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Abstract. The treatment of patients poisoned with drugs and pharmaceuticals can be quite
challenging. Diverse exposure circumstances, varied clinical presentations, unique patient-
specific factors, and inconsistent diagnostic and therapeutic infrastructure support, coupled
with relatively few definitive antidotes, may complicate evaluation and management. The his-
torical approach to poisoned patients (patient arousal, toxin elimination, and toxin identifica-
tion) has given way to rigorous attention to the fundamental aspects of basic life support –
airway management, oxygenation and ventilation, circulatory competence, thermoregulation,
and substrate availability. Selected patients may benefit from methods to alter toxin pharma-
cokinetics to minimize systemic, target organ, or tissue compartment exposure (either by
decreasing absorption or increasing elimination). These may include syrup of ipecac, oro-
gastric lavage, activated single- or multi-dose charcoal, whole bowel irrigation, endoscopy
and surgery, urinary alkalinization, saline diuresis, or extracorporeal methods (hemodialysis,
charcoal hemoperfusion, continuous venovenous hemofiltration, and exchange transfusion).
Pharmaceutical adjuncts and antidotes may be useful in toxicant-induced hyperthermias. In
the context of analgesic, anti-inflammatory, anticholinergic, anticonvulsant, antihyper-
glycemic, antimicrobial, antineoplastic, cardiovascular, opioid, or sedative-hypnotic agents
overdose, N-acetylcysteine, physostigmine, L-carnitine, dextrose, octreotide, pyridoxine,
dexrazoxane, leucovorin, glucarpidase, atropine, calcium, digoxin-specific antibody frag-
ments, glucagon, high-dose insulin euglycemia therapy, lipid emulsion, magnesium, sodium
bicarbonate, naloxone, and flumazenil are specifically reviewed. In summary, patients gener-
ally benefit from aggressive support of vital functions, careful history and physical examina-
tion, specific laboratory analyses, a thoughtful consideration of the risks and benefits of
decontamination and enhanced elimination, and the use of specific antidotes where warrant-
ed. Data supporting antidotes effectiveness vary considerably. Clinicians are encouraged to
utilize consultation with regional poison centers or those with toxicology training to assist
with diagnosis, management, and administration of antidotes, particularly in unfamiliar cases.

Introduction

The challenges to effective evaluation and management of a patient poisoned by
drugs and pharmaceuticals are diverse. The circumstances surrounding expo-
sure are often incompletely accessible. Poisoning signs or symptoms may be
subtle or delayed. Patient-specific factors – pharmacogenetics and unique sus-
ceptibilities, drug-drug interactions, cultural or geographic practices, and
underlying comorbidities – may complicate presentation, response to treatment,
and outcome. Polypharmacy or mixed exposures may confuse the clinical pres-
entation. Compared to the near-inexhaustible list of products and possible com-
binations, few specific antidotes exist. The toxicological profiles of newly intro-
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duced pharmaceuticals may be incompletely characterized or unfamiliar to the
treating practitioner. Finally, medical infrastructure may offer inconsistent sup-
port for diagnosis (via monitoring, radiological, or laboratory equipment) or
treatment (through clinical service capacities or specific antidotes’ availability).
This chapter seeks to provide a rational approach to treatment of the poisoned
patient and the use of specific antidotes where warranted.

General approach to the poisoned patient

The historical approach to poisoned patients placed undue emphasis on three
areas – patient arousal, toxin elimination, and toxin identification. Beginning
in the early 1900s in the setting of increased barbiturate poisonings and the lim-
itations of airway management of the time, a sense of compulsion to “awaken”
patients resulted in administration of various analeptics (from the Greek
analeptikos – restorative, strengthening). These arousal agents included pro-
convulsants (picrotoxin, strychnine, pentylenetetrazol, and camphor), as well
as sympathomimetics (amphetamines and methylphenidate), xanthines (caf-
feine, ethamivan), and nonspecific stimulants such as nikethamide, bemegride,
prethcamide, and amiphenazole [1–6]. More recent “coma cocktails” have var-
iously included dextrose or glucagon, thiamine, naloxone, flumazenil, and
physostigmine [7–9]. This concept of the utility of nonselective “coma cock-
tails” persists despite efforts to educate on the risks of this paradigm [10].

Aggressive efforts to antagonize central nervous system (CNS) and respira-
tory depression were joined with similarly forceful measures aimed at detoxi-
fication, with the conviction that as much of any toxin should be removed as
possible. Prehospital or in-hospital administration of apomorphine or emetics
of ipecac, saltwater, mustard water, copper sulfate, zinc sulfate, antimony or
potassium tartrate were once routinely recommended [11–13]. Binding agents
such as Fullers earth and later, activated charcoal, kayexalate, and cholestyr-
amine were introduced into clinical practice, and orogastric lavage and evac-
uants such as mercurials, saline, magnesium salts, sorbitol and whole bowel
irrigation were enthusiastically endorsed [14].

Lastly, excessive emphasis was placed on determining the type, nature, and
quantity of the drug ingested. Indeed, according to the “principles of therapy”
of the time, toxin identification, removal, and dilution (in order of importance)
preceded support of vital functions [15].

A more rational approach to poisoning (specifically by barbiturates) began
in Denmark and Sweden in the late 1940s [16]. This “Scandinavian method”
emphasized “close and constant attention to the support of vital functions” –
i.e., cardiovascular and pulmonary support – as opposed to aggressive gas-
trointestinal decontamination and stimulant administration. Mortality conse-
quently decreased precipitously from upwards of 20% to 1–2%. Initially derid-
ed as “pharmacotherapeutic nihilism”, it was ultimately accepted that “inten-
sive supportive therapy alone” sufficed for the vast majority of patients [17].
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Thus, most poisoned patients can be treated in a straightforward manner
that focuses on the patient, as opposed to the poison. Rigorous attention to the
fundamental aspects of basic life support – airway management, oxygenation
and ventilation, circulatory competence, thermoregulation, and substrate (glu-
cose) availability – ensures good outcome in the vast majority of poisoned
patients. An algorithmic strategy is summarized in Figure 1, realizing that
many actions may occur simultaneously.

Figure 1. An algorithmic approach to the poisoned patient.
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The specific details of the following maneuvers are explained in detail in
emergency medicine, critical care, and anesthesiology textbooks and reviews.
The patient is first assessed for airway patency and adequacy, with cervical
spine stabilization if required. An inadequate airway mandates attention with
airway positioning via head-tilt chin-lift or jaw thrust, airway adjuncts (naso-
pharyngeal or oropharyngeal airways), or endotracheal intubation (or surgical
airway), depending upon circumstances. Inadequate breathing from either an
oxygenation or ventilation standpoint is rectified with supplemental oxygen,
assisted mask ventilation, or endotracheal intubation and mandatory mechani-
cal ventilation.

Circulation is then assessed by clinical evaluation and adjuncts such as con-
tinuous cardiac monitoring and a 12-lead ECG, and intravenous (i.v.) access is
obtained with simultaneous retrieval of blood for testing. Hypotension may
necessitate resuscitation with i.v. fluids, colloids, or blood products, inotropic
or chronotropic agents, anti-dysrhythmic therapy, or active chest compressions
(CPR, cardio-pulmonary resuscitation). Conversely, life-threatening hyperten-
sion (from sympathomimetics, monoamine oxidase inhibitors, clonidine with-
drawal, etc.) may require vasodilatory agents. In general, easily titratable,
short-acting, direct agonists or antagonists that do not require metabolic con-
version for activation are preferred – e.g., norepinephrine, phenylephrine, or
epinephrine for hypotension, and nitroprusside, nitroglycerine, or phentolamine
for hypertension. In the setting of a poisoned patient with a wide-complex dys-
rhythmia, empiric administration of sodium bicarbonate should be considered
given the number of agents with cardiac sodium channel antagonism (cyclic
antidepressants, Vaughan-Williams class IA and IC agents, cocaine, diphenhy-
dramine, bupropion, propoxyphene, venlafaxine, carbamazepine, amantidine,
lamotrigine, etc.). Similarly, as numerous medications are capable of inducing
QT prolongation (citalopram, methadone, antipsychotics, etc.), in the setting of
polymorphic ventricular tachycardia, torsade de pointes, or significantly abnor-
mal QT interval, administration of magnesium might be advisable.

CNS manifestations of pharmaceutical intoxication are broad and may
include depression or coma (e.g., benzodiazepines, barbiturates, opioids, and
lithium), agitation with or without delirium (e.g., sympathomimetics, anti-
cholinergics, and salicylates), apparent cerebrovascular accident (e.g., hypo-
glycemia secondary to sulfonylureas, propranolol, quinine, or salicylates), or
frank seizures (e.g., bupropion, isoniazid, methylxanthines, sedative-hypnotic
withdrawal, and sympathomimetics). The primary consideration is mainte-
nance of an appropriate homeostatic milieu with adequate oxygenation, venti-
lation, and perfusion. During the assessment of a patient’s mental status, a core
(rectal) temperature should be obtained as well as bedside determination of
blood glucose. Hyperthermia may be secondary to the drug itself, agitation,
seizure activity, failure of feedback mechanisms, or reflect an environmental
contribution. It must be immediately addressed by rapid cooling to below
38.9 °C. Failure to do so may result in irreversible cerebral injury, seizure,
rhabdomyolysis, myoglobin-associated renal failure, coagulopathy, or other
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organ injury. Specific management of toxicant-induced hyperthermias follows
later. Hypothermia may require active or passive rewarming techniques.
Clinical hypoglycemia, which implies neuroglycopenia, must be rapidly
reversed with administration of 0.5–1.0 g/kg of age-appropriate dextrose-con-
taining solutions (D50 in adults, D25 in children, and D10 in neonates).
Benzodiazepines (e.g., diazepam, midazolam, and lorazepam) are generally
well tolerated and are first line agents for drug- and withdrawal-induced
seizures and agitation. Persistent or refractory seizures should prompt consid-
eration of empiric administration of pyridoxine and barbiturates (phenobarbi-
tal, pentobarbital), propofol, or ultimately, general anesthesia. Coincident
endotracheal intubation may be required. Phenytoin and non-barbiturate anti-
convulsants are typically ineffective or harmful in toxin-induced seizures [18,
19]. Altered mental status should also prompt parenteral administration of
100 mg thiamine hydrochloride. Alcohol-dependent patients without clinically
apparent Wernicke’s encephalopathy may require at least 200 mg of parenteral
thiamine to improve neurological symptoms; overt Wernicke’s encephalopathy
necessitates a minimum of 500 mg thiamine hydrochloride three times daily for
2–3 days [20]. Naloxone use is considered in a separate section.

Toxidromes (toxic syndromes) are characteristic signs and symptoms that
correlate with exposure to certain xenobiotics. Identifying toxidromes suggests
the etiology of the patient’s condition and helps guide management. “Classic”
class-effect toxidromes include anticholinergic, cholinergic, sedative-hypnot-
ic, sedative-hypnotic withdrawal, opioid, and opioid withdrawal. These should
be actively sought and managed if identified.

While the patient is being stabilized, diagnostic investigations including a
complete and thorough history and physical examination, laboratory analyses,
and radiological studies may be undertaken to further characterize the expo-
sure and effect. For significantly compromised patients, a typical “chemistry
panel” (providing electrolytes, blood urea nitrogen, creatinine, and indirectly
the anion gap), a complete blood count, arterial (or venous) blood gas, and lac-
tate are reasonable studies. Urine or serum ketones may be required to deter-
mine the etiology of acidemia. Female patients benefit from an assessment of
pregnancy status. It is useful to determine a serum acetaminophen concentra-
tion in suicidal patients or those with altered consciousness, as patients with
significant acetaminophen poisoning may present without a toxidrome. Serum
acetaminophen is detectable in 2–3% of patients without a reported history of
ingestion; treatable concentrations are found slightly less frequently [21, 22].
Toxin-specific studies and other serum determinations are often not rapidly
returned and should be obtained only if suggested by the history, physical
examination, or bedside testing. Urine drug screening (UDS) is of minimal use
in the acute management of intoxication. Results are not typically returned for
hours; a reported “positive” substance may not be the proximate cause of the
presenting condition (as the measured metabolites may persist in urine for
days to weeks); and the UDS lacks sensitivity and specificity (particularly for
opioids, benzodiazepines and other sedative-hypnotics, and amphetamines).
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Selected patients may benefit from methods to alter toxin pharmacokinet-
ics – limiting exposure. A discussion of these modalities and their risks and
benefits occurs in the following section. Ultimately, patients will require dis-
position depending of severity of presentation and anticipated sequelae,
which may range from admission to intensive care units, cardiac monitoring
(telemetry) units, ward beds, continued emergency department evaluation, to
discharge. A psychiatric assessment and social assessment, when appropriate,
should precede release from medical care. Appropriate and early consultation
with medical toxicologists or regional poison centers may also assist with
diagnosis and management. In the U.S., this has been simplified by a uniform
telephone number (1.800.222.1222) for regional poison center consultation.
The International Programme on Chemical Safety (IPCS) maintains a world
directory of poison centers (http://www.who.int/ipcs/poisons/centre/direc-
tory/en/).

Adjuncts to alter toxicant pharmacokinetics

Adjuncts to alter toxicant pharmacokinetics aim to minimize systemic expo-
sure (either by decreasing absorption or increasing elimination) or to minimize
exposure of a target organ or tissue compartment. In practice, this is achieved
by expulsion or removal from the upper gastrointestinal tract (induced emesis,
gastric lavage, or endoscopy); intraluminal binding to adsorptive materials
(activated charcoal); or increasing intestinal transit time (cathartics and whole
bowel irrigation). Endogenous elimination may be improved by more effective
urinary clearance (urinary alkalinization and forced diuresis), improved hepa-
tobiliary clearance, or “gut dialysis” with multiple-dose activated charcoal.
Rarely, hepatic metabolism is altered to preclude ultimate toxicant formation
(e.g., cimetidine to mitigate production of dapsone’s methemoglobinemia
inducing metabolite). Exogenous clearance utilizes hemodialysis, charcoal
hemoperfusion, continuous renal replacement therapies, and exchange trans-
fusion. All the adjuncts attempt to shift where a patient lies upon a particular
dose-response curve (Fig. 2).

Drug recovery following gastrointestinal emptying techniques has been
inconsistent; human studies attempting to demonstrate a survival benefit of
any decontamination modality are inconclusive. Randomized trials in which a
control group might not receive any decontamination could be considered
unethical; volunteer studies using sublethal doses of xenobiotic cannot show
mortality benefit. As might be anticipated from the fact that supportive care
suffices for the majority of poisoned patients, a typical study of routine admin-
istration of charcoal following oral overdose of primarily benzodiazepines,
acetaminophen, and selective serotonin reuptake inhibitors could not demon-
strate benefit [16, 17, 23]. Past studies have suffered from significant exclu-
sions. Recommendations are based both on theoretical grounds (animal and in
vitro studies demonstrating lower peak serum concentration or faster serum
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clearance) and human studies with surrogate endpoints such as marker studies
or area under the curve of plasma concentration versus time (AUC) improve-
ment. Aggressive detoxification may be required for certain lethal toxins for
which few antidotal options exist.

Most gastric emptying techniques are thought to be relatively ineffective
beyond 1 hour. These constraints diminish possible benefit. For example, the
median time from ingestion to arrival at a health care facility is on the order of
2 hours, and only about 10% of patients can be lavaged within the idealized
1-hour time frame [24]. Although in ideal situations (patients presenting early
to experienced health care providers with readily available ipecac syrup) pill
retrieval averages 45–55%, ipecac’s benefits can be completely negated when
administration is delayed as briefly as 30 min [25–28]. When orogastric lavage
is performed by experienced providers within 5 min of ingestion, clinical man-
ifestations of ingested xenobiotics have been prevented [29]. Practically, effi-
cacy of tablet retrieval rates reduces to 45% in some cases and improvements
in AUC vary from zero to 60% (averaging ~35%) [27, 30–32]. Similarly,
restricting activated charcoal (AC) administration to patients presenting to
health care within the first hour post ingestion would exclude up to 90% of
poisoned patients from the potential benefits of AC when administered beyond
an hour [24, 33]. Earlier administration of AC is more efficacious [34].
However, home and prehospital use of AC decreases the time to treatment, but
has not improved clinical outcomes [35]. Drugs with opioid or anticholinergic
properties that decrease peristalsis or particularly large ingestions, which inde-
pendently decrease intestinal motility, may modify decision making in delayed
presentations [36, 37].

Figure 2. Adjuncts to alter toxicant pharmacokinetics attempt to shift where a patient lies upon a par-
ticular (idealized) dose-response curve. Risk will likely outweigh benefit if the patient begins at point
A (negligible morbidity and mortality) and systemic exposure is reduced to B. This is the case for
many drug poisonings which are managed effectively by supportive care alone. Decontamination
might provide significant benefit if the patient lies upon the steep aspect of the curve [reduction from
C to D – the same fixed amount as from A to B (although a percentage reduction could also be envis-
aged)]. With overwhelming overdose (point E), despite decontamination, benefit would be unlikely
(point F).
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Independent of side effects, the efficacy of one modality over another or
combination therapy is debated. Some studies rate ipecac syrup more effica-
cious than orogastric lavage, but most studies have found little or no differ-
ence, and neither has been shown to be more effective than spontaneous eme-
sis [26, 27, 31, 38]. AC has demonstrated ~50% better reductions in AUC than
ipecac, which may improve or worsen its efficacy [31, 39, 40]. Gastric lavage
adds no benefit to AC, except for the most critically ill patients [34, 41, 42].
Compared directly, AC has better impact than lavage on AUC and clinical
effect [29, 31, 43]. Data are equivocal regarding whole bowel irrigation’s abil-
ity to function similar to multiple-dose AC (MDAC) as a medium for “gut dial-
ysis” [44, 45].

Syrup of ipecac

Syrup of ipecac is obtained from a root extract of the Amazonian flowering
plant Psychotria ipecacuanha [46]. Its active alkaloid components, cephaeline
and emetine, induce emesis via local irritation and central stimulation of
5-hydroxytryptamine (serotonin) 5-HT3 receptors [47]. Following appropriate
dose (10 mL for infants, 15–20 mL for children under 12, and 30 mL other-
wise), roughly 90% of patients have a first episode of emesis within 20 min
[48, 49]. Patients average three episodes in 30 min [50]. However, since
ipecac’s removal from most homes, the median time to administration in the
acute care setting is delayed on the order of an hour, with only one-third of
patients successfully vomiting within the first hour post ingestion [51].

Indications for ipecac are limited. A routinely cited example is a patient
known to have taken multiple lithium tablets, which do not bind AC and may
not fit through a lavage tube, who presents early to health care [50]. The
American Academy of Pediatrics no longer recommends ipecac syrup for
home use; ipecac use does not impact outcomes or decrease utilization of
emergency services [52, 53]. Ipecac may or may not have a role in other rare
ingestions that mandate gastrointestinal decontamination, but are not amenable
to orogastric lavage, AC, whole bowel irrigation, or an antidote; the patient
must present alert and early (<60 min post ingestion) to medical care [50].

Unsurprisingly, ipecac’s most common side effect is persistent emesis. As
many as eight emetic episodes occurring more than 60 min after ipecac admin-
istration have been reported [54]. This impairs administration of oral thera-
peutic agents, as induced emesis can last up to several hours [55]. Prolonged
vomiting associated with induced sedation or absent airway reflexes increases
the risk of aspiration bronchospasm, pneumonitis, and pneumonia [28, 50].
Other life-threatening side effects have been reported, including bradycardia,
CNS depression, Mallory-Weiss esophageal tears, pneumomediastinum, pneu-
moretroperitoneum, and intracranial hemorrhage [50]. Emesis of caustics re-
exposes damaged esophageal mucosa to the caustic agent. Analogous pul-
monary aspiration concerns accompany induced emesis of hydrocarbons.
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Orogastric lavage

Orogastric lavage is performed via a large bore orogastric tube (adults, 36–40
French; children, 24–28 French) with fenestrae large enough to accommodate
whole tablets [32]. Serial 500-mL aliquots (100–250 mL in pediatric patients)
of normal saline or lactated Ringer’s solution are administered and suctioned
until retrieved liquid is clear. Orogastric lavage can be expected to have its best
risk-to-benefit ratio when patients present early enough to have a significant
gastric burden, and when severe toxicological effects are manifest or expected
to become manifest [32, 42]. Because advancement of stomach contents does
occur despite proper left lateral decubitus positioning [26], AC (see below) is
sometimes provided prior to crystalline lavage [32, 43].

Introduction of a large, relatively rigid tube requires a cooperative patient
with a protected airway (typically an endotracheal tube if the patient is ill
enough to warrant gastric lavage). Orogastric lavage risks hypoxia, dysrhyth-
mia, laryngospasm, hypothermia, gastrointestinal or pharyngeal traumatic lac-
eration or perforation, fluid and electrolyte abnormalities, and vomiting with
subsequent aspiration pneumonia [32, 56, 57].

Activated charcoal and multiple-dose activated charcoal

AC is a convoluted macromolecule created via pyrolysis of carbonaceous
material and subsequently “activated” with steam to further increase surface
area [58]. The multiple pores of various size on the surface of each macro-
molecule of AC account for its high adsorptive affinity for a multitude of xeno-
biotics – particularly chemical species that are nonionized, aromatic, and/or
branched [34, 53, 59]. Maximal xenobiotic binding occurs in 10–25 min [60].

AC decreases AUC by as much as 60%, seems to improve clinical outcomes
for critically ill patients, and may benefit in certain poisonings such as acet-
aminophen [31, 40, 61, 62]. It also increases the rate of endogenous clearance
of drugs with long half-lives and some degree of entero-enteric or entero-
hepatic circulation [59, 63, 64]. Those findings suggested the use of MDAC as
a “gut dialysis” for toxins with slow pharmacokinetics [65, 66]. A meta-analy-
sis of volunteer studies demonstrated increased clearance of xenobiotics with
longer half-lives, but not necessarily improved clinical outcome [67, 68].
MDAC has enhanced amitriptyline, carbamazepine, dapsone, dextromethor-
phan, phenobarbital, phenytoin, quinine, and theophylline elimination,
although without definitive clinical benefit in controlled trials [63, 64, 69].
Two studies provided conflicting results for survival benefit of MDAC for yel-
low oleander poisoning [70, 71].

The fraction of unbound xenobiotic decreases as the charcoal-to-toxin ratio
increases from 2.5:1 up to 50:1, although the yield curve levels off near 10:1
[59, 72]. In theory, the dose of AC administered to a poisoned patient would
be ten times the mass of ingested xenobiotic, but those values are unknown in
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most clinical situations [73]. AC is practically dosed based on the patient’s
weight (1 g/kg), which can be divided into multiple smaller doses to be admin-
istered every 2–4 hours [59]. Although optimum dosing is unclear, MDAC is
administered hourly, every 2 hours, or every 4 hours at a dose equivalent to
12.5 g/hour [66]. Pediatric charcoal doses are lower due to generally smaller
ingestions and gut capacity. The total dose administered is the major determi-
nant of efficacy particularly for larger overdoses, and can be administered
continuously [74].

Emesis occurs in up to 12% of patients receiving AC; patients receiving AC
via nasogastric tube or who vomited previously are at greater risk for emesis
[75, 76]. Rarer complications include aspiration and intestinal obstruction or
perforation [55, 59, 77, 78]. Aspirated AC may produce bronchiolitis obliter-
ans, acute respiratory distress syndrome (ARDS), and death [79]. AC adheres
to mucosa and obscures endoscopy; mineral acids and bases will not adhere to
charcoal. AC poorly adsorbs short chain alcohols and metals such as iron,
lead, and lithium [80]. AC administration requires an intact mental status or
protected airway. Flavoring agents increase the palatability of AC for volun-
teers, but poisoned patients do not show increased compliance/tolerance with
flavored AC [81].

Cathartics

Cathartics induce watery evacuation of bowel within a few hours. Hyper-
osmotic cathartic agents such as sorbitol are non-absorbed, osmotically active
substances that draw water into the lumen, where increased intestinal volume
and pressure promote peristalsis. So-called “saline” cathartic agents such as
magnesium salts also directly stimulate smooth muscle to induce peristalsis
[82]. Cathartics alone are not recommended for ingested poisons [83].
Cathartics have many adverse effects, including volume depletion, hyperna-
tremia, hypermagnesemia, hyperphosphatemia, hypocalcemia, metabolic
alkalosis, pain, nausea, emesis, and flatus [84, 85]. Sorbitol or laxatives are
sometimes used in conjunction with the first dose of AC. While theoretically
beneficial – minimizing the possible constipation of AC or promptly deliver-
ing AC to the duodenum, they do not increase the efficacy of AC [74, 86, 87].
Sorbitol is implicated in the fluid/electrolyte changes that occur with MDAC:
hypermagnesemia, hypernatremia, and volume depletion [55, 84, 88].
Repetitive cathartic doses have been associated with rectal prolapse and death
[89, 90].

Whole bowel irrigation

Whole bowel irrigation (WBI) employs polyethylene glycol (PEG), a large,
non-absorbable organic polymer and an electrolyte lavage solution (ELS) is-
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osmotic to serum. Large PEG-ELS volumes are introduced into the alimenta-
ry canal with less risk for fluid and electrolyte shifts caused by traditional
cathartics. PEG-ELS provides non-viscous bulk for rapid transit of material in
a normally functioning gastrointestinal tract. WBI should induce evacuation
within 60 min, but requires 6 hours on average for complete effect. Reported
improvements in AUC are modest given the more rapid absorption time for
most pharmaceuticals [91]. However, reduction in AUC can be as high as 30%
with poorly absorbed products or modified release preparations [92]. WBI
might be considered for slowly absorbed significant ingestions such as iron,
lead, and lithium, as well as modified-release preparations of β-adrenergic
antagonists, bupropion, calcium-channel antagonists, carbamazepine, and
theophylline [93–96]. WBI is also employed to rid patients of enterally trans-
ported illicit substances which produce toxicity upon packet rupture or leak-
age (e.g., cocaine, heroin, and methamphetamine) [97].

Standard dosing protocols are 1.5–2 L/h (25 mL/kg per h) enterally until
rectal effluent is clear [92]. At this point, intestinal contents are assumed to
have been displaced, although this is not always true [91, 98]. Nasogastric tube
placement is generally required to sustain compliance with the large volume
requirements, and pretreatment with an antiemetic is prudent [98]. WBI may
produce nausea, vomiting, cramping, and flatus. PEG-ELS for colonoscopy
has precipitated colonic perforation [99]. Unintentional bronchial administra-
tion of PEG-ELS can produce acute lung injury [100]. Ileus, obstruction, per-
foration or threatened perforation should preclude WBI; a protected airway is
required. Desorption of toxins from AC by PEG has been demonstrated in vitro
and in vivo [93, 101].

Endoscopy and surgery

Support for endoscopic therapy consists of limited case reports of retrieval in
ingestions of cocaine packets, lead pellets, and medication such as sustained
release calcium channel antagonists, clomipramine, iron, and meprobamate
[102–106]. The procedure might be warranted for certain ingestions or cases
of pharmacobezoar formation of toxic substances. Complications include per-
foration, aspiration, hemorrhage, and anesthetic-associated hemodynamic
changes. When endoscopy fails, surgery may be required for definitive
removal [107, 108]. Surgery may be required in patients with enterally trans-
ported illicit substances either due to failure of passage (with or without WBI),
obstruction, or severe toxicity upon packet rupture or leakage [109, 110].

Urinary alkalinization

Weak acids in an alkaline environment exist predominantly in ionized form.
Biological membranes are relatively impermeable to these charged molecules.
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Alkaline serum thus inhibits the diffusion of acidic toxins (low pKa) across cel-
lular membranes. Similarly, an alkaline urinary pH promotes renal sequestra-
tion (or “ion-trapping”) of acidic species from the systemic circulation. The
relative intolerance of biological systems to acidosis limits the effectiveness of
converse urinary acidification (via ascorbic acid or diluted HCl solutions) for
renal sequestration of weak bases.

Critically ill patients may have reduced drug clearances due to decreased
hepatic and renal perfusion, and thus interventions that increase clearance/
elimination have the potential to significantly reduce toxicity [111]. Alkalini-
zation improves renal elimination of chlorpropamide, 2,4-dichlorophenoxy-
acetic acid, diflunisal, fluoride, mecoprop, methotrexate, phenobarbital, and
salicylate [112]. Urine alkalinization is considered first line therapy in patients
with moderate salicylism who do not meet hemodialysis indications.

Dosing of 1–2 mEq/kg of 7.5–8.4% bicarbonate provided over 1–2 min is
followed by “normal” bicarbonate infused at double the standard rate of i.v.
fluid maintenance. The “normal” bicarbonate solution is prepared by adding
three ampules of sodium bicarbonate (totaling 132–150 mEq) in 1 L 5% dex-
trose in water (D5W). The rate is titrated to maintain an alkaline urinary pH,
without exceeding a serum pH of 7.55 [112].

Alkalemia decreases ionized calcium. Volume overload may occur, particu-
larly in patients with congestive heart failure, acute renal failure, or end-stage
liver disease. Bicarbonate treatment induces hypokalemia. As the proximal
renal tubular cells conserve serum potassium by exchanging protons for uri-
nary potassium, this defeats urinary alkalinization. Therefore, maintaining a
normal serum potassium, with frequent monitoring and supplemental admi-
nistration and/or inclusion in the bicarbonate solution, are important compo-
nents of urine alkalinization.

Saline diuresis

Saline diuresis is utilized to improve excretion and minimize toxicity of over-
dose of ions such as magnesium, calcium, and lithium in patients who do not
meet hemodialysis indications [113–115]. Hypermagnesemia may occur with
excessive antacid use, gargling or ingesting magnesium sulfate compounds,
and iatrogenic error [113, 116]. Hypercalcemia can result from excess calcium
(in antacid tablets) or vitamin D ingestion or parenteral administration [117,
118]. Renal lithium toxicity presumably results from cytotoxic accumulation
of lithium entering via the apical epithelial sodium channel [119]. Ensuing
nephrogenic diabetes insipidus, characterized by increased water and sodium
diuresis, can result in dehydration, hyperchloremic metabolic acidosis, and
renal tubular acidosis. In volume depletion, activation of the renin-
angiotensin-aldosterone axis leads to active resorption of sodium, and thus
lithium, from the distal convoluted tubules. Therefore, adequate volume reple-
tion with saline is prerequisite for effective renal elimination of lithium.
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Boluses of 0.9% sodium chloride are administered until the patient is clini-
cally euvolemic. Saline infusion is then provided at 1.5–2 times a standard
maintenance rate. Throughout treatment renal function, urine output, and elec-
trolytes are monitored. Congestive heart failure, renal failure, or end-stage
liver disease moderate volume administration and make saline diuresis less
attractive than hemodialysis in significant ingestions. Loop diuretics such as
furosemide inhibit sodium resorption in the proximal convoluted tubules, and
would theoretically promote elimination of lithium as natriuretics. However,
these effects are countered by the action of the renin-angiotensin-aldosterone
axis on the distal convoluted tubules, and diuretics do not seem to improve out-
comes in lithium overdose or radiographic contrast exposure [120, 121].

Hemodialysis, charcoal hemoperfusion, and continuous renal replacement
therapies

In hemodialysis (HD) the patient’s blood is pumped through a circuit that
includes a cartridge consisting of thousands of semi-permeable, membrane-
lined capillary tubes. The blood traverses the cartridge counter-current to a cir-
culating buffered salt solution (a.k.a. dialysate) before returning to the
patient’s venous circulation. Diffusible molecules flow down their electro-
chemical gradient from the serum to the dialysate. Hemoperfusion (HP)
employs a similar circuit, but the cartridge is enveloped with AC (rather than
a circulating dialysate) to adsorb xenobiotics regardless of plasma protein
binding, and leave serum electrolytes largely unchanged. Continuous arteri-
ovenous or venovenous hemofiltration (CAVH or CVVH) employ lower pres-
sures and flow rates than HD over longer sessions for patients unable to toler-
ate HD or to remove xenobiotics with slow tissue redistribution [122, 123].
Peritoneal dialysis (PD) is ineffective in poisoning management, given its
inherently slow kinetics and the availability of HD [124].

Extracorporeal therapies may be warranted when criteria are met for both the
xenobiotic and the patient [125]. Favorable dialyzable toxin properties include
low volume of distribution (Vd), relatively low molecular weight, and poor
serum protein binding (or binding that worsens in overdose, as is the case for
salicylate and valproate) [126]. Patient characteristics suggesting extracorpore-
al therapy include signs or symptoms of significant end organ toxicity; impaired
elimination secondary to baseline comorbidities or critical illness-induced
hypoperfusion; inability to tolerate or refractory to antidotal strategies (such as
bicarbonate or saline); inadequate response to supportive care measures; con-
current electrolyte derangements (e.g., metformin-associated lactic acidosis); or
serum drug concentrations historically associated with severe outcome [127].
Traditionally, charcoal HP was used for xenobiotics significantly bound to plas-
ma proteins, but its use is declining while (high-flux membrane) HD increases.

Methanol, ethylene glycol, salicylates, lithium, halides, theophylline, and
metformin-associated lactic acidosis are commonly treated with dialysis [125].
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HD is used for valproate and carbamazepine poisoning; however, in the
absence of high-flux dialysis membranes, the characteristics of charcoal HP
may more appropriately address the larger Vd and protein binding [128].

Common side effects of extracorporeal elimination include hypotension,
bleeding, and infection. Enhanced clearance of therapeutic medications and
antidotes (e.g., antibiotics, fomepizole, N-acetylcysteine, water-soluble vita-
mins) may occur. The need for dialysis must be anticipated early; several hours
of preparation time may be required to secure vascular access, equipment, and
personnel.

Exchange transfusion

Exchange transfusion is a total blood volume exchange administered in small
aliquots. Serial frequent phlebotomy of a small amount of circulating blood
occurs with simultaneous transfusion of equivalent donor blood. This process
is repeated until two to four vascular volumes have been exchanged. While the
procedure is very rarely used for toxin removal, exchange transfusion is more
familiar to clinicians treating severe hemolytic diseases of the newborn, hyper-
bilirubinemia without hemolysis, and sickle cell crisis.

Exchange transfusion removes xenobiotics that are large or bound to plas-
ma proteins, such as thyroxine, iron, or theophylline [129, 130]. For life-
threatening ingestions, exchange transfusion is a viable option for neonates
and infants whose immature vasculature cannot tolerate extracorporeal elimi-
nation modalities or in institutions lacking pediatric dialysis capacity.
Exchange transfusion has been successfully employed in pediatric iron, iso-
niazid, phenobarbital, salicylate, theophylline, and vincristine overdose
[129–134]. It has also been suggested for refractory drug-induced methemo-
globinemia [135]. Whole blood exchange was utilized in an adult with a 50-
fold cyclosporine dosing error [136]. Anticipated complications arise from
vascular access, bleeding, hypoglycemia, hypotension, and blood product
administration (immune-mediated reactions, blood incompatibility, and infec-
tions).

Toxicant-induced hyperthermia

Several hyperthermic syndromes are caused by xenobiotics. These are gener-
ally spectrum disorders, whose features may overlap with other conditions
such as CNS infection, agitated delirium, and sepsis. Malignant hyperthermia
(MH) occurs in patients with an autosomal-dominant defect in genes encod-
ing the skeletal muscle ryanodine receptor (RyR-1) or the voltage-gated calci-
um channel (Cav1.1) who are exposed to volatile anesthetics or depolarizing
muscle relaxants (succinylcholine) [137]. Hypomagnesemia may increase the
probability and possibly severity of an MH event [138]. The subsequent rapid
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increase in myoplasmic calcium concentration increases muscle metabolism
and heat production and produces muscle contractures and hyperthermia.
Neuroleptic malignant syndrome (NMS) is characterized by high fever, auto-
nomic instability, altered mental status, and muscle rigidity. Potent antipsy-
chotics (neuroleptics) such as haloperidol and other medications (metoclo-
pramide, droperidol, and promethazine) with significant dopamine antago-
nism, as well as abrupt cessation of dopaminergic agents such as those used in
Parkinsonism, can precipitate this life-threatening syndrome [139]. NMS typ-
ically develops over several days and is characterized by ‘’lead-pipe’’ rigidity
[139]. Drugs that impair serotonin breakdown or re-uptake, those that act as
serotonin precursors or enhance its release, or those that are serotonin agonists
may lead to serotonin syndrome. Like NMS, serotonin syndrome is a spectrum
disorder for which various signs and symptoms have been proposed to estab-
lish diagnosis (e.g., Sternbach and Hunter criteria) [140, 141]. In its most
severe form it consists of high fever, autonomic instability, altered mental sta-
tus, and may have associated diaphoresis, shivering, tremor, diarrhea, or spon-
taneous clonus. In serotonin syndrome, onset of symptoms is usually rapid,
with 60% of patients with the serotonin syndrome presenting within 6 hours
of drug exposure, and tremor and hyperreflexia predominant in the lower
extremities may be a prominent feature [142]. Sympathomimetic-associated
hyperthermia, seen with acute intoxication with cocaine, amphetamines, sub-
stituted amphetamines, and phencyclidine, may be clinically indistinguishable
from serotonin syndrome [143]. Additionally, the agitated delirium engen-
dered by these agents may be difficult to distinguish from that induced by
hyperthermia itself. Patients with anticholinergic-associated hyperthermia will
generally present with a compatible “toxidrome” – agitation; mydriasis; dry,
hot, and erythematous skin; hypoactive bowel sounds; and urinary retention.
While rare, thyrotoxicosis factitia, the ingestion of excess thyroid hormones
due to inadvertent intake (pharmaceutical or food contamination), misuse
(dieting), or significant intentional ingestion may produce hyperthermia [144,
145]. Hyperthermia may accompany toxicity with agents that uncouple oxi-
dative phosphorylation (e.g., salicylates, dinitrophenol, pentachlorophenol)
[146].

Multiple medications can also complicate or contribute to environmental
hyperthermia. Several reviews and epidemiological data from major heat
waves have demonstrated that anticholinergics, antiepileptics, antihistamines,
antihypertensives in general and diuretics in particular, antipsychotics, and
others contribute to excess morbidity and mortality [147, 148]. Conversely,
exogenous heat stress can increase mortality from specific xenobiotics. In an
urban setting at ambient temperatures above 31.1 °C, the mean daily number
of fatal cocaine overdoses increased markedly [149].

Regardless of the cause for the hyperthermic syndrome, cessation of any
possible offending or contributing agents and rapid cooling is critical. The
degree of hyperthermia produced correlates with death and neurotoxicity in
animal models, and temperature normalizing intervention is critically impor-
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tant in attenuating CNS injury and mortality [150]. Studies from the Chicago
and France heat waves show that this is rarely done in a timely manner (if at
all) in cases of environmental hyperthermia, with devastating results [147,
148]. The benefits of rapid cooling by ice water immersion were demonstrat-
ed over 80 years ago [151]. A large review concluded that cooling methods
based on evaporative heat loss are less efficient than immersion in ice water in
dissipating heat [152]. Additional studies demonstrate that cooling rates of up
to 0.15–0.20 °C/min can be achieved with immersion, two to three times that
of evaporation [153, 154]. Regardless of the method used, effectiveness should
be repeatedly assessed.

Sedation with benzodiazepines and rigorous supportive care are necessary
adjuncts in significant cases. This is primarily accomplished with titrated
doses of benzodiazepines to inhibit muscle rigidity and control agitation.
Animal models have demonstrated the benefit of benzodiazepines in prolong-
ing survival, preventing seizure, and attenuating agitation in the toxicological
hyperthermias [155, 156]. Phenytoin is ineffective in animal models [157].
Phenothiazines and butyrophenones, while reported, may have delayed onset
and compromise mental status, lower seizure threshold, impair heat dissipa-
tion, and worsen hypotension [143].

Neuromuscular paralysis may be required to limit further heat generation in
cases of NMS, serotonin syndrome, and sympathomimetic-associated hyper-
thermia. As the pathophysiology of MH is beyond the neuromuscular junction,
paralytics are unlikely to provide benefit. Rapid i.v. administration of dantro-
lene, a direct-acting skeletal muscle relaxant, is the only drug proven effective
for prevention and treatment of MH. Dantrolene disrupts the pathogenic exci-
tation-contraction coupling by acting at RyR-1 to suppress depolarization-
induced sarcoplasmic reticulum calcium release and normalize the voltage
dependence of contractile activation [158]. Reversal of increased myotube sen-
sitivity may also play a role [159]. Intravenous 2–3 mg/kg dantrolene is
repeated until symptoms are controlled or 10 mg/kg (or more) has been admin-
istered. Following initial treatment, 1–2 mg/kg i.v. or per os is given every
6 hours for 24–72 hours to prevent recurrence. Dantrolene is packaged in vials
containing 20 mg dantrolene sodium; thus, multiple vials are needed for treat-
ment of adult patients. A large review of NMS cases did not suggest a benefi-
cial role for dantrolene, although one case-controlled analysis found benefit
[160, 161]. Bromocriptine, a dopamine agonist, has been used (off-label) to
treat NMS at doses ranging from 5 to 20 mg every 6 hours [143]. Common
side effects include hypotension, dyskinesia, erythromelalgia, and hallucina-
tions. Cyproheptadine, developed as an antihistamine, additionally antago-
nizes 5-HT2 receptors. Cyproheptadine for serotonin syndrome (off-label) is
initially used in a dose range of 4–12 mg, followed by 2 mg every 2 hours for
persistent symptoms; upon symptom control, 8 mg maintenance dosing is pro-
vided every 6 hours [142]. The tablet form necessitates administration orally
or crushed via nasogastric tube.
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Analgesic and anti-inflammatory antidotes

N-Acetylcysteine

N-Acetylcysteine (NAC) provides an effective means of prevention and treat-
ment of acetaminophen (N-acetyl-p-aminophenol, APAP; paracetamol)-
induced hepatotoxicity. NAC is also employed to preclude radiographic con-
trast-induced nephropathy [162]. The ultimate toxicant of APAP, N-acetyl-p-
benzoquinone imine (NAPQI) generated primarily by CYP2E1 and CYP3A4,
depletes glutathione (GSH), binds intracellular components, and, through an
incompletely understood process, produces hepatic injury, centrilobular necro-
sis, or hepatic failure [163, 164]. NAC works by multiple mechanisms. It aug-
ments APAP sulfation to a nontoxic metabolite, it acts as a glutathione precur-
sor or glutathione substitute to detoxify NAPQI, and possibly reverses NAPQI
oxidation [165, 166]. NAC provides substantial benefit even in cases of
delayed presentation following overdose [167]. Extra-hepatic benefits of NAC
include improving cardiac index and systemic mean oxygen delivery despite
decreasing systemic vascular resistance [168]. In a range of hepatic disorders,
NAC improved baseline oxygen delivery, oxygen consumption, and dye clear-
ance in a majority of patients [169]. Liver blood flow and cardiac index
improved in septic shock patients provided NAC [170]. Only L-NAC is bene-
ficial. Animal experiments demonstrate that the L-isomer, derived from physio-
logical L-cysteine, prevents hepatotoxicity and provides prolonged elevations
of hepatic glutathione [171]. Nonphysiological D-NAC cannot increase glu-
tathione stores or prevent hepatotoxicity, despite increasing acetaminophen
sulfation [172].

According to Rumack [163], the oral NAC dosing strategy was reached by
estimating the absorption and turnover rate of glutathione at 6 mg/kg per h and
an FDA safety factor of 3, to yield 70 mg/kg every 4 hours [6 (mg/kg per h) × 4
(h) × 3 (safety factor) = 72 ≈ 70 mg/kg every 4 h]. There were several assump-
tions as to “normal” hepatic glutathione levels and APAP to NAPQI conver-
sion. A 140 mg/kg loading dose was added to provide an early high hepatic
dose. The 72-hour duration of oral therapy was based on previous observations
of multiple patients with prolonged APAP half-lives and a desire to implement
a protocol that would accommodate those with half-lives longer than 12 hours
(anticipating disappearance after five half-lives). While many have suggested
that the 72-hour oral course is excessive, particularly after APAP has disap-
peared from the serum, the optimal duration of therapy is unclear. Studies
assessing a shortened or “patient-tailored” approach have been small or metho-
dologically limited [173, 174].

The Rumack-Matthew nomogram guides initiation of NAC therapy in sin-
gle acute ingestions. The “treatment line” is anchored at an APAP serum con-
centration of either 200 μg/mL (“200 line”) or 150 μg/mL (“150 line”) at
4 hours post ingestion and decreased by 50% every 4 hours. The slope of the
treatment line does not reflect APAP kinetics. The “150 line” is utilized in all



S.W. Smith414

patients in the U.S. and Australia; in the U.K. and elsewhere the “200 line” is
employed, with a “100 line” modification for an array of individuals deemed
at “high-risk”: ethanol tolerant, those at risk for glutathione depletion (malnu-
trition, HIV, eating disorders, cystic fibrosis), pregnancy, and those prescribed
enzyme-inducing drugs (carbamazepine, phenytoin, phenobarbitone rifam-
pacin, isoniazid, etc.) [165, 175]. The U.S. multicenter study substantiated the
safety and efficacy of its approach [176]. Proponents of the “150 line” point to
the fact that 3.45–12.9% of patients above the “150 line” but below the “200
line” developed biochemical hepatotoxicity (aspartate aminotransferase, AST
>1000 IU/L at any time during their course) in the U.S. multicenter trial and
that patient deaths have occurred in untreated patients “between the lines”
[177, 178]. In patients presenting near 8 hours after ingestion, or if a level is
not available before 8 hours post ingestion, NAC is begun while awaiting
APAP results and then continued or stopped once the results are available and
have been plotted on the nomogram. If the time of ingestion is unknown or
more than 24 hours has passed, NAC is administered. When APAP concentra-
tion and transaminase results are obtained, if transaminases are elevated or if
measurable APAP exists, a full course of treatment is provided. With normal
aminotransferases and without detectable APAP, treatment is not required.
Concentrations obtained less than 4 hours post ingestion are not useful except
to completely exclude ingestion (i.e., it is useful only if the APAP concentra-
tion is undetectable). Ongoing absorption may place individuals above the line
at 4 hours, or metabolism or charcoal administration may result in a patient
falling below the nomogram at 4 hours. In cases of chronic ingestion
(>7.5 g/day in adult), laboratory evaluation and treatment are provided as for
an unknown time of ingestion. With elevated transaminases or measurable
APAP, NAC is provided.

Oral NAC is cheap and familiar to clinicians. It has minimal side effects
(other than vomiting and odor) and is preferred in patients with bronchospas-
tic disease. Its use can become problematic in cases where oral delivery is
compromised, e.g., in patients with depressed mental status, significant vom-
iting, or impaired gastric motility. Use of an anti-emetic is encouraged.

Intravenous NAC appears to be similarly efficacious to oral NAC and elim-
inates many delivery issues. It has a much shorter therapy course (21 hours),
expediting medical and psychiatric disposition. It avoids first pass metabolism
in cases where the liver is not the only target or interest, such as those with
cerebral edema or pregnancy. While i.v. NAC is slightly more expensive, total
hospital charges may be less due to decreased treatment time. Histamine-medi-
ated anaphylactoid reactions are more commonly seen with rapid i.v. loading
and in patients with lower APAP levels [179]. Mild reactions have been treat-
ed by slowing the infusion rate and providing i.v. diphenhydramine, although
this might alter NAC and APAP kinetics. Dosing complexity – 150 mg/kg in
200 mL of 5% dextrose over 1 hour, followed by 50 mg/kg in 500 mL of 5%
dextrose over 4 hours (12.5 mg/kg per h), and then 100 mg/kg in 1000 mL of
5% dextrose over 16 hours (6.25 mg/kg per h) – yields frequent administration
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errors [180]. The supplied 20% solution was too concentrated for children, and
dilution according to adult guidelines resulted in excess free water, and cases
of hyponatremia and seizures [181]. The current U.S. package prescribing
information (http://www.acetadote.net/PI_Acetadote_Revised_Apr09.pdf)
and dosage calculator website (http://www.acetadote.net/dosecalc.shtml) pro-
vide dosing and administration guidelines in patients of less than 40 kg.

In a study limited by different comparison groups, data acquisition method-
ology, treatment location and several other factors, 20-hour only i.v. NAC was
favored in patients with early presentation (<12 hours), whereas late presenta-
tion favored oral 72-hour NAC [182]. However, continuous i.v. infusion in
delayed presentations with APAP-induced fulminant hepatic failure showed
clear benefit in a prospective study [167]. Whatever the route, prior to cessa-
tion of NAC therapy, negative APAP concentrations and normal transaminas-
es must be ensured, particularly in cases of massive ingestion; hepatotoxicity
may follow premature cessation of therapy [183, 184]. The 16-hour mainte-
nance dose is continued in patients receiving i.v. NAC until APAP is unde-
tectable and transaminases are normal (or at baseline). Experimental evidence
and human case reports demonstrate both delayed absorption, delayed increase
following initial decline, and “crossing the nomogram” with extended-relief,
opioid- or anticholinergic-containing APAP products, or co-ingestants [185,
186]. In cases of hepatic failure, i.v. NAC is continued until resolution, trans-
plant, or death.

Anticholinergic antidotes

Physostigmine

Historically, physostigmine (eserine), a reversible carbamate inhibitor derived
from the seed (Calabar bean) of the vine Physostigma venenosum Balfour, was
used in the ancient trial by ordeal [187]. Medicinal use of physostigmine was
first reported in 1864 to reverse severe atropine poisoning [188]. Naturally
available (–)-physostigmine is over 100 times more effective in inhibiting
acetylcholinesterase and butylcholinesterase in tissue, erythrocytes, and serum
in humans and animal models than its stereoisomer [189, 190]. This activity
depends upon interactions within the hydrophobic pocket of the acetyl-
cholinesterase active center, which is distinct from the catalytic site [191].
Additionally, physostigmine binds nicotinic receptors close to, but distinct
from, the acetylcholine binding site on the α-subunit [192]. At low doses,
physostigmine functions as an ineffective nicotinic receptor agonist, while at
higher doses it produces marked channel blockade.

Physostigmine’s nonspecific analeptic properties [8] are no longer consid-
ered useful in overdose, given the clear benefits of supportive care.
Indiscriminate use of physostigmine and an incomplete understanding of the
pathophysiology of tricyclic antidepressant (TCA) poisoning was associated
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with bradydysrhythmias including asystole, seizure, and several deaths [193,
194]. In animal models, physostigmine is ineffective in attenuating TCA-
induced seizures [195]. It failed to abolish dysrhythmias, decreased blood
pressure, and at high doses enhanced TCA toxicity [196]. Physostigmine is
currently recommended as a diagnostic and therapeutic agent for antimus-
carinic poisoning [197]. Patients should have clear peripheral or central mani-
festations of the anticholinergic toxidrome. As a tertiary amine, physostigmine
can cross the blood-brain barrier to reverse the central effects. An ECG should
exclude sodium or potassium channel blockade (QRS or QT prolongation).
Excessive physostigmine will produce a cholinergic syndrome, with mus-
carinic and nicotinic effects. As the adverse effects of bradycardia and bron-
chorrhea can produce significant morbidity, continuous cardiac monitoring
and immediate access to atropine are recommended during physostigmine
administration. Physostigmine, 1–2 mg in adults and 0.02 mg/kg (maximum
1.0 mg) in children is infused slowly over at least 5 min [198]. Repeat doses
every 10–15 min can be provided if an adequate response does not occur and
adverse effects are absent. Re-bolusing may be required in the setting of
antimuscarinics with a prolonged duration of action.

Anticonvulsant antidotes

L-Carnitine

The anticonvulsants include carbamazepine, ethosuximide, felbamate, gaba-
pentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital,
phenytoin, pregabalin, primidone, tiagabine, topiramate, valproic acid (VPA),
vigabatrin, and zonisamide. These drugs enjoy widespread approved and off-
label use for additional conditions, e.g., fibromyalgia (pregabalin); neuropathy
and neuropathic pain (carbamazepine, gabapentin, lamotrigine, levetiracetam,
and pregabalin); panic disorder (tiagabine); migraine prophylaxis and treatment
of obesity, ethanol dependence, and depression (topiramate); and bipolar disor-
der (carbamazepine, lamotrigine, and VPA). Treatment of anticonvulsant over-
dose is largely supportive, with particular attention to the CNS-depressant and
cardiovascular effects of some of these agents. L-(R)-Carnitine exists as the sole
specific antidote in this class for significant VPA (di-n-dipropylacetic acid,
2-propylpentanoic acid) poisoning. Patients with drug-associated mitochondrial
toxicity (particularly from nucleoside analogs) and anthracycline cardiotoxicity
might also benefit from its administration [199, 200].

The anticonvulsant properties of VPA derive from its ability to increase
γ-aminobutyric acid (GABA) availability via inhibition of GABA transami-
nase and succinic semialdehyde dehydrogenase, to attenuate N-methyl-D-
aspartate (NMDA)-type glutamate receptor excitatory effects, and to slow the
rate of recovery from sodium channel inactivation [201–203]. Additionally,
VPA appears to affect inositol levels similar to lithium. Therapeutic concen-
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trations are 50–100 mg/L. Potentially toxic concentrations are greater than
120 mg/L. Oral absorption of VPA is excellent [204]. Peak plasma concentra-
tions are generally seen in 1–4 hours, although this may be markedly delayed
by overdose, enteric coating, or meals [205]. Manifestations of significant
VPA toxicity include CNS effects (lethargy, seizure, coma, cerebral edema),
respiratory depression, metabolic derangement (hypernatremia, hyperam-
monemia, hypocalcemia, metabolic acidosis, carnitine deficiency), gastroin-
testinal effects (nausea, vomiting, and abdominal pain), pancytopenia, pancre-
atitis, and hepatotoxicity [206, 207]. Valproate toxicity is seen both in inten-
tional acute overdose and in those on chronic therapy, either without adequate
carnitine supplementation or on complex regimes.

Cells attempt to metabolize the VPA that is not directly excreted or glu-
curonidated in a manner similar to other fatty acids (Fig. 3). Thus, VPA is con-
jugated with coenzyme A (CoA). Carnitine enters via an ATP-dependent trans-
porter. VPA is then transferred to carnitine, the normal mechanism for fatty
acids entry into the mitochondrion. However, VPA-carnitine both inhibits the
carnitine transporter and also diffuses out of the cell to be lost via renal excre-
tion [208]. Renal resorption of carnitine is also impaired [209]. These factors
contribute to intracellular carnitine depletion. Once VPA-carnitine is shuttled
into the mitochondrion, it is reattached to CoA. It then undergoes β-oxidation,
in an attempt to generate 2-carbon molecules for entry into the Krebs cycle.
The 2-en-VPA-CoA product is neurotoxic with a prolonged half-life. The ter-
minal 3-keto-VPA product traps CoA, leading to its mitochondrial depletion.
Decreased mitochondrial CoA yields decreased ATP production, diminishing
usable cellular energy currency and further limiting carnitine entry into the cell
(via an ATP-dependent carnitine transporter). Once carnitine is depleted, nor-
mal fatty acid metabolism cannot occur [206]. Fatty acid build up is thought to
underlie the Reye’s-like steatohepatitis, which can be seen in toxicity [210].
CoA is also needed to make N-acetylglutamate, an activator of carbamoyl-
phosphate synthetase I (CPS I), a critical enzyme in the urea cycle. When its
effectiveness is limited due to inadequate activator, ammonia cannot be incor-
porated, and consequently, its concentrations increase. Furthermore, as CoA is
depleted, β-oxidation shifts to omega (ω), or terminal carbon oxidation. This
creates (among others) the hepatotoxic 4-en-VPA product. 4-en-VPA addi-
tionally inhibits CPS I, further preventing nitrogen elimination and contribut-
ing to hyperammonemia.

L-Carnitine (levocarnitine) supplementation has been recommended to
reverse the adverse metabolic effects of VPA in cases of VPA-induced hepato-
toxicity, VPA overdose, and primary carnitine-transporter defects [211, 212].
Hyperammonemia and serum and muscle carnitine deficiency are well
described in patients chronically taking VPA [213–215]. Several studies and
case reports demonstrate that carnitine supplementation reverses clinical
symptoms, hypocarnitinemia, hyperammonemia, and VPA half-life prolonga-
tion in patients with toxicity due to chronic administration [216–218]. In
patients with acute VPA overdose, limited clinical and laboratory data derived
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from case reports also suggest that reversal of metabolic derangements and
improvement in clinical symptoms occurs when carnitine is provided
[219–221]. A single large retrospective analysis showed a significant survival
benefit with i.v. carnitine supplementation (with VPA cessation) in patients
with valproate-induced hepatotoxicity [222].

L-Carnitine dosing for cases of overdose is not currently evidence based. An
oral or i.v. dose of 100 mg/kg per day, divided and given every 6 hours (max-
imum daily dose 3 g), is provided to those patients with acute overdose and

Figure 3. Valproic acid (VPA) metabolism and toxic mechanisms (see text for details). Several addi-
tional valproate metabolites are omitted. Enzymes (italicized): ACoAS, acyl-CoA synthetase; CPS I,
carbamoyl-phosphate synthetase 1; CPT I, carnitine palmitoyltransferase I (reaction occurs on mito-
chondrial outer membrane); CPT II, carnitine palmitoyltransferase II (reaction occurs on mitochon-
drial inner membrane); and OTC, ornithine transcarbamylase. Substances: ATP, adenosine triphos-
phate; 2-, 3-, or 4-en-VPA, 2-propyl-2-, 3-, or 4-pentenoic acid; 3-, 4- or 5-OH-VPA, 3-, 4- or
5-hydroxy-2-propylpentanoic acid; 3-keto-VPA, 3-oxo-2-propylpentanoic acid; 2-PGA, 2-polyglutar-
ic acid; 4-keto-VPA, 4-oxo-2-propylpentanoic acid; and NAGA, N-acetylglutamate. Symbols: ⊕, ago-
nism or co-factor; ⊗, antagonism. Data used can be found in [201, 202, 204, 212, 482].
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asymptomatic hyperammonemia or hepatotoxicity in the absence of CNS
depression or metabolic derangement [211]. Symptomatic patients with hyper-
ammonemia or symptomatic hepatotoxicity should receive 100 mg/kg L-carni-
tine i.v. over 30 min (maximum 6 g), followed by 15 mg/kg every 4 hours over
10–30 min until clinical improvement occurs [211, 223]. Others have supple-
mented at the higher dosing strategy when VPA concentrations exceed
450 mg/L [224]. In addition, given the decrease in protein binding that occurs,
hemodialysis or hemoperfusion is recommended for patients with VPA con-
centrations exceeding 850–1000 mg/L or with severe clinical symptoms [202].

L-Carnitine is generally well tolerated. Side effects associated with carnitine
supplementation are nausea, abdominal discomfort, dose-related diarrhea, and
fishy body odor [223]. A small retrospective chart review found no adverse
effects or allergic reactions in VPA overdose patients administered carnitine
[225]. The current L-carnitine package inserts have no warnings or contraindi-
cations, but note that seizures have been reported to occur in patients, with or
without pre-existing seizure activity, who received either oral or i.v. L-carnitine
[226]. Up to 600 mg/kg per day for 5 days has been provided without compli-
cations [227]. The D-isomer and the racemate (D,L-carnitine) are contraindi-
cated. Historic use of racemic D,L-carnitine was associated with myasthenia-
like syndromes and cardiac dysrhythmias, which disappeared after L-carnitine
administration [228]. D-Carnitine also competitively depletes cardiac and
skeletal muscles and kidneys of L-carnitine [229].

Antihyperglycemic antidotes

Dextrose

Dextrose (D-glucose) is indicated to rapidly reverse organic or toxin-induced
hypoglycemia (e.g., from sulfonylureas, insulin, ethanol, salicylates, β-adren-
ergic antagonists, quinolines, pentamidine, ritodrine, and disopyramide) [230,
231]. Hypoglycemia onset may be significantly delayed with certain agents
(e.g., long-acting insulin or sulfonylureas). Limited CNS glycogen stores (in
astrocytes) and the inability to acutely use free fatty acids make the CNS par-
ticularly vulnerable to hypoglycemia [232]. Patients (and providers) may be
unaware of hypoglycemia in the absence of objective testing; both the count-
er-regulatory autonomic response and overt neurological deficit may be absent
[233, 234]. Additionally, significant neuroglycopenia and hypoglycemia-asso-
ciated delirium (particularly in salicylism) may occur despite a “normal”
peripheral blood glucose [235]. A wide range of clinical presentations have
been described, including diaphoresis, nausea, tachycardia, tremor, hypother-
mia, focal neurological deficits, and CNS agitation, confusion, or depression.
These are generally reversible upon prompt treatment. Untreated hypo-
glycemia may result in seizure, coma, and death. Hypoglycemic seizures
increase cerebral metabolic rate, contribute to ATP depletion, and produce irre-
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versible brain damage [236, 237]. For these reasons, when bedside testing is
unavailable, a risk-benefit calculation has generally favored empiric dextrose
administration in the absence of a very clear alternative history or explanation
for altered mental status.

Following a determination of absolute or relative hypoglycemia, 0.5–
1.0 g/kg i.v of age-appropriate dextrose containing solutions should be pro-
vided immediately – D50W (50 g/100 mL) in adults, D25W (25 g/100 mL) in
children, and D10W (10 g/100 mL) in neonates. Frequent re-evaluation of
response to therapy is required. Glucose uptake and distribution, hyper-
glycemia-induced insulin secretion in those with a competent pancreas, and
ongoing toxin exposure may cause recurrent hypoglycemia and necessitate
repeat dosing. Feeding, which provides significantly more calories than each
50 mL ampule of D50W (85 kcal according to one manufacturer [238]),
should be commenced as soon as practicable. While D10W “maintenance”
solutions may be subsequently required, at an infusion rate of 100 mL/h, this
concentration only provides 34 kcal per hour. Continuous infusion of more
concentrated solutions (e.g., D20W) requires a central venous catheter for
administration. Only the D-isomer is clinically useful. Most glucose trans-
porters (GLUTs) and the specific transporter required for facilitated diffusion
of glucose across the blood-brain barrier, GLUT1 (SLC2A1), have a high
affinity for D-glucose and negligible affinity for L-glucose [236, 239]. D-Glu-
cose is also generally favored over other D-glucose epimers such as D-mannose
or D-galactose.

D50W is hypertonic and may cause phlebitis or thrombosis at the site of
injection. Extravasations of solutions containing as low as 10% dextrose have
caused significant tissue injury and necrosis, particularly in young children
[240]. Pseudoagglutination of red blood cells may occur if concentrated dex-
trose solutions without electrolytes are administered simultaneously with
blood through the same infusion set [238]. Hypertonic dextrose administration
may also induce generally clinically irrelevant hypophosphatemia [241].

Octreotide

Octreotide acetate, a synthetic somatostatin analogue, is now favored in cases
of refractory hypoglycemia due to sulfonylureas or quinine. It is FDA
approved for treatment of acromegaly, carcinoid tumors, and vasoactive intes-
tinal peptide tumors [242]. It is a more potent inhibitor of insulin secretion
than the natural hormone [242]. In pancreatic β-islet cells, ATP generated from
glucose uptake and subsequent metabolism normally induces closure of the
ATP-dependent potassium channel by binding to its pore subunit (Fig. 4).
Sulfonylureas similarly induce channel closure after binding to a regulatory
(SUR1) subunit. Increased intracellular potassium triggers calcium entry
through voltage-dependent calcium channels, leading to increased cytosolic
calcium and insulin exocytosis [243, 244]. Additionally, ATP contributes to
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insulin vesicles movement and provides a substrate for protein kinase A
(PKA)-mediated phosphorylation. Octreotide binds to the somatostatin recep-
tor (primarily SSTR5) [243]. The subsequent effects continue to be explored
and include inhibitory calcium channel effects, inhibition of adenylyl cyclase,
and dephosphorylation of specific proteins required for movement and/or
docking of vesicles [243, 245, 246]. Octreotide effectively suppresses endoge-
nous insulin release in controlled studies in diabetics and in cases of sulfonyl-
urea overdose, but does not (and would not be expected to have) an effect on
exogenously administered insulin [247–249].

Several factors support octreotide usage following failure of initial dextrose
administration and feeding. Bolused dextrose may produce hyperglycemia and
thus subsequently stimulate an exaggerated insulin response, particularly when

Figure 4. Pancreatic β-islet cell mechanisms of insulin release and octreotide action (see text for
details). Enzymes and substances: AC, adenylyl cyclase; ATP, adenosine triphosphate; cAMP, cyclic
adenosine monophosphate; GLUT2, glucose transporter 2; PKA, protein kinase A; SFU, sulfonylurea;
SSTR, somatostatin receptor. Symbols: ⊕, agonism or co-factor; ⊗, antagonism. Data used can be
found in [243–246].
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sulfonylureas persist. This contributes to recurrent (sometimes more signifi-
cant) hypoglycemia. A vicious cycle of serum glucose concentrations is de-
scribed in case reports and controlled trials following dextrose administration
after sulfonylurea exposure [249–251]. Additionally, as has been demonstrat-
ed, classic neuroglycopenic symptoms may not be present, and patients may
need to be admitted during periods when circadian sleep patterns would com-
plicate assessment. Octreotide administration also obviates the concern of ex-
cess water administration in pediatric patients receiving i.v. dextrose solutions.

Relatively few trials are available to judge the efficacy of octreotide for sul-
fonylurea-induced hypoglycemia. In one study, glipizide was used to induce
induced hypoglycemia (50 mg/dL) in eight healthy volunteers, who were then
resuscitated with dextrose infusion, diazoxide, or octreotide [251]. Dextrose
requirements were markedly less in patients provided octreotide and hypo-
glycemic events were markedly attenuated after all therapies were stopped.
One retrospective chart review of nine patients demonstrated that octreotide
significantly reduced the number of recurrent hypoglycemic events and dex-
trose requirement [252]. One prospective randomized controlled trial in 40
poisoned patients, despite a failure to control for carbohydrate intake and hav-
ing an unusual dosing strategy (a single octreotide 75 μg dose subcutaneous-
ly), demonstrated consistently higher glucose values for the duration for which
octreotide would be expected to be effective (6–8 hours) [253]. Controlled ani-
mal studies with 25–100 μg octreotide demonstrated a similar decrease in
hypoglycemic events [254]. The remainder of human clinical experience of the
effectiveness of octreotide in sulfonylurea overdose comes from abstracts, case
reports, and case series (e.g., [249, 250, 255–257]).

Pediatric experience in sulfonylurea overdose comes only in the form of
limited abstracts and case reports in children aged 12 months to 17 years [248,
258–260]. However, octreotide has been used for prolonged periods to treat
persistent hyperinsulinemic hypoglycemia of infancy [261, 262].

Two human studies examined the effectiveness of octreotide in quinine-
induced hypoglycemia. In one study of nine healthy volunteers, 50 μg/hour
octreotide as a continuous i.v. infusion abolished quinine-induced insulin
release [263]. The authors reported resolution of hypoglycemia in an addition-
al patient being treated with quinine for Plasmodium falciparum malaria. A
subsequent study in eight patients with P. falciparum malaria confirmed
octreotide suppression of quinine-induced hyperinsulinemia [264].

Optimal dosing of octreotide has not been definitively determined. Initial
doses of 40–100 μg subcutaneously in adults have been reported, although
50 μg every 6–8 hours is commonly provided [256, 265]. In children, an ini-
tial dose of 1.0–1.25 μg/kg is used, although up to 2.5 μg/kg (or more) has
been reported [258, 260]. Peak serum concentrations are achieved within
30 min after subcutaneous administration and within 4 min after a short
(3 min) i.v. infusion [266]. The elimination half-life (by either route of admin-
istration) is approximately 1.5 hours. In patients with severe renal impairment
(which may have contributed to sulfonylurea-induced hypoglycemia in the
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first place), the plasma clearance is reduced by 50% [266]. The subcutaneous
route is recommended due to longer duration of effect, as i.v. administration
has resulted in treatment failure [267]. Side effects are generally minimal.
Octreotide does inhibit gallbladder contractility and decreases bile secretion in
normal volunteers [242]. When octreotide has been used to reverse sulfonyl-
urea-induced hypoglycemia, bradycardia, hypokalemia, anaphylactoid reac-
tion, and hypertension and apnea have been reported [257, 259]. Other adverse
events include nausea, abdominal cramps, diarrhea, fat malabsorption and flat-
ulence [268]. Octreotide also suppresses glucagon release, although hypo-
glycemia has been a concern only in patients on long-term therapy for organ-
ic hyperinsulinemia [269].

Glucagon is not generally recommended to correct hypoglycemia. Glyco-
gen stores are frequently depleted by the time toxin-induced hypoglycemia
manifests; glucagon’s half-life (less than 20 min) is inadequate given the pro-
longed duration of the effect of sulfonylureas; and glucagon may exacerbate
hyperinsulinemia [258]. Diazoxide, an antihypertensive agent, which reduces
insulin release by opening the ATP-dependent potassium channel, is now of
historical interest due to associated hypotension, reflex tachycardia, nausea
and vomiting, and fluid retention [243, 265].

Antimicrobial antidotes

Pyridoxine

Since its introduction in 1952, isoniazid (INH, isonicotinic hydrazide, pyri-
dine-4-carbohydrazide) has remained a mainstay for treatment and prophylax-
is of mycobacterial infections [270]. The adult single tablet, 300 mg daily dose
(4.3 mg/kg in a 70 kg individual) targets a peak plasma concentration of
3–5 μg/mL [271]. Acute INH toxicity may occur following ingestion of
20 mg/kg INH; it is common above 35–40 mg/kg [272]. The relatively narrow
therapeutic window poses a significant risk for those with suicidal intent and
for those who ingest extra pills to “catch up” after a brief period of incomplete
compliance [273]. Historically, death rates of 21% were reported [274].
Seizures refractory to typical therapy, severe metabolic lactic acidosis, and
coma may occur as early as 30 min post ingestion due to the rapid and nearly
complete absorption of INH from the gastrointestinal tract. Seizures may occur
at lower doses in those with pre-existing susceptibility. Associated respiratory
failure, hypotension, and rhabdomyolysis may ensue. In patients provided
2.1–3.9 g (64–83 mg/kg) INH due to medication error, all experienced nausea
or vomiting, vertigo, and coma within 30 min to 6 hours after ingestion [275].
Abnormal generalized discharges as sharp and slow waves were seen on EEG
in all patients. Chronic INH toxicity may present with nausea, vomiting, hep-
atitis, hemolytic anemia, and neurological findings (restlessness, neuropathy,
cerebellar findings, and psychosis).
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The acute clinical effects are a product of the multiple biochemical actions
of INH, which lead to pyridoxine depletion and subsequent neuronal hyperex-
citability (Fig. 5) [272, 276–278]. INH hydrazones inhibit pyridoxine phos-
phokinase, which activates pyridoxine. INH hydrazines and hydrazides inacti-
vate active pyridoxal 5-phosphate. INH metabolites also complex with pyri-
doxal 5-phosphate, leading to increased urinary elimination. Glutamic acid
decarboxylase (GAD) and GABA transaminase (GABA-T) both require pyri-
doxal 5-phosphate as a co-factor. Inhibition of GAD exceeds that of GABA-T
[279]. The resulting GABA depletion and loss of neuronal inhibition is thought
to underlie seizure activity. Metabolic acidosis may be profound – survival has
been reported with a pH of 6.49 [280]. Seizure-associated lactate generation is
substantial; INH-induced metabolic acidosis does not develop in paralyzed
dogs (despite EEG evidence of seizure) [281]. Importantly, merely correcting
the acidosis (e.g., by bicarbonate) does not prevent additional seizures or ter-
minate INH toxicity [281, 282]. INH also impairs lactate conversion to pyru-
vate (Fig. 5). Increased metabolism of fatty acids due to impaired glucose
metabolism with hyperglycemia and ketonuria has been reported [272, 283].
INH also impairs cellular reduction-oxidation capacity via competitive inhibi-
tion of NAD [284, 285]. Pyridoxine deficiency also appears to play a role in
INH-induced mental status changes (coma and lethargy) [275, 282, 286].

Appropriately dosed pyridoxine (vitamin B6) has been the mainstay of anti-
dotal therapy for INH intoxication since the early reports of benefit versus his-

Figure 5. Mechanisms of isoniazid (INH) toxicity (see text for details). Enzymes (italicized):
GABA-T, GABA transaminase; GAD, glutamic acid decarboxylase; GOT, glutamic-oxaloacetic
transaminase; LDH, lactate dehydrogenase; PPK, pyridoxine phosphokinase; and SR, serine race-
mase. Substances: GABA, γ-aminobutyric acid; and SSA, succinic semi-aldehyde. Symbols: ⊕, ago-
nism or co-factor; ⊗, antagonism. Data used can be located in [272, 276–278, 483].
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torical controls [282]. Exogenous vitamin B6 provides the necessary precursor
for the co-factor for GABA regeneration. Clinical experience with pyridoxine
comes from case series, case reports, and animal data [273, 275, 281, 282,
287–289]. Clinical trials are absent due to ethical considerations. Vitamin B6
(as pyridoxine hydrochloride) is provided on a gram per gram basis for each
gram of INH ingested, to a maximum of 5 g or 70 mg/kg (the empiric dose in
ingestions of unknown quantity) [272, 282, 287]. A repeat dose can be pro-
vided if necessary. Due to the large amount of pyridoxine required, inadequate
stocking and depletion of institutional and entire regional supplies have been
widely reported [287, 290, 291]. In the convulsing patient, pyridoxine is
administered i.v. at 0.5 g/min (5 g maximum) until seizure termination, with
the remainder over 4–6 hours. Pediatric dosing should not exceed 70 mg/kg
(5 g maximum). Large doses of pyridoxine have been safely administered;
however, sensory neuropathy may occur with massive acute doses (>100 g) or
chronic large daily doses [292]. Co-administration of benzodiazepines is syn-
ergistic in controlling seizures [288, 289]. Massive INH ingestion may require
additional sedative hypnotics or anesthetic agents to suppress seizures [293].
INH is dialyzable, and hemodialysis has been used successfully in cases
refractory to antidotal treatment, in those with extremely high plasma INH
concentrations, and in patients with renal failure [283, 293].

Pyridoxine also appears to rapidly reverse the impaired consciousness seen
in INH overdose [282, 286]. The CNS excitatory neurotransmitters include
glutamate and D-serine, which with glutamate is a co-agonist of the NMDA
receptor [278]. Examination of the metabolic pathways affected by pyridoxal
5-phosphate depletion (Fig. 5) suggests that inadequate stores of these neuro-
transmitters (due to inadequate co-factors for glutamic-oxaloacetic transami-
nase and serine racemase) might be contributory, in addition to general sub-
strate or catecholamine deficiency.

Pyridoxine therapy is also recommended for poisoning through other
hydrazines or hydrazine precursors (e.g., Gyrometra mushrooms, mono-
methylhydrazine, and unsymmetrical dimethylhydrazine fuel). Pyridoxine is
effective in treating the chronic INH-associated neuropathy, particularly in
patients with renal failure. Doses of 10–50 mg pyridoxine/day have typically
been used in the chronic setting [271]. Pyridoxine has no effect in prevention
or treatment of INH-associated hepatic injury.

Antineoplastic antidotes

Antineoplastic agents are used for the treatment of a variety of benign and
malignant neoplasms. Some antineoplastic agents (such as the antifolates) have
an expanded spectrum that includes use in rheumatology, dermatology, and
obstetrics and gynecology. Toxicity may be due to the agent itself or delivery of
the agent to an unintended target (e.g., extravasation). Several antidotes are
used in a prophylactic fashion or on chronic basis. Amifostine (WR-2721) –
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which is dephosphorylated by alkaline phosphatase to an activated, protective
thiol form – is approved to decrease toxicity associated with radiotherapy and
renal injury associated with cisplatin [294]. It has also been used to reduce
chemotherapy-induced neutropenia; genitourinary injury associated with
cyclophosphamide; and transfusion requirements, gastrointestinal and hepatic
toxicity in pediatric patients [295, 296]. Cyclophosphamide and ifosfamide
induce bladder toxicity (hemorrhagic cystitis) via their metabolite acrolein.
Mesna (2-mercaptoethane sulfonate), a thiol agent that complexes with and
inactivates acrolein, is provided orally or i.v. as prophylaxis [294]. Diethyldi-
thiocarbamate (DDTC), the major metabolite of disulfiram, is an investigation-
al agent for prevention of neuropathy from cisplatin and its analogs; it increased
nephrotoxicity in one study [297]. Granulocyte colony-stimulating factor
(G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), ery-
thropoietin (hemopoietin) and its derivatives, oprelvekin (recombinant inter-
leukin-11), and other stimulating factors are employed as adjuvants to recon-
stitute various hematopoietic lines damaged by chemotherapy and radiation
[298, 299]. Palifermin (recombinant truncated human keratinocyte growth fac-
tor) is used to prevent severe mucositis in patients receiving stem-cell trans-
plantation with a total body irradiation conditioning regimen [294]. The
remaining section focuses on antineoplastic antidotes used in the acute setting.

Dexrazoxane

A dreaded complication of administration of vesicant chemotherapeutic agents
is extravasation. Risk factors for extravasation include small, fragile, or scle-
rosed veins, obesity, comorbid conditions (diabetes, circulatory disorders,
impaired sensory perception), use of rigid i.v. catheters, and clinicians’ lack of
knowledge and skills [300]. Redness, burning pain, and swelling may portend
later blistering, ulceration, and necrosis. Dexrazoxane is U.S. FDA approved
for treatment of extravasation resulting from i.v. anthracycline chemotherapy,
to diminish tissue damage and the need for surgical excision of necrotic tissue
[301]. Clinical efficacy data comes from two simultaneously reported open-
label, single-arm, prospective multicenter studies in which only 1 out of 54
patients with biopsy-proven extravasation required surgical debridement [302].
Additional instances of successful dexrazoxane treatment of anthracycline
extravasation are provided as case reports ([303] and others). Dexrazoxane is
provided once daily for 3 consecutive days, with the first infusion initiated as
soon as possible. Daily doses are as follows: day 1, 1000 mg/m2 (maximum
2000 mg); day 2, 1000 mg/m2 (maximum 2000 mg); day 3, 500 mg/m2 (max-
imum 1000 mg) [301]. The dose is reduced by 50% in patients with creatinine
clearance of less than 40 mL/min. In mice, efficacy rapidly decreased when
dexrazoxane was provided beyond 6 hours after extravasation [304].
Dexrazoxane’s mechanism of action appears to involve reversible inhibition of
topoisomerase II and inhibition by its metabolite, an ethylenediamintetraacetic
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acid (EDTA) analogue, of free radical formation via iron removal from the
iron-doxorubicin complex [305]. Topoisomerase II-independent effects have
also been described [306]. In contrast, some authors have encouraged the non-
concurrent, off-label use of topical dimethyl sulfoxide (DMSO) for anthracy-
cline extravasation because of the risk of infection, neutropenia, and thrombo-
cytopenia associated with dexrazoxane [307]. Dexrazoxane is also used pro-
phylactically to limit anthracycline-associated cardiomyopathy [294].

Leucovorin

In 1950, methotrexate (MTX) joined the oncological armamentarium for
leukemia [308]. MTX treatment of solid cancers was reported in 1956, and it
gained FDA approval for psoriasis in 1971 [309, 310]. MTX is now used intra-
muscularly, intrathecally, i.v., and orally for a range of dermatological,
rheumatological, obstetric, and gynecological conditions. The dose ranges
from 7.5–30 mg orally once weekly for psoriasis or rheumatoid arthritis to
8–12 g/m2 or more for osteosarcoma, leukemia, and lymphoma [311–313].
MTX poisoning may result from intentional overdose; unintentional ingestion,
prescription, dispensing, administration, and patient errors; or renal insuffi-
ciency leading to persistent MTX in patients receiving high-dose chemothera-
py regimens [314, 315]. MTX antagonizes folate metabolism (and rapidly pro-
liferating cells) via multiple mechanisms. Dihydrofolate reductase inhibition
by MTX and its polyglutamated metabolites ensures that neither dihydrofolate
nor active tetrahydrofolate can be generated from folate, nor can existing dihy-
drofolate be recycled. Thymidylate synthase inhibition compromises thymi-
dine synthesis. Purine ring synthesis is impaired by inhibition of the partici-
pating enzymes amidophospho-ribosyltransferase (PPAT) and 5-aminoimida-
zole-4-carboxamide ribonucleotide transformylase (AICART) [316, 317].

Maintenance of brisk urinary elimination with i.v. hydration and urinary
alkalinization are standard therapies for patients receiving MTX. MTX is ten
times more soluble in alkalinized urine (i.e., pH 7.5) than at pH 5.5 [318].
Folate (folic acid) is an ineffective therapy for MTX poisoning. While folate
will inhibit renal resorption of MTX, persistent dihydrofolate reductase inhibi-
tion by MTX inhibits folate’s activation. Leucovorin (folinic acid, 5-formyl-
tetrahydrofolic acid, citrovorum factor) sustains the folate cycle by bypassing
the blocked dihydrofolate reductase pathways. Addition of leucovorin “rescue”
permitted the administration of very-high-dose MTX chemotherapy [319].
However, in patients receiving MTX chemotherapy, 24-hour MTX concentra-
tions greater than 1 × 10–5 M (10 μmol/L), 48-hour concentrations greater than
1 × 10–6 M (1 μmol/L), or 72-hour concentrations greater than 1 × 10–7 M
(0.1 μmol/L, 100 nM), or those with evidence of renal dysfunction are consid-
ered at high risk for toxicity [320]. In the setting of MTX persistence or toxic-
ity, leucovorin i.v. doses are increased to 100 mg/m2 or 1000 mg/m2 every
6 hours according to established nomograms; doses and as high as 10 g/day
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have been used [319, 321]. Leucovorin therapy continues until MTX concen-
tration are less than 0.5 × 10–7–1.0 × 10–7 M (0.05–0.1 μmol/L, 50–100 nM)
[319]. However, adequate leucovorin concentrations cannot be achieved for
competitive reversal of MTX toxicity when MTX concentrations are persistent-
ly above 10–100 μmol/L; other antidotal strategies are then considered [313].

Treatment of patients ingesting MTX should not be delayed pending MTX
concentrations. Inhibition of DNA synthesis is nearly complete when MTX
plasma concentrations are greater than 1 × 10–8 M (0.01 μmol/L, 10 nmol/L)
[322]. Therefore, leucovorin is provided until MTX concentrations are less
than 1 × 10–8 M in patients receiving MTX for non-oncological indications or
in patients not receiving MTX therapeutically [311]. Only leucovorin’s S-form
[levoleucovorin, (6S)-leucovorin] is active and rapidly metabolized to usable,
reduced folates; the inactive isomer is slowly eliminated by renal excretion
during i.v. administration [323]. Leucovorin was available in the U.S. only as
a racemate until 2008, when levoleucovorin received FDA approval. Levo-
leucovorin at one-half of the usual racemic dose (as it is entirely active)
appears to provide similar rescue therapy in high-dose MTX chemotherapy
[324]. Oral rescue is not routinely recommended as leucovorin’s bioavailabil-
ity is poor above 40 mg due to saturation of active intestinal transport [323].
The calcium content of leucovorin (0.004 mEq calcium/mg leucovorin) man-
dates that infusion should not exceed 160 mg/min. Intrathecal administration
of leucovorin is contraindicated, as death may result [325].

Glucarpidase

Glucarpidase (carboxypeptidase G2, CPDG2) is undergoing evaluation as an
additional antidote for MTX toxicity. U.S. or European marketing approval for
glucarpidase has not been granted at the time of writing. Competitive and com-
plete reversal of MTX toxicity by leucovorin may not be possible at MTX con-
centrations above 100 μmol/L (and perhaps even lower) [313, 326, 327].
Patients with systemic MTX toxicity (significant mucositis, gastrointestinal
distress, myelosuppression, hepatitis, or neurotoxicity), persistent serum
MTX, and renal impairment following high-dose MTX have been considered
for glucarpidase therapy in addition to leucovorin. Recommendations for glu-
carpidase above certain MTX concentrations have varied by malignancy,
degree of renal impairment, initial MTX dose, and serum MTX concentration
(e.g., Clinical Trials NCT00424645, NCT00481559, and [313, 328–330]).

Purification of “carboxypeptidase G”, a pseudomonad zinc-dependent
enzyme capable of MTX cleavage, was reported in 1967 [331]. Its antidotal
potential was suggested in 1972. In mice injected with lethal MTX doses, car-
boxypeptidase G1 rapidly decreased MTX concentrations and improved sur-
vival [332]. CPDG1 selectively eliminated systemic MTX in patients treated
with high dosages targeting CNS malignancy, and rescued a patient receiving
MTX with renal failure in 1978 [333, 334]. After the original enzyme source
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of CPDG1 was lost, a revived recombinant CPDG2 product demonstrated suc-
cess in both i.v. and intrathecal rescue of MTX overdose in non-human pri-
mates [335–337]. Successful use in multiple case reports and human trials in
adult and pediatric patients with i.v. and intrathecal MTX overdose emerged
[313, 315, 328, 329, 337–339].

Glucarpidase is a dimerized protein with two domains – a zinc-dependent
catalytic domain that removes C-terminal glutamate residues of folate and
folate analogues and a β-sheet interaction site [340]. Glucarpidase splits MTX
and its 7-hydroxy-MTX metabolite into inactive 4-{[2,4-diamino-6-(pteri-
dinyl)methyl]-methylamino}-benzoic acid (DAMPA) and hydroxy-DAMPA
plus glutamate [341, 342]. MTX serum concentrations decline by 71–99%
within minutes after glucarpidase [313, 315, 326, 330, 343, 344]. Intracellular,
intraluminal (gastrointestinal tract) and intracerebral MTX is unaffected, cre-
ating the potential for rebound concentrations and persistent cytotoxicity [317,
328, 332, 345–347]. Leucovorin therapy must continue after carboxypeptidase
administration. DAMPA’s poor urinary solubility also requires ongoing alka-
linization and saline diuresis to prevent renal precipitation [315, 348].

Anti-glucarpidase antibodies have been detected in patients receiving glu-
carpidase, although patients have been successfully treated with additional
doses of glucarpidase for persistently elevated MTX concentrations [313, 326,
328, 337, 339, 342, 345]. HPLC must be used to determine actual MTX con-
centrations after glucarpidase as both MTX metabolites, 7-hydroxy-MTX and
DAMPA, interfere with immunoassay techniques [349]. Glucarpidase has an
affinity for MTX approximately 10- to 15-fold higher than it does for leucov-
orin; however, its affinity for folate and 5-methyltetrahydrofolate are similar
[350, 351]. Glucarpidase eliminates active levo-(6S)-leucovorin about 50%
faster than nonphysiological dextro-(6R)-leucovorin [348]. A study to address
the clinical consequence is ongoing. Because of the stereoselective destruction
of active leucovorin and its metabolites, many protocols attempt to separate
leucovorin administration from glucarpidase administration by 2–4 hours. Ad-
ministration of glucarpidase more proximate to leucovorin administration, and
which antidote to provide should glucarpidase become available at a leuco-
vorin dosing interval, requires a thoughtful benefit-risk assessment. Country-
specific information on obtaining glucarpidase, institutional review board pro-
tocol, and consent issues have been made available online (www.btgplc.com/
BTGPipeline/273/Voraxaze.html; and www.fda.gov/cder/cancer/singleIND.
htm).

Cardiovascular antidotes

Cardiovascular pharmaceuticals comprise a wide variety of agents including
anti-dysrhythmics, β-adrenergic antagonists (β-blockers, BBs), angiotensin
antagonists, calcium channel antagonists (CCBs), cardioactive glycosides, and
imidazoline derivatives. Overdose of these agents alone or in combination can
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generate potentially lethal combinations of impaired conduction, dysrhythmia,
vasodilatation, and negative inotropy. Management of severe cases may neces-
sitate diagnostic adjuncts such as echocardiography and right heart catheteri-
zation (Swan-Ganz measurements). In cases refractory to routine supportive
care, vigorous gastrointestinal decontamination, and pharmacological inter-
vention, aggressive measures including cardiac pacing, intra-aortic balloon
counter-pulsation, or extracorporeal circulation (cardiopulmonary bypass)
may be required until toxin elimination can be achieved [352]. Cardiac pacing
may improve heart rate without increasing cardiac output if inotropy is com-
promised. Use of naloxone in the management of overdose of clonidine and
angiotensin receptor antagonists and angiotensin converting enzyme inhibitors
is provided in the opioid antagonists section. Strategies to mitigate the antico-
agulant toxicity of vitamin K antagonists (i.e., coumadin) including exogenous
oral or i.v. vitamin K, fresh frozen plasma, prothrombin concentrates, and
recombinant factor VII are detailed in the 2008 American College of Chest
Physicians Evidence-Based Clinical Practice Guidelines [353]. The Guide-
lines also address protamine sulfate for reversal of heparin anticoagulation and
use of nonheparin anticoagulants for treatment and prevention of heparin-
induced thrombocytopenia [354, 355].

Atropine

Atropine (D,L-hyoscyamine) is familiar to clinicians due to its use in several
advanced cardiac life support (ACLS) algorithms [356]. Atropine is a central-
acting, competitive antagonist of muscarinic acetylcholine receptors (M1–M5)
[357]. It is used to counteract bradycardia from BBs, CCBs, cardioactive gly-
cosides, and clonidine. Atropine increases basal heart rate; it does not affect the
basal force of contraction [357]. Positive chronotropy alone may not produce
systemic benefit in severe poisoning, and conduction system poisoning may
limit responsiveness to atropine [358]. For symptomatic bradycardia, atropine
0.5–1.0 mg (pediatric dose: 0.02 mg/kg) i.v. is provided every 2–3 min to a
maximum dose of 3 mg. Paradoxical parasympathetic response may occur dur-
ing slow infusions or doses less then 0.5 mg (0.1 mg minimum in children)
[356]. In slowing gastrointestinal motility, atropine may impair decontamina-
tion with WBI or AC.

Calcium

CCBs antagonize L-type calcium channels, slowing entry of calcium ions dur-
ing myocyte depolarization; however, intracellular calcium release is not
directly affected. This disrupts calcium-mediated excitation-contraction cou-
pling, action potential generation and conduction, and vascular smooth muscle
tone [359]. Exogenous i.v. calcium is indicated in cases of CCB and BB toxi-
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city [352]. In animal models, calcium salts reverse CCB-induced deficits in
contractility, blood pressure, and cardiac output [352]. Multiple uncontrolled
cases reports document the effectiveness of calcium salts; however, interpreta-
tion of effectiveness is complicated by the co-administration of other modali-
ties. Some authors advocate aggressive high-dose calcium therapy, providing
large amounts of calcium without apparent ill effect [358]. This approach does
carry a risk of death from hypercalcemia [reported concentration, 32.3 mg/dL
(8.07 mmol/L) after 38 g calcium] [360]. Others recommend a bolus dose fol-
lowed by continuous infusion to maintain physiological calcium levels [361].
Peripheral administration as calcium gluconate decreases the risk of extrava-
sation and tissue necrosis. A standard container of 10 mL of 10% calcium glu-
conate provide 4.65 mEq (93 mg) elemental Ca2+; 10 mL of 10% calcium
chloride (1 g total CaCl2) yields 13.6 mEq elemental Ca2+ [362]. A suggested
approach is to initially administer a 0.6 mL/kg (0.28 mEq/kg) bolus of 10%
calcium gluconate (0.2 mL/kg 10% CaCl2) over 5–10 min [359, 361].
Empirically, this is roughly one vial (1 g) of 10% CaCl2 or three vials (3 g) of
10% calcium gluconate i.v. The bolus may be repeated several times. Due to
bolus dissipation, most patients are placed on an infusion of 10% calcium glu-
conate at 0.6–1.5 mL/kg per hour (0.28–0.7 mEq/kg per hour) or 0.2–0.5
mL/kg per hour [359, 361]. Serum phosphate, calcium, and hydration status
should be closely monitored. Calcium administration for hyperkalemia has
been generally contraindicated in cases of cardioactive glycoside toxicity, out
of concern for dysrhythmias or systolic arrest (also known as “stone heart”)
[363]. While more recent studies have challenged this assertion, it is advisable
to withhold calcium until the definitive cardiac glycoside antidote, digoxin-
specific Fab fragments, has been provided [364].

Digoxin-specific antibody fragments (Fab)

Digoxin and cardioactive glycosides inhibit the cardiac sodium-potassium
ATPase. The subsequent accumulation of sodium in the cytoplasm dissipates
the driving force for calcium expulsion via the sodium-calcium exchanger.
Increased intracellular calcium enhances actin-myosin coupling, myocyte con-
traction, and inotropy. In overdose, the excess calcium may result in membrane
hyperexcitability and delayed after-depolarizations. Increased vagal tone
decreases conduction through the AV node. The combination of increased
automaticity and vagotonicity may yield lethal ventricular escape rhythms.

Digoxin-specific antibody fragments bind free digoxin in serum to decrease
digoxin serum concentrations to undetectable levels within minutes [365].
Successful reversal of digoxin toxicity with digoxin-specific Fab was first
reported in 1976 [366]. The results of a prospective multicenter study demon-
strated significant effectiveness in reversing life-threatening digitalis toxicity,
and more recent studies confirm ongoing Fab fragment utility [367, 368].
Digoxin-specific Fab were also shown to be effective in children [369].
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Digoxin-specific Fab are produced from purified ovine-derived immunoglob-
ulin G. Cleaving the Fc antibody portion significantly improves renal excretion
of the complex, decreases immunogenicity, and facilitates diffusion of remain-
ing free Fab into tissue [370]. Reflecting digoxin redistribution from target
organs of toxicity, the initial response to digoxin-specific Fab was 19 min
(0–60 min), and complete reversal of systemic toxicity occurred on average by
88 min (30–360 min) [367].

Indications for therapy include life-threatening or progressive dysrhythmia
or shock; potassium greater than 5.0 mEq/L (acute poisoning); chronic poi-
soning with other end-organ manifestations such as altered mental status, sig-
nificant gastrointestinal symptoms or renal impairment; or serum digoxin con-
centration >15 ng/mL or greater than 10 ng/mL beyond 6 hours after ingestion.
Hyperkalemia is rapidly reversed by digoxin-specific Fab [365]. One vial neu-
tralizes approximately 0.5 mg of digoxin (or digitoxin). Dosing is based either
on amount ingested [number of vials = amount ingested (in mg) × 0.8 (oral
bioavailability) / 0.5], or a serum concentration [number of vials = serum dig-
oxin concentration (ng/mL) × patient weight (kg) / 100]. The number of vials
is rounded up and administered i.v. over 30 min. Empiric therapy is 10–20
vials for adult or pediatric patients in acute poisoning or 3–6 vials (1–2 vials
in children) in chronic poisoning. Partial reversal is recommended by some
authors [371], but is not common U.S. practice due in part to concern for
recrudescent toxicity with inadequate therapy [370].

Following treatment, free digoxin concentrations may rebound upwards
within 12–24 hours, most likely reflecting tissue redistribution into the vascu-
lar space [372]. This provides a measure of protection against development of
significant congestive heart failure (CHF) in patients dependent upon digoxin
for inotropy, although exacerbation of CHF may occur [370]. Clinically sig-
nificant late rebound of digoxin concentrations and toxicity have occurred in
patients with marked renal dysfunction [373]. Immunogenicity from repeat
digoxin-specific Fab has generally not been significant, although allergic reac-
tions have been infrequently reported with administration [374]. Digoxin-spe-
cific Fab has been used clinically or experimentally to treat poisoning by other
cardiac glycosides – yellow oleander (Thevetia peruviana), Nerium oleander,
Chan Su and “Love Stone” (extract of the Bufo bufo gargarizans toad) [375,
376]. Higher dosing may be required due to poor binding affinity.

Glucagon

BBs competitively antagonize catecholamine effects at cardiac β-receptors,
leading to decreased inotropy and slowed conduction through the AV node.
Bradycardia, conduction delay, hypotension, and decreased cardiac output
may accompany significant poisoning. BB interference with gluconeogenesis
and glycogenolysis may lead to hypoglycemia, as well as blunt the catechol-
amine response that is important in its recognition.
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Glucagon, a 29-amino acid peptide hormone secreted by pancreatic α-cells,
counteracts hypoglycemia and the actions of insulin; regulates gastrointestinal
motility; and mediates the rate of renal filtration, urea excretion, and water
resorption [377]. The current glucagon product is now produced in non-patho-
genic E. coli by recombinant techniques [378]. Myocardial binding occurs at
a distinct glucagon receptor (GCGR) coupled with the β-agonist binding site.
Antidotal (off-label) use of glucagon thus bypasses β-receptor blockade to
directly induce G-protein-mediated stimulation of adenylate cyclase to convert
ATP to cAMP [379]. cAMP, in turn, activates protein kinase A (PKA), which
promotes the phosphorylation and opening of dormant L-type calcium chan-
nels to improve calcium-dependent excitation-contraction coupling [361].
Another proposed mechanism is C-terminal cleavage of glucagon to mini-
glucagon, which has a direct effect on sarcoplasmic reticulum calcium stores
via arachidonic acid [380].

In human volunteers evaluated by cardiac catheterization, glucagon
increased heart rate, cardiac index, and mean atrial pressure, but not left ven-
tricular end-diastolic pressure (EDP) or systemic vascular resistance (SVR)
[381]. Clinical experience in overdose consists primarily of case reports [382,
383]. Due to the complex nature of overdose, glucagon is often used in com-
bination with other agents in severe BB overdose. Additionally, several ex vivo
experiments, controlled animal studies, and uncontrolled case reports have
demonstrated that glucagon can be beneficial in CCB exposure [384–386].
The recommended initial bolus dose of glucagon is 50–150 μg/kg, which may
be repeated after 3–5 min [359]. A continuous infusion corresponding to the
total effective bolus reversal dose is then provided per hour (e.g., if clinical
response was observed following administration of 2 mg, 3 mg, and finally
5 mg, the hourly infusion would be 10 mg/hour). The effects of glucagon
administered i.v. begin within 1–3 min, peak at 5–7 min and last for approxi-
mately 15 min [381]. Nausea and vomiting are common and should be antici-
pated. This may complicate management of patients with depressed mental
status or airway concerns. Flushing, transient hyperglycemia, and smooth
muscle relaxation, and ileus may also occur.

High-dose insulin euglycemia therapy

Since CCBs antagonize the L-type calcium channel in pancreatic islet cells, a
subsequent decreased insulin production can produce hyperglycemia [361].
Animals poisoned by CCBs have impaired myocardial fatty acid uptake (leav-
ing them dependent upon carbohydrate metabolism), impaired uptake of glu-
cose, and myocardial insulin resistance [387, 388]. In humans, intracoronary
verapamil increased glucose release and altered myocardial lactate use from
consumption to release [389].

Decades ago, glucose-insulin-potassium (GIK) was proposed as adjuvant
therapy for acute myocardial infarction, with the intent of suppressing uptake
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of free fatty acids, improve myocardial energy production, and stabilize intra-
cellular potassium [390]. Randomized trials of GIK therapy in patients with
acute myocardial infarction (AMI) have not shown benefit, although the
insulin doses tend to be low (in general, ≤0.075 U/kg) [390]. Experience in the
surgical literature in cases where much higher insulin doses have been used
has been somewhat different [391]. Patients undergoing aortic valve replace-
ment and coronary artery bypass who received high-dose insulin at 1 unit/kg
per hour demonstrated more rapid lactate clearance, lower glucose, lower
dobutamine requirements, a trend for improved cardiac indices, and potential
anti-inflammatory benefit (lower C-reactive protein and free fatty acid levels)
[392]. Insulin doses of 2.5 units/kg were tolerated without excess increase of
insulin-induced potassium elimination [393]. In combination with dopamine,
insulin 7 units/kg was used to significantly augment cardiac output and decrea-
se systemic vascular resistance in post-coronary artery bypass graft (CABG)
patients without generating excess in oxygen demand [394]. Additional bene-
fits of high-dose insulin included overcoming insulin resistance, increased
expression of glucose transporters, and improved turnover of sodium-potassi-
um-ATPases [391].

The basis for high-dose insulin euglycemia therapy (HIET) (off-label) in
overdose has been explored in a series of animal models of CCB and BB tox-
icity [387, 388, 395–397]. HIET increased myocardial lactate uptake and
improved systolic and diastolic heart function. Insulin outperformed epineph-
rine and glucagon [395–397]. Multiple human cases of successful manage-
ment of CCB overdose with HIET have been described [359, 398]. Because
the beneficial cardiovascular effects of HIET are not seen for 15–60 min after
initiation, it must be considered early, before patients become unsalvageable
[359]. A proposed dosing scheme includes a bolus dose of regular insulin of
1.0 units/kg, followed by an infusion of 0.5–1.0 units/kg per hour, titrated
upwards as necessary [359]. A dextrose bolus is also provided unless signifi-
cant hyperglycemia exists, followed by an infusion of 0.5–1.0 g/kg per hour to
maintain blood glucose between 100 and 250 mg/dL.

Persistent physician reticence to utilizing the high-dose insulin out of con-
cern for excess hypoglycemia presents an obstacle for implementation of ade-
quate HIET [399]. This ignores a body of physiological data that demonstrate
that the insulin transport follows saturation kinetics [400, 401]. Alternatively,
it has also been demonstrated that insulin-stimulated glucose clearance reach-
es a maximum in both lean and obese subjects [402]. Taken together, this sug-
gests that, from a therapeutic standpoint, since insulin effect via insulin recep-
tors appears saturable, additional mechanisms must be at work. The effects of
HIET may include counteracting CCB-mediated insulin impairment or shock-
induced hyperglycemia, improving myocardial substrate utilization, and
improving myocardial metabolism [359]. From an adverse-effects standpoint,
once adequate and ongoing glucose has been provided, hypoglycemia should
not present an excessive risk [398], although frequent serum glucose and
potassium evaluation are obvious components of HIET therapy. Due to the
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high dosing, insulin may persist after the infusion cessation and necessitate
ongoing supplemental dextrose beyond insulin infusion. As hypokalemia is an
intracellular result of shift, it is supplemented cautiously.

Lipid emulsion (20%)

During administration of local anesthetics, severe toxicity may result from sys-
temic absorption or unintended intravascular administration. Loss of con-
sciousness, dysrhythmia, cardiovascular collapse, seizures, and lactate-associ-
ated acidemia may rapidly ensue [403]. Furthermore, in animal models, for
some of the local anesthetics (bupivacaine, levobupivacaine, and ropivacaine),
treatment with “standard” advanced cardiac life support (ACLS) drugs such as
epinephrine may precipitate ventricular dysrhythmia [404].

Following a serendipitous observation that pretreatment with a lipid emul-
sion altered the dose-response to bupivacaine-induced asystole, murine and
canine studies provided evidence of survival benefit with lipids in bupivacaine
toxicity [405, 406]. Case reports of successful resuscitation of patients severe-
ly affected by bupivacaine, levobupivacaine, mepivacaine, prilocaine and ropi-
vacaine (alone or in combination) followed [403, 407–409]. Pediatric experi-
ence is limited to a case of successful resuscitation following lidocaine/ropi-
vacaine toxicity from a posterior lumbar plexus block [410]. Lipid therapy has
been successfully applied in human bupropion toxicity and combined quetiap-
ine and sertraline overdose [411, 412]. Animal models have suggested a pos-
sible benefit in clomipramine, propranolol, thiopentone, and verapamil poi-
soning [413–416]. An understanding of lipid’s mechanism of action is incom-
plete. It may act as a “circulating lipid sink” in which excess lipophilic drug
may dissolve; modulate intracellular processes; or provide an alternative
myocardial energy supply [411]. Presumably due to central sympathetic acti-
vation, human volunteers given a 4-hour lipid emulsion (20%) infusion had
increased systemic vascular resistance, blood pressure, muscle sympathetic
nerve activity, and concentrations of insulin and aldosterone, without in-
creased cardiac output [417]. Lipid emulsion increased inotropy in both spon-
taneously beating and paced isolated rat hearts poisoned with levobupivacaine
[418].

Dosing guidelines for the off-label use of lipid emulsion in resuscitation are
provisional, as optimal bolus and continuous infusion therapy and timing are
still being explored. The Association of Anaesthetists of Great Britain and
Ireland recommends an i.v. bolus of 1.5 mL/kg Intralipid® (20%) over 1 min,
which may be repeated twice at 5-min intervals if an adequate circulation has
not been restored [419]. Following the initial bolus, an infusion is commenced
at 0.25 mL/kg per min (which may be increased to 0.5 mL/kg per min in inad-
equate circulation). Propofol is an inadequate substitute [419, 420]. Ongoing
lipid therapy may be required as recrudescence may occur [421]. Hyper-
amylasemia may be anticipated. Additional concerns include pancreatitis,
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allergic reactions, acute myocardial infarction, fat embolism, and altered coag-
ulation [420]. In lapine and porcine models of asphyxial cardiac collapse
(pulseless electrical activity or arrest), lipid emulsion was markedly ineffective
[422, 423]. In vitro, lipid affinity for both bupivacaine and ropivacaine is also
adversely affected by low pH (by a factor of 1.68 in a pH drop from 7.40 to
7.00) [424]. These data suggest that ventilatory status must be aggressively
addressed early in toxicity.

Magnesium

Due to their physicochemical characteristics and structure, many non-antiar-
rhythmic drugs are able to antagonize or alter expression of the myocardial
potassium delayed rectifier channel (hERG, KCNH2, LQT2). With channel
block, potassium efflux is compromised, and the repolarizing cardiac IKr cur-
rent is impaired. The surface ECG reflects this as QT prolongation. Age,
female gender, comorbidities such as structural heart disease, electrolyte dis-
turbances such as hypokalemia, and heart rate (bradycardia) may provide addi-
tional risk. Certain antibiotics, antihistamines, antipsychotics, antidepressants,
and methadone are prone to induce QT prolongation. QT prolongation is asso-
ciated with torsade de pointes, a polymorphic ventricular arrhythmia that can
degenerate into ventricular fibrillation, cardiac arrest and sudden death [425].
If significant QT prolongation (QTc >500 ms) is detected, administration of
1–2 g magnesium sulfate i.v. (pediatric dose, 25–50 mg/kg) over 5 to 60 min
(depending on urgency of presentation), followed by an infusion of 2–4
mg/min is suggested [426]. Rapid infusion may cause hypotension, and mag-
nesium should be administered cautiously in renal failure. A second bolus can
be provided 5–15 min later [427]. Magnesium sulfate i.v. is effective in
arrhythmias occurring due to early or delayed depolarization-induced trig-
gered activity [427]. Acceleration of the heart rate with isoproterenol or trans-
venous pacing (overdrive pacing) may be needed to preclude recurrence of tor-
sade de pointes while correction of underlying risk factors (hypokalemia and
hypocalcemia) ensues. Immediate non-synchronized defibrillation is required
for unstable polymorphic ventricular tachycardia or ventricular fibrillation.

Sodium bicarbonate

Severe cardiovascular toxicity may result from blockade of cardiac sodium
channels by tricyclic antidepressants (TCAs) – leading to conduction delays,
dysrhythmias, and myocardial depression. TCAs adversely affect maximum
upstroke velocity (Vmax), which approximates the magnitude of sodium entry
[428]. The sodium channel blockade displays rate dependence. At slow rates
the TCA has time to disassociate, allowing channel recovery. At faster rates,
block progressively worsens. Given the anticholinergic effects of TCAs that
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speed the heart rate, this is a significant concern. However, attempts to de-
crease heart rate with propranolol produced hypotension and lethality in
canine studies [429, 430].

With progressive sodium channel block, ventricular impulse propagation
becomes delayed. Sodium channel blockade manifests on the surface ECG as
QRS widening. A QRS equal or greater than 100 ms is a significant predictor
of seizure; a QRS ≥160 ms predicts ventricular dysrhythmia [431]. The right
bundle branch has a relatively longer refractory period, and it is affected dis-
proportionately by impaired intraventricular conduction delay. Rightward ter-
minal axis shift or outright bundle branch block may be present [432]. These
rightward terminal forces may also produce terminal R waves in leftward-
directed leads [433]. Acidemia secondary to hypoperfusion or seizure may
generate progressively worsened block. In an acidemic environment, free TCA
concentrations increase as binding to α-1 acid glycoprotein decreases, the
TCA ionized fraction increases, and sodium channel blockade worsens [434].
Seizures are severe and consequential, leading to QRS widening and hypoten-
sion [435].

Administration of sodium bicarbonate improves Vmax and action potential
amplitude by increasing extracellular pH and sodium concentration [428].
Consequentially, compromised myocardial inotropy, conduction aberrations,
and dysrhythmia are reversed. Several animal studies have demonstrated these
beneficial effects [429, 430]. Both the sodium and alkalemia induced by sodi-
um bicarbonate improve cardiac performance [429]. The enhanced inotropy
with sodium bicarbonate is independent of and additive to vasopressor treat-
ment [436]. Hyperventilation-induced alkalinization similarly narrows the
QRS [437]. Sodium bicarbonate outperformed hyperventilation in a swine
model, although hypertonic saline was superior to both [438]. This approach
has been reported clinically [439]. While sodium bicarbonate is recommended
for QRS widening in TCA evidence-based consensus guidelines for out-of-
hospital management, actual human studies are not as extensive as one might
suspect [440, 441].

Initially, hypertonic sodium bicarbonate 1–2 mEq/kg i.v. is provided,
preferably with continued ECG monitoring of the QRS. Institutions usually
stock either an 8.4% solution (1 mEq/mL sodium and bicarbonate ions) or a
7.5% solution (0.892 mEq/mL sodium and bicarbonate ions). Rarely, a 5%
solution may be encountered (0.595 mEq/mL). A “standard” 50-mL ampule of
8.4% or 7.5% solutions would deliver 50 or 44.6 mEq of NaHCO3. Several
boluses may be required, either initially or as the bolus effect declines due to
redistribution [429]. Ongoing alkalinization should be provided as discussed
previously, with a goal of serum pH 7.55. If sodium bicarbonate administra-
tion is problematic due to fluid load, hyperventilation and/or hypertonic saline
may be required [437, 439].

Due to mechanistic similarities, sodium bicarbonate has been recommend-
ed for QRS widening seen in poisoning by Vaughn-Williams Class IA and IC
antidysrhythmics, cocaine, diphenhydramine, carbamazepine, and propoxy-
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phene [442–445]. Treatment of bupropion-induced QRS widening with sodi-
um bicarbonate has met with both success and failure [446]. Sodium bicar-
bonate has also been suggested to treat QRS widening from venlafaxine; sim-
ilar effects seen with lamotrigine might also be amenable [447, 448]. Sodium
bicarbonate therapy may have a role in Taxus species (yew berry) toxicity
[449]. Treatment of amantadine-induced QRS widening with sodium bicar-
bonate may be complicated by concurrent profound hypokalemia [450].

Opioid antidotes

Naloxone

Naloxone is a competitive opioid antagonist at all receptor subtypes [451]. It
can prevent or reverse the effects of opioids, notably CNS and respiratory
depression. Massive doses of naloxone (5.4 mg/kg with 4.0 mg/kg per hour
infusion) have been administered safely in non-opioid tolerant individuals suf-
fering from spinal cord injury [452]. However, indiscriminate use of naloxone
in opioid-tolerant individuals can precipitate acute opioid withdrawal, with
attendant acute lung injury, seizure, hypertension, or cardiac dysrhythmia
[453]. These are likely associated with the abrupt, significant, and sustained
increases in plasma catecholamine concentrations (epinephrine and norepi-
nephrine) that accompany narcotic reversal, particularly in the setting of
hypercapnia [454]. Withdrawal-induced vomiting may compromise the airway
in patients with concomitant sedative-hypnotic ingestion. Precipitated with-
drawal-associated agitation and violent behavior may require chemical
restraint, leading to a vicious cycle of compromised CNS and cardiopul-
monary function as naloxone wears off. Self-release and relapse following
naloxone administration is also a concern in opioids with prolonged duration
of effect (methadone, controlled-release oxycodone hydrochloride, etc.).
Naloxone is no longer recommended as the initial resuscitation of newborns
with respiratory depression in the delivery room; precipitation of acute neona-
tal opioid withdrawal may produce severe consequences [455]. Sudden cardiac
arrest has occurred in preterm neonates given naloxone to reverse opioid over-
dose [456].

Naloxone is utilized in those individuals with clear evidence of the opioid
toxidrome. Those with a respiratory rate ≤12 or hypopnea are likely to benefit
[457]. The goal of therapy is titration to adequate ventilatory status without
withdrawal. After normocapnia is achieved by supported ventilation, this can
be done with i.v. administration of 0.04–0.05 mg initially (e.g., 1 mL of 0.4 mg
naloxone in 10 mL diluent or 1 mg naloxone in 20 mL diluent). Due to rapid
onset, effectiveness can be assessed, and if required, the dose can be titrated
upwards incrementally to 0.4 mg, 2 mg, or even 10 mg. Patients without
response to 10 mg naloxone are unlikely to have opioid-induced respiratory
depression. Nonopioid-dependent adults are administered 0.4–2 mg i.v.



Drugs and pharmaceuticals: management of intoxication and antidotes 439

Pediatric dosing for infants and children from birth to 5 years of age or less
than 20 kg body weight is 0.1 mg/kg; children older than 5 years of age or
weighing more than 20 kg are provided 2 mg [455]. For longer acting opioids,
following adequate initial opioid antagonism, two-thirds of the initial naloxone
reversal bolus is provided as a continuous i.v. infusion [458].

Naloxone can successfully antagonize buprenorphine overdose in children,
although prolonged therapy and monitoring may be required [459]. Higher
doses may be required due to reverse buprenorphine effects because of its high
affinity for opioid receptors [460]. Naloxone has also been used to reverse
clonidine toxicity, although this is not always the case [461]. It has been pos-
tulated that patients with higher hyperadrenergic tone (who have higher con-
centrations of endogenous opioids) or those in whom clonidine induces more
endogenous opioid release may respond best to naloxone [462]. Mental status,
blood pressure, and heart rate may respond differently.

Naloxone has been employed in angiotensin converting enzyme inhibitor
overdose. One author reported that a 1.6 mg bolus of naloxone followed by
repeat 2 mg bolus reversed hypotension due to overdose with 500 mg capto-
pril [463]. Naloxone has been ineffective in reversing hypotension in other
cases complicated by co-ingestants [464]. The mechanism may relate to antag-
onism of endogenous opioids [465]. Co-administration of 0.2 mg/kg naloxone
mitigated captopril-related decreases in systolic and diastolic blood pressure in
healthy volunteers [465]. A placebo-controlled study of healthy men found
that naloxone pretreatment with 10 mg followed by 2.46 mg/hour infusion pre-
cluded systolic blood pressure decrease induced by captopril (50 mg) [466].
Under different experimental conditions [naloxone, 0.4 mg bolus and a 2-hour
continuous infusion (4.0 mg/hour), and captopril (25 mg)], no difference was
observed [467].

Sedative-hypnotic antidotes

Flumazenil

Analogous to naloxone antagonism at opioid receptors, flumazenil competi-
tively antagonizes benzodiazepine receptors – allosteric sites located at the
macromolecular GABAA receptor complex, which regulate chloride ion flux
within the associated ion channel [468]. Flumazenil reverses the sedative, psy-
chomotor, and amnestic effects of benzodiazepines [469]. Flumazenil’s effec-
tiveness depends upon the number of benzodiazepine receptors that can be
occupied according to the mass-action law, the affinity of a particular benzo-
diazepine for the receptor, and the free benzodiazepine concentration near the
receptor [470]. In contrast, antagonism of benzodiazepine-induced respiratory
depression is inconsistent, and acute tolerance may develop to large doses
[471–473]. Flumazenil administration can reverse bispectral index (BIS)
depression and permit earlier emergence from anesthesia in patients provided
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non-benzodiazepine anesthesia (propofol/remifentanil) [474]. Postulated
mechanisms included intrinsic CNS stimulant activity or antagonism of endo-
genous benzodiazepine-like ligands (endozepines). Under certain experimen-
tal conditions, flumazenil may also demonstrate partial agonist or even inverse
agonist activity [475, 476].

The appropriate utilization of flumazenil as an antidote in patients with ben-
zodiazepine overdose is still a matter of debate. Patients who ingest benzodi-
azepines alone or in combination generally have acceptable outcomes with
supportive care alone. Proponents argue that awakening is therapeutic and
diagnostic, obviates requirements for investigatory procedures, and limits
complications of sedation. Opponents point to the low risk of mortality with
benzodiazepine ingestion, frequent co-ingestants for which flumazenil is inef-
fective or contraindicated, relapse, and risks of reversal. While flumazenil can
be administered safely, indiscriminate flumazenil administration may produce
an acute withdrawal syndrome in benzodiazepine-dependent patients, seizures,
dysrhythmias, vomiting, and agitation [477–480].

Flumazenil is not recommended in cases complicated by co-ingestants
capable of inducing seizures or dysrhythmias (e.g., bupropion, carbamazepine,
chloral hydrate, chlorinated hydrocarbons, chloroquine, cocaine, cyclic anti-
depressants, cyclosporine, isoniazid, lithium, methylxanthines, monoamine
oxidase inhibitors, phenothiazines, and propoxyphene) [477, 479, 481]. As
might be anticipated with an antidote of lesser half-life than many benzodi-
azepines, clinical condition may deteriorate following initial improvement,
mandating ongoing monitoring. In one study, patients with primarily benzodi-
azepines ingestion remained awake for 72 ± 37 min following flumazenil; this
was markedly decreased to 18 ± 7 min with co-ingestants [478]. This may be
problematic in patients who, once aroused, demand release from medical care.
After excluding co-ingestants of concern, vital sign abnormalities, and an
aberrant ECG, and considering the risk-benefit ratio, flumazenil is adminis-
tered slowly i.v., titrated to clinical effect (0.1 mg/min, max ≤1 mg) [481]. Off-
label continuous infusions of 0.3–0.5 mg/hour have been provided to preclude
relapse.

Conclusions

Patients poisoned by pharmaceuticals present many challenges to the treating
clinicians. They generally benefit from aggressive support of vital functions, a
careful history and physical examination, specific laboratory analyses, and a
thoughtful consideration of the risks and benefits of decontamination and
enhanced elimination. Data on the effectiveness of certain antidotes ranges
from isolated case reports to robust clinical trials. Clinicians are encouraged to
liberally utilize consultation with regional poison centers or those with toxi-
cology training to assist with diagnosis, management, and administration of
antidotes, particularly in unfamiliar cases.
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