order to identify co-methylated 
modules of CpG-sites and to be able to analyze correlated, functionally 
relevant regions together. For this analysis, we only included the 10% 
most variable CpGs in terms of DNAm levels, as variable CpGs are 
enriched for functional regions and correlate with gene expression 
(Allum and Grundberg, 2020; Lioznova et al., 2019). Such 
module-centric analyses have the advantage of not only focusing on 
functionally relevant DNAm regions but also of alleviating the multiple 
testing problem. This analysis yielded one module (green module) that 
was specifically associated with maltreatment (p = 0.04, r = 0.17) and 
did not correlate with adversity in general (p = 0.8, r = − 0.2), prenatal 
exposure (p = 0.8, r = 0.023) nor SES (p = 0.9, r = 0.009). This finding 
suggests that although we did not observe strong effects on the indi
vidual CpG level, a specific set of co-methylated CpGs and regions is 
correlated with CM. The CpGs in this module were on average deme
thylated in exposed children and this remained stable across time 
(Fig. 6). The green module also showed a strong association with sex (p 
= − 0.79, r = 4*10− 34), with lowest DNAm seen in exposed boys. Pre
vious studies have reported sex differences in resilience to CM as well as 
moderating effects of sex on the consequences of CM (Samplin et al., 
2013; White and Kaffman, 2019). However, larger studies would be 
needed in order to investigate these effects. 

While there were no strong functional enrichments in this module, a 
large proportion of genes (54 of 164 of the genes) mapped to long non- 
coding RNAs. Long non-coding RNAs can regulate gene expression by 
multiple mechanisms and are considered important players in devel
opmental processes such as cell differentiation and genomic imprinting 
(Fatica and Bozzoni, 2014). 

In our data, this cortisol response (AUC) was positively correlated 
with the DNAm based prenatal exposure scores for smoking (r = 0.14, p 
= 7.6*10− 4) and alcohol (r = 0.09, p = 0.03). While the majority of 
studies report an attenuated cortisol response after prenatal tobacco 
exposure in human and in mice (Azar et al., 2010; Eiden et al., 2015), 
studies investigating the relationship between prenatal alcohol exposure 
and infant stress reactivity show an increased response following light to 
moderate exposure (Haley et al., 2006; Keiver et al., 2015; May and 
Gossage, 2011). Given previous findings of altered cortisol reactivity 
with adversity and CM (Agorastos et al., 2019; Cecil et al., 2020), 
converging effects of prenatal exposure on the stress system need to be 
considered. Such converging effects may be mediated by epigenetic 
mechanisms given the joint correlations of adversity, prenatal alcohol 
and smoking scores and cortisol response with dmr4_m3 for example. 

We would like to point out that while the clinical visit would be 
perceived as a stressful event for the children our repeated cortisol 

measurements do not reflect the response to a standardized stress test. 
For a more established measure of the HPA-axis activity such as the 
awakening response, samples would have to be collected at the home, 
which could not be requested from these families. Also, the children 
(3–5 years at baseline) were too young to perform a Trier Social Stress 
Test. We acknowledge that our repeated cortisol measures are more 
difficult to interpret than those standard tests, especially for direction of 
effect, however they still allow a comparative evaluation of HPA-axis 
activity. 

4.4. Limitations 

Our study has several limitations. We measured DNAm in saliva 
samples. While this is more easily accessible in children than blood, 
several studies (Smith et al., 2015; Walton et al., 2016) have explored 
the correlation of DNAm in different peripheral tissues (blood, buccal 
swabs, saliva samples) and multiple brain regions and reported higher 
variability in saliva samples. This might be linked to heterogeneity in 
cell composition. We accounted for cell type heterogeneity using 
established algorithms to estimate cell type proportions. This is standard 
procedure in DNAm studies (Smith et al., 2015). However, only studies 
focusing on cell-specific DNAm patterns can show if our results are 
restricted to specific cell-types. Furthermore, our study presents with a 
relatively small sample size and a high drop-out rate of 47,97% 
(drop-out rate of 57,83% for maltreated and 40,22% for non-maltreated) 
over time. We observed that more cases dropped out than controls and 
found that the dropouts had a significantly higher adversity scores at 
baseline than the remaining individuals (mean(dropouts) = 2.92, mean 
(remaining) = 2.18, p = 0.02). Some of these children might have been 
removed from their social context and therefore were excluded from the 
study. Another hypothesis could be, that some of the children reached 
school age and attending the follow-up assessments might have been too 
time intensive for the families. Especially the interaction models over all 
time points are underpowered to detect small effects, as the last time 
point only included 90 samples. 

We performed a sensitivity analysis in order to capture the effects of 
dropouts on the models and the DMRs aggregated from the results. We 
re-ran the additive model (time + adversity) and the interactive model 
(time x adversity) using only the complete samples for time point 4 (n =
102) and time point 5 (n = 83). We observed very consistent findings 
with completers at time point 4 but lost significance with completers at 
time point 5. However, we would like to point out that here only 38 
cases remained in the analysis. 

We also performed a power analysis tailored to longitudinal models. 
A pilot model of the CpG with the median effect was used to estimate 
power to detect a 5% change in methylation levels attributed to the fixed 
effect of interest (time, adversity, time:adversity). The power of the 
model over time was calculated to be 76,2%, for the additive model (G 
+ E) it was 79,79% (time) and 15,9% (adversity). For the interaction 
model the power calculate for the interaction term was 47%. While a 
GxE analysis for the CpGs detected by our models would be very inter
esting considering recent data by (Czamara et al., 2021) that highlight 
the relevance of combined effects of G and childhood adversity on 
explaining variance in DNA methylation, the sample size and resulting 
power of this study seems prohibitive for such focused analyses. 
Although our study is underpowered for testing interaction of genotype 
and environment, our findings highlight the importance of the effect 
childhood adversity specifically on DNAm trajectories. 

Larger longitudinal studies will be needed to replicate our results, 
especially with regards to prenatal epigenetic signatures and CpG 
modules. Furthermore, we also lack DNAm measures before the CM 
occurred, so that we cannot disentangle the sequence of events between 
changes in DNAm and exposure. Additionally, it would be interesting to 
investigate the effects of CM on other composite DNAm measures such 
as epigenetic aging. In particular it would be interesting to look at the 
interactions of CM and a recently developed pediatric clock which 
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reliably predicts a range of child health outcomes (McEwen et al., 2020). 

5. Conclusion 

Overall, our data point to the fact that CM does not occur in an 
environmental vacuum and that prenatal exposures, SES and other life 
events and adversities likely contribute to DNAm changes observed with 
CM and possibly also the overall risk and resilience trajectories. Mainly, 
most of our findings related to both CM and the overall adversity score, 
with stronger effects in some time series model of the latter. Our findings 
also support the convergence of prenatal and postnatal adverse expo
sures on DNAm. Only a small DNAm module (green module) seemed to 
be more selectively associated with CM and not the other exposures. 
While our study does identify some interesting loci, especially long non- 
coding RNAs, its main message is highlighting the importance of not 
only mapping the epigenome but also the environ, extending the time
frame to well before birth. 
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