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Background: Hepatocellular carcinoma (HCC) is a highly lethal disease. Effective
prognostic tools to guide clinical decision-making for HCC patients are lacking.

Objective: We aimed to establish a robust prognostic model based on differentially
expressed genes (DEGs) in HCC.

Methods: Using datasets from The Cancer Genome Atlas (TCGA), the Gene Expression
Omnibus (GEO), and the International Genome Consortium (ICGC), DEGs between HCC
tissues and adjacent normal tissues were identified. Using TCGA dataset as the training
cohort, we applied the least absolute shrinkage and selection operator (LASSO) algorithm
and multivariate Cox regression analyses to identify a multi-gene expression signature.
Proportional hazard assumptions and multicollinearity among covariates were evaluated
while building the model. The ICGC cohort was used for validation. The Pearson test was
used to evaluate the correlation between tumor mutational burden and risk score.
Through single-sample gene set enrichment analysis, we investigated the role of
signature genes in the HCC microenvironment.

Results: A total of 274 DEGs were identified, and a six-DEG prognostic model was
developed. Patients were stratified into low- or high-risk groups based on risk scoring by
the model. Kaplan–Meier analysis revealed significant differences in overall survival and
progression-free interval. Through univariate and multivariate Cox analyses, the model
proved to be an independent prognostic factor compared to other clinic-pathological
parameters. Time-dependent receiver operating characteristic curve analysis revealed
satisfactory prediction of overall survival, but not progression-free interval. Functional
enrichment analysis showed that cancer-related pathways were enriched, while immune
infiltration analyses differed between the two risk groups. The risk score did not correlate
with levels of PD-1, PD-L1, CTLA4, or tumor mutational burden.
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Conclusions: We propose a six-gene expression signature that could help to determine
HCC patient prognosis. These genes may serve as biomarkers in HCC and support
personalized disease management.
Keywords: hepatocellular carcinoma, prognosis, risk score, tumor microenvironment, biomarkers, differential gene
expression analysis
INTRODUCTION

Liver cancer is one of the most common types of malignancies
and is associated with a high mortality rate. In 2015, liver cancer
ranked sixth in the global incidence of cancer and fourth among
the most deadly tumors (1). Chronic hepatitis B virus infection is
the leading cause of hepatocellular carcinoma (HCC) in Asia,
while chronic hepatitis C virus, alcoholic cirrhosis, and non-
alcoholic steatohepatitis are the primary causes in Western
countries (2). Since symptoms of HCC often present when the
disease has reached an advanced stage and therapeutic strategies
are limited, the five-year survival rate of HCC patients remains
low. Standard therapies for treating advanced HCC are systemic
chemotherapy and molecular targeted therapies (2, 3). The poor
prognosis of HCC is due mainly to metastasis, poor liver
function, and deteriorating overall physical condition (4–6).
Therefore, there is an urgent need to develop new prognostic
markers for HCC to predict patient outcomes.

The main cellular components in the HCC microenvironment
consist of immune cells, fibroblasts, macrophages, and cancer stem
cells (7). The tumor microenvironment plays a crucial role in
tumor cell survival, growth, proliferation, epithelial–mesenchymal
transition, and metastasis (8). Understanding the role of this
microenvironment in metastasis is important for the
development of anticancer therapies. For example, immune
checkpoint inhibitors (ICIs) have revolutionized the field of
tumor therapy. The most widely studied checkpoints are the
programmed death protein 1 (PD-1), programmed death
receptor ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen
4 (CTLA-4), all of which play a role by blocking the interaction
between the inhibitory receptors expressed on T cells and their
ligands (9). At present, some ICIs have been approved by the
United States Food and Drug Administration for clinical use.
However, relatively few HCC patients benefit from such inhibitors
(10). Thus, an effective scoring system is needed for evaluating the
proportion and role of different immune cell subtypes in the
tumor microenvironment.

The pathogenesis of HCC is complex. Disease diagnosis and
management can be guided by clinical diagnostic indicators,
including biomarkers such as alpha-fetoprotein, features on
computed tomography or magnetic resonance images,
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pathological biopsy, and staging index (based on tumor size,
vascular or lymph node invasion, and distant metastasis).
However, due to the great heterogeneity of HCC, the same
treatment may lead to different outcomes in different patients.
Next-generation sequencing can help elucidate and clarify
complex molecular mechanisms in cancers such as HCC,
aiding the design of more effective therapies.

Therefore, in the present work we used bioinformatic
techniques to perform comprehensive gene expression analysis
and identify potential prognostic markers of HCC. We used
publicly available gene expression datasets from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus
(GEO) databases to establish a six-gene prognostic signature
(PZP, HMMR, LCAT, GRAMD1C, LPL, and ANGPTL1). We
validated the signature against an independent dataset from the
International Genome Consortium (ICGC). We further explored
correlations among the signature-based risk score, tumor
mutational burden and levels of PD-1, PD-L1, and CTLA4.
Importantly, gene set enrichment analysis (GSEA) was used to
understand the functional annotation of signature genes, and the
role of those genes in the tumor microenvironment was
investigated by analyzing tumor-infiltrating immune cells.
MATERIALS AND METHODS

Data Collection From TCGA, GEO,
and ICGC Databases
Liver hepatocellular carcinoma (LIHC) RNA-sequencing data
(in terms of raw read counts and FPKM) were downloaded from
TCGA database (https://gdc.cancer.gov/). The corresponding
clinical and survival data were downloaded from the UCSC
Xena browser (https://xenabrowser.net/) under the cohort
name “TCGA Liver Cancer (LIHC)” (19 datasets). Somatic
mutation data of TCGA-LIHC were obtained from TCGA. We
selected the data of “masked somatic mutation” processed by the
VarScan software from the four subtypes of the data files on
TCGA website (11). The primary HCC tumor tissues and
adjacent non-tumor tissues of datasets GSE54236 and
GSE104310 were obtained from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/), a free database of microarray
profiles and next-generation sequencing. The microarray data
of GSE54236 included 81 tumor tissues and 80 adjacent non-
tumor tissues (12). The RNA-sequencing data of GSE104310
(FPKM value) were generated on the GPL16791 platform
(Illumina HiSeq 2500), including 12 tumor tissues and eight
adjacent non-tumor tissues. The NCBI-GEO database only
provides FPKM values for each sample in GSE104310. The
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LIRI-JP RNA-sequencing data and its corresponding clinical
information were downloaded from the ICGC portal (https://
icgc.org/) (13). In addition, the survival data for the ICGC cohort
contains only overall survival information. Since data were
downloaded from publicly available databases, our institution
waived the requirement for ethical approval.

Processing of RNA-Sequencing and
Microarray Data
In TCGA dataset, we retained the tissue type of the primary tumor
(only unique samples of type “TCGA-##-##-01A” indicating
primary tumor) and normal control tissues (only samples with a
“TCGA-##-####-11A” ID), finally obtaining 369 tumor tissues
and 50 normal control tissues. In the ICGC dataset, we deleted
genes for which 20% of values were missing, and the remaining
missing values were imputed using the weighted K-nearest
neighbor algorithm with K = 10 in the “DMwR” package (14).
The FPKM values from TCGA, ICGC, and GSE104310 were first
transformed into transcripts per million (TPM) and transformed
by log2(x + 1). The missing values in the GSE54236 dataset were
filled using the “impute” package in R and the KNN algorithm
with K = 10 (15). After collection of TCGA clinical data from the
UCSC Xena browser, 339 patients with complete information on
survival time, survival status, and tumor node metastasis (TNM)
stage were selected for the survival analysis. In the end, 339
patients from TCGA cohort were assigned to the training
cohort, while 231 patients from the ICGC cohort were included
as the external validation cohort.

Analysis of Differentially Expressed
Genes (DEGs)
We used the “biomaRt” package (version 2.44.4) via the Ensembl
database to transfer Ensemble IDs to gene symbols in TCGA-
LIHC data (16, 17). We defined the maximum expression value
as the expression level of the gene symbol when several Ensemble
IDs corresponded to one gene symbol. After removing duplicate
gene symbols, we annotated 55,349 genes. Differential gene
expression analysis in the TCGA-LIHC dataset was performed
using the “edgeR” package (18, 19), while analysis of GSE104310
and GSE54236 was conducted using the “limma” package (20).
The raw read count matrix of TCGA-LIHC was used to identify
DEGs between 369 tumor tissues and 50 adjacent non-tumor
tissues with the “edgeR: package. To be included in DEG
analysis, we defined that the count per million for gene
expression had to be higher than 0.5 in at least 50 samples. In
this way, 18,512 genes were selected for subsequent DEG
analysis. The “limma” package was used to identify DEGs in
GSE54236 and GSE104310. DEGs with an absolute log2(fold
change) > 1 and a Benjamini–Hochberg adjusted P-value < 0.05
(21) were considered in further analyses. The overlapping DEGs
among the three datasets were considered the final DEGs.

Identification and Validation of a
Prognostic Gene Expression Signature
DEGs common to the three datasets were identified using a Venn
diagram. The potential prognostic genes were screened by
Frontiers in Immunology | www.frontiersin.org 3
Kaplan–Meier analysis and univariate Cox regression based on
overall survival and a definition of significance of P < 0.05.
LASSO Cox regression was conducted in the training cohort
using the “glmnet” package based on the intersecting genes
common to the Kaplan–Meier and univariate Cox analyses
(22, 23). The best penalty parameter lambda (l) was confirmed
by 10-fold cross-validation (24). Based on the optimal l, we
obtained a list of potential prognostic genes. The potential
prognostic genes identified by LASSO regression were entered
into the multivariate Cox both-direction stepwise regression
model. A multivariate Cox model was established according to
the lowest Akaike Information Criterion value by using the step
function in the “stats” package in R (25). Assumptions for the
multivariate proportional hazards modeling were checked using
the “survival” package in R (26). The multicollinearity of
covariates was estimated through the variance inflation factor
(VIF), and we defined that VIF ≥ 2 was considered to indicate
multicollinearity in the study. Genes satisfying the assumption of
proportional hazard (P > 0.05) and VIF < 2 were selected to
reconstruct the multivariate Cox regression model. Finally, a
multivariate Cox regression model with regression coefficients
was obtained based on gene expression and patient survival data.
All the covariates in the multivariate Cox regression model
satisfied proportional hazards assumptions and the global
Schoenfeld test (P = 0.4185).

The risk scores of each patient were calculated according to
the formula: risk   score = Sn

i=1(coefi ∗ Expressioni). The “coef”
derived from the multivariate Cox regression was the
regression coefficient of the gene, and “Expression” indicated
the gene expression in terms of log2(TPM + 1).

Patients in TCGA cohort were divided into high- or low-risk
groups based on the optimal cut-off value (1.195033) of the risk
score derived from the surv_cutpoint function in the “survminer”
package in R (27). This cut-off value was also used as the
threshold to stratify patients into high- or low-risk groups in
the ICGC validation cohort. Kaplan–Meier analysis, Cox,
decision curve analysis, and time-dependent receiver operating
characteristic (ROC) curve analyses were conducted to evaluate
the prognostic value of the gene expression signature in TCGA
cohort. These same operations were repeated in the ICGC cohort
to assess the robustness of the multivariate Cox model.

Principal component analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) were used to explore
the distribution of the two different groups based on the
expression [log2(TPM + 1)] of the six genes of the signature
(25, 28). Default parameters were used, except for perplexity = 10
and max iter = 500. The same parameters were used for all
datasets. The “finalfit” package was used to perform univariate
and multivariate Cox analyses (29). The predictive power of the
gene expression signature was evaluated by time-dependent
ROC curve analysis using the “survivalROC” package (30).

Tumor Mutational Burden
Tumor mutational burden, a newly established independent
predictor of the efficacy of immune checkpoint inhibitors, is
defined as the number of mutations per megabase of genomic
territory (31, 32). Tumor cells with higher tumor mutational
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burden are more susceptible to immune responses, so such
patients are more likely to benefit from immunotherapy. We
used the read.maf function to read the MAF file, and the tumor
mutational burden level of each patient in the MAF file was
calculated using the tmb function in the “maftools” package. The
correlation between tumor mutational burden and risk score was
analyzed by the Pearson correlation test, and we explored the
correlations between risk score and the expression [log2(TPM +
1)] of three immune checkpoint proteins (PD-1, PD-L1, and
CTLA-4). In addition, we explored the expression of the six-gene
expression signature using TCGA cohort raw read count
format, and differential expression was assessed using the
“edgeR” package.
Gene Set Enrichment Analysis
To investigate the functions and pathways of DEGs between the
high- and low-risk groups in TCGA cohort, GSEA was
performed using GSEA software (v4.0.3) (https://www.gsea-
msigdb.org/). The TPM matrix of TCGA cohort consisted of
55,317 genes and 339 samples for GSEA analysis. The Hallmark
(v7.2) and KEGG (v7.2) gene sets were collected from the
Molecular Signatures Databasev7.2 page (https://www.gsea-
msigdb.org/gsea/downloads.jsp) as functional gene sets. Gene
sets with normalized enrichment score > 1 or < 1, nominal P
value (P) < 0.05, and false discovery rate (q) < 0.05 were
considered statistically significant.
Correlation of the Risk Score With the
Proportion of 28 Types of Tumor-
Infiltrating Immune Cells
We conducted ssGSEA to evaluate the correlation between the
risk score and the immune microenvironment. Marker genes for
28 types of tumor-infiltrating immune cells were obtained from
previous work (33). The raw enrichment scores of each patient
were normalized using the formula: [x − min(x)]/[max(x) − min
(x)], where x indicated the raw enrichment scores of each cell.
The high-risk (n = 148) and low-risk (n = 191) groups from
TCGA training cohort were included into the ssGSEA. In
addition, 74 samples and 157 samples from the ICGC cohort
were analyzed in the same way.
Statistical Analysis
All statistical analyses were performed using R (version 4.0.3)
and its packages. Results associated with two-tailed P < 0.05 were
considered significant. Where noted, P-values were adjusted by
the Benjamini–Hochberg correction (21). The “edgeR” and
“limma” packages were used to identify DEGs (18–20).
Kaplan–Meier analysis was used to generate survival curves for
the prognostic analysis, and the log-rank test was used to
compare the curves. Independent prognostic factors were
identified through univariate and multivariate Cox analyses.
ROC curves were constructed using the “pROC” package to
evaluate the prognostic value of the risk score (34) in terms of the
area under the ROC curve (AUC). Decision curve analysis
Frontiers in Immunology | www.frontiersin.org 4
(DCA) was performed with the source file “stdca.R” (35, 36),
obtained from the Memorial Sloan Kettering Cancer Center
(ht tps : / /www.mskcc .org/departments/epidemiology-
biostatistics/biostatistics/decision-curve-analysis). The Wilcoxon
rank-sum test was used to compare the ssGSEA scores of 28
immune cell types in the low- and high-risk groups. The Pearson
test was used to explore correlations among the tumor
mutational burden, risk score, and expression of the three
immune checkpoints PD-1, PD-L1, and CTLA-4 in terms of
log2(TPM + 1). Differential expression (in terms of read counts)
of the six genes between the two risk groups was analyzed using
the “edgeR” package.
RESULTS

Demographic and Clinical Characteristics
of Patients
The flow chart of the study is shown in Figure 1. The 339 cases of
HCC in TCGA-LIHC were used as the training cohort. The
ICGC (LIRI-JP) data of 231 HCC patients were used as the
FIGURE 1 | Scheme of the study workflow. LIHC, liver hepatocellular
carcinoma; DEGs: differentially expressed genes; LASSO, the least absolute
shrinkage and selection operator; ROC, receiver operating characteristic;
DCA, decision curve analysis; TMB, tumor mutational burden; TICs, tumor-
infiltrating immune cells; ICIs, immune checkpoint inhibitors (PD1, PD-L1,
and CTLA4).
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validation cohort. Table 1 summarizes the detailed clinical and
demographic characteristics of the two cohorts.

DEG Analysis
In our gene expression analysis, we found 4,605 DEGs (3,507
upregulated and 1,098 downregulated) between primary tumor
and normal control tissues in TCGA dataset, 1,044 (427
upregulated and 617 downregulated) in GSE104310, and 745
(267 upregulated and 478 downregulated) in GSE54236. We
identified 274 DEGs common to the three datasets, which we
selected for further analysis. We removed the genes PVALB and
GDF2 from this set because of missing values in the ICGC
cohort. The final 272 overlapping genes are shown in a heat map
in Figure 2A. The Venn plot showing DEGs and overlapping
genes from the three datasets is presented in Figure 2B.

Construction of a Prognostic Signature
From the Training Cohort
A total of 121 genes were identified by Kaplan–Meier and univariate
Cox analyses as potential prognostic genes (Supplementary
Table 1). We analyzed these genes by LASSO Cox regression and
calculated the regression coefficients (Figure 2C). When 12 genes
Frontiers in Immunology | www.frontiersin.org 5
were included, the Lasso–Cox regression function performed better
(Figure 2D), with l = 0.05103363. These 12 genes and the
regression coefficients are shown in Supplementary Table 2. The
12 genes were included in the multivariate Cox regression, and
both-direction stepwise regression was implemented to further
select genes according to the lowest Akaike Information
Criterion value (37). Subsequently, we checked for violations
of the proportional hazard assumptions (Supplementary
Table 3), which led to exclusion of the gene CENPA
because its P < 0.05 (Supplementary Figure 1). In addition,
we found that the multicollinearity assumption was
not violated, with all VIF < 2 (Supplementary Table 4).
Finally, a six-gene expression signature was established by
multivariate Cox regression (Figure 6D). These six genes and
their corresponding regression coefficients are shown in
Supplementary Table 5.

Prognostic Value of the Six-Gene
Expression Signature in the Training and
Validation Cohorts
The following formula including the six selected genes was
used to calculate the risk score of each patient: risk score =
PZP ∗ (−0.270388554) + HMMR ∗ (0.451615489) +
LCAT ∗ (−0.134842021) + GRAMD1C ∗ (−0.262454435) +
LPL ∗ (0.216649959) + ANGPTL1 ∗ (−0.152772802). Based on
the gene expression level [log2(TPM + 1)] and the risk
coefficient of each gene, the predict function of the “stats”
package in R was used to obtain the risk score of each patient
(25). According to the optimal cut-off risk score (1.195033),
patients in TCGA cohort were assigned to a high-risk group (n
= 148) or a low-risk group (n = 191) based on overall survival.
Analogously, patients in TCGA cohort were divided according
to the optimal cut-off risk score (0.8979665) into a high-risk
group (n = 192) or a low-risk group (n = 147) based on
progression-free interval. The ICGC validation cohort was
also divided according to the optimal TCGA cohort cut-off
value into a high-risk group (n = 74) or low-risk group (n =
157) based on overall survival.

Figure 3A shows the distribution of risk scores and overall
survival of patients in TCGA cohort, as well as the heat map of
the expression levels of the six-gene expression signature. As
the risk score increased, the number of deaths among high-risk
patients increased, and survival became shorter. The heat maps
show that expression of GRAMD1C, ANGPTL1, PZP, and
LCAT was low in high-risk patients, while expression of
HMMR and LPL was higher in high-risk patients than in
low-risk ones.

Moreover, we explored the performance of the six-gene
expression signature in predicting the progression-free interval
in TCGA cohort. As shown in Figure 3B, the high-risk group
presented more death events and shorter survival. Next, we
verified the predictive power of these six gene markers on the
overall survival in the ICGC cohort. The high-risk group had
more deaths and shorter survival than low-risk patients
(Figure 3C). The expression pattern of the six-gene expression
signature in the ICGC cohort was consistent with that in
TCGA cohort.
TABLE 1 | Clinical and demographical characteristics of hepatocellular
carcinoma patients included in the study.

Characteristic Number of patients (%)

Training cohort
(TCGA-LIHC, n = 339)

Validation cohort
(LIRI-JP, n = 231)

Age (years)
<65 208 (61.4) 82 (35.5)
≥65 131 (38.6) 149 (64.5)

Sex
Male 231 (68.1) 170 (73.6)
Female 108 (31.9) 61 (26.4)

TNM stage
I 170 (50.1) 36 (15.6)
II 84 (24.8) 105 (45.5)
III 81 (23.9) 71 (30.7)
IV 4 (1.2) 19 (8.2)

Histological grade
Grade 1 46 (13.6) NA
Grade 2 166 (49.0) NA
Grade 3 113 (33.3) NA
Grade 4 12 (3.5) NA
Unknown 2 (0.6) NA

Ishak score
0–4 124 (36.6) NA
5–6 74 (21.8) NA
Unknown 141 (41.6) NA

Child–Pugh grade
A 207 (61.1) NA
B–C 21 (6.2) NA
Unknown 111 (32.7) NA

Alpha fetoprotein (ng/ml)
≤200 191 (56.3) NA
>200 72 (21.2) NA
Unknown 76 (22.4) NA
Values are n (%), unless otherwise noted.
NA, not applicable; TNM, tumor node metastasis stage.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yan et al. Six-Gene Signature in Hepatocellular Carcinoma
As shown in Figure 3, the survival curve of TCGA cohort was
different between high- and low-risk groups (P = 2.709e−13,
Figure 3D). Similarly, the Kaplan–Meier survival curve showed
that the progression-free interval was shorter in the high-risk
group than in the low-risk group (P = 1.716e−05, Figure 3E).
The robustness of the six-gene expression signature in HCC
patients was tested in the ICGC validation cohort. Patients in the
high-risk group presented shorter overall survival than patients
in the low-risk group (P = 3.183e−05) (Figure 3F), consistent
with the results from TCGA dataset.

In TCGA cohort, the risk score was an independent
prognostic factor for overall survival based on univariate
analysis [hazard ratio (HR) 1.61, 95% confidence interval (CI)
1.45–1.79, P < 0.001] and multivariate analysis (HR 1.56, 95% CI
Frontiers in Immunology | www.frontiersin.org 6
1.40–1.74, P < 0.001; Table 2). Risk score was also a predictor of
progression-free interval in the univariate analysis (HR 1.34, 95%
CI 1.20–1.51, P < 0.001) and multivariate analysis (HR 1.25, 95%
CI 1.10–1.41, P < 0.001; Table 3). In the ICGC cohort, the risk
score was validated as an independent predictor of overall
survival in the univariate analysis (HR 1.47, 95% CI 1.26–1.72,
P < 0.001) and multivariate analysis (HR 1.44, 95% CI 1.21–1.70,
P < 0.001; Figure 4A). These results suggest that the risk score is
an independent predictor of overall survival and progression-free
interval. Moreover, tumor stage may also be an independent
prognostic factor.

To further confirm the prognostic potential of the six-gene
expression signature in HCC patients, we conducted time-
dependent ROC analyses in the training and validation
A

B DC

FIGURE 2 | Identification of differentially expressed genes between tumor (T) and adjacent normal (N) tissues and potential prognostic genes in the The Cancer
Genome Atlas, GSE54236, and GSE104310 datasets. (A) Overlapping differentially expressed genes between tumor and adjacent normal tissues, presented as a
clustering heatmap in the ICGC cohort. (B) Venn diagram showing differentially expressed genes between tumor and adjacent normal tissue in the three datasets
included in the study. (C) LASSO coefficient profiles of 121 genes related to prognosis of hepatocellular carcinoma patients. (D) Ten-fold cross-validation for
selecting the optimal lambda (l) in the LASSO algorithm. LASSO, the least absolute shrinkage and selection operator.
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cohorts. As shown in Figure 4B, the AUC of the multivariate
regression model in TCGA cohort was 0.769 for one-year
overall survival, 0.732 for two-year survival, and 0.742 for
three-year survival. The AUCs of the six-gene prognostic
signature for predicting progression-free interval in the
training cohort were 0.641 for one year, 0.600 for two years,
and 0.593 for three years (Figure 4C). The corresponding
AUCs in the prediction of overall survival in the ICGC
validation cohort were 0.659, 0.726, and 0.733 (Figure 4D).
Frontiers in Immunology | www.frontiersin.org 7
The time-dependent AUCs and their 95% confidence intervals
are shown in Figure 4E.

DCA was applied to compare the clinical utility of the risk
model to that of TNM staging for predicting one-, two-, and
three-year overall survival of HCC patients in TCGA
(Figures 5A–C) and ICGC cohorts (Figures 5D–F). The
prognostic risk model proved better than traditional TNM
staging in all cases. Even better performance was obtained by
combining the TNM stage with our risk score model.
A B

D E F

C

FIGURE 3 | Evaluation of the prognostic capacity of the six-gene expression signature. Distribution of six-gene risk scores, survival time, survival state, and the six-
gene expression heat map between the low- and high-risk groups based on (A) overall survival or (B) progression-free interval in TCGA cohort, or on (C) overall
survival in the ICGC cohort. Kaplan-Meier survival analysis based on (D) overall survival and (E) progression-free interval in TCGA cohort. Kaplan-Meier survival
analysis based on (F) overall survival in the ICGC cohort. Differences between survival curves were assessed for significance using the log-rank test.
TABLE 2 | Cox proportional hazards regression model of overall survival in the cancer genome atlas cohort.

Variable Univariate analysis Multivariate analysis

HR (95% CI) P* HR (95% CI) P*

Age (≥65 vs. <65 years) 1.23 (0.85, 1.78) 0.273 – –

Sex (female vs. male) 1.26 (0.87, 1.84) 0.228 – –

TNM stage (II vs. I) 1.42 (0.87, 2.32) 0.16 1.07 (0.65, 1.76) 0.792
TNM stage (III vs. I) 2.72 (1.78, 4.15) <0.001 2.06 (1.33, 3.21) 0.001
TNM stage (IV vs. I) 5.44 (1.68, 17.6) 0.005 5.35 (1.65, 17.4) 0.005
Histological grade (3–4 vs. 1–2) 1.14 (0.78, 1.67) 0.489 – –

Ishak score (5–6 vs. 0–4) 0.87 (0.5, 1.5) 0.612 – –

Child–Pugh grade (B–C vs. A) 1.66 (0.82, 3.36) 0.159 – –

Alpha fetoprotein (>200 vs. ≤200 ng/ml) 1.01 (0.61, 1.66) 0.979 – –

Risk score (high vs. low) 1.61 (1.45, 1.79) <0.001 1.56 (1.4, 1.74) <0.001
De
cember 2021 | Volume 12 | Article
95% CI, 95% confidence interval; HR, hazard ratio; TNM, tumor node metastasis stage.
*Statistically significant p values are given in bold, P < 0.05.
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PCA and t-SNE were used to assess the classification ability of
the model and to visualize data distribution in discrete directions
by reducing the data from high to low dimensionality. In TCGA
cohort, we used PCA and t-SNE to test the distribution of
Frontiers in Immunology | www.frontiersin.org 8
patients into two subgroups of low-dimensional data. Figure 6
presents the results of the PCA and t-SNE using the expression of
the six signature genes in the prognostic risk model. Figure 6A
shows that patients in different risk groups were clearly
A

B

D E

C

FIGURE 4 | Univariate and multivariate Cox regression analyses of the risk score and clinical/demographic indicators related to (A) overall survival in the
ICGC cohort. Receiver operating characteristic curves for the prediction of one-, two-, and three-year (B) overall survival or (C) progression-free interval in
TCGA cohort, or (D) overall survival in the ICGC cohort. (E) Time-dependent area under the receiver operating curve (AUC) and the corresponding 95%
confidence intervals for predicting overall survival at one, two, and three years. The red line corresponds to TCGA cohort and the blue line corresponds to
the ICGC cohort.
TABLE 3 | Cox proportional hazards regression model of progression-free interval in the cancer genome atlas cohort.

Variable Univariate analysis Multivariate analysis

HR (95% CI) P* HR (95% CI) P*

Age (≥65 vs. <65 years) 0.91 (0.66, 1.26) 0.572 – –

Sex (female vs. male) 1.04 (0.75, 1.44) 0.828 – –

TNM stage (II vs. I) 1.92 (1.31, 2.82) 0.001 1.63 (1.10, 2.43) 0.015
TNM stage (III vs. I) 2.77 (1.91, 4.01) <0.001 2.45 (1.67, 3.59) <0.001
TNM stage (IV vs. I) 4.04 (0.98, 16.7) 0.054 4.06 (0.98, 16.8) 0.053
Histologic grade (3–4 vs. 1–2) 1.14 (0.83, 1.57) 0.41 – –

Ishak score (5–6 vs. 0–4) 1.18 (0.80, 1.75) 0.405 – –

Child–Pugh grade (B–C vs. A) 1.31 (0.70, 2.45) 0.399 – –

Alpha fetoprotein (>200 vs. ≤200 ng/ml) 1.05 (0.70, 1.57) 0.81 – –

Risk score (high vs. low) 1.34 (1.20, 1.51) <0.001 1.25 (1.10, 1.41) <0.001
De
cember 2021 | Volume 12 | Article
95% CI, 95% confidence interval; HR, hazard ratio; TNM stage, tumor node metastasis stage.
*Statistically significant p values are given in bold, P < 0.05.
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distinguished. A similar analysis in three directions was
conducted for progression-free interval in TCGA cohort
(Figure 6B) and the ICGC cohort (Figure 6C).

Correlations Among Risk Score, Tumor
Mutational Burden, Immune Checkpoint
Genes, and Six-Gene Expression
Signature in High- and Low-Risk Groups
Correlation analyses were performed to assess relationships
among risk score, tumor mutational burden, and expression
of the three immune checkpoint genes PD-1, PD-L1, andCTLA-
4. In TCGA cohort, the correlation between the risk score and
tumor mutational burden was analyzed using the Pearson test.
The results showed that the six-gene expression signature did
not correlate with tumor mutational burden (Pearson cor =
0.079, P = 0.15, Figure 7A). Correlations between expression of
PD-1, PD-L1, or CTLA-4 and the risk score of the six-gene
expression signature are shown in Figure 7. Based on the
overall survival in TCGA cohort, the risk score showed no
correlation with PD-1 (Pearson cor = 0.17, P = 0.0012,
Figure 7B), PD-L1 (Pearson cor = 0.19, P = 4e−04,
Figure 7C), or CTLA-4 (Pearson cor = 0.21, P = 0.00011,
Figure 7D). In addition, the expression of HMMR and LPL
was markedly higher in the high-risk group than in the low-risk
group (Figures 7E, F), while the expression of GRAMD1C,
ANGPTL1, PZP, and LCATwas significantly down-regulated in
high-risk patients (Figures 7G–J). Survival was significantly
different between the high- and low-risk groups in both TCGA
and ICGC cohorts (Figure 7K). These results indicate that the
prognostic risk model can effectively stratify HCC patients into
high- and low-risk groups, consistent with previous results.
Frontiers in Immunology | www.frontiersin.org 9
Gene Set Enrichment Analysis With the
Six-Gene Signature
To understand the biological functions and pathways involved
in HCC patients, we performed GSEA between the high- and
low-risk groups. In the high-risk group, significantly enriched
gene sets of the Hallmark Collection were found in the
following signaling pathways: unfolded protein response,
G2M checkpoint, E2F targets, MYC targets V2, and DNA
repair (Figure 8A and Supplementary Table 6). For the
KEGG gene sets defined by the Molecular Signatures
Database, enriched pathways in the high-risk group were
mostly related to base excision repair, cell cycle, homologous
recombination, pyrimidine metabolism, and RNA degradation
(Figure 8B and Supplementary Table 7). These results suggest
that signature genes overexpressed in HCC are closely
associated with cancer-related pathways.

Correlation Between the Risk Score
and Immune Status
To investigate the correlation of the risk score with the immune
microenvironment of HCC tumors, we quantified the
enrichment of 28 types of immune cells. High- and low-risk
groups in TCGA cohort (based on overall survival) showed
differences in enrichment of activated CD4+ T cells, activated
CD8+ T cells, CD56-bright natural killer cells, effector memory
CD8+ T cells, eosinophils, mast cells, natural killer cells,
neutrophils, type 1 T helper cells, and type 2 T helper cells
(Figure 8C). Scores were lower in the high-risk group for the
following cell types: activated CD8+ T cells, CD56-bright
natural killer cells, effector memory CD8+ T cells, eosinophils,
mast cells, natural killer cells, neutrophils, and type 1 T helper
A B

D E F

C

FIGURE 5 | DCA curves to assess the ability of TNM stage, risk score, and their combination to predict one-, two-, and three-year overall survival in (A–C) TCGA
and (D–F) ICGC cohorts. DCA, decision curve analysis. TNM stage, tumor node metastasis stage.
December 2021 | Volume 12 | Article 723271
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cells. Scores were higher in the high-risk group for the following
cell types: activated CD4+ T cells and type 2 T helper cells.

In the ICGC validation cohort, the two risk groups differed in
scores for activated CD4+ T cells, CD56-dim natural killer cells,
effector memory CD4+ T cells, gamma delta T cells, memory B cells,
monocytes, natural killer cells, neutrophils, and type 2 T helper cells
(Figure 8D). Consistent with the results from TCGA dataset, the
high-risk ICGC group showed higher scores for activated CD4+ T
cells and type 2 T helper cells than the low-risk group.
DISCUSSION

In this work, we identified and validated a novel six-gene
expression prognostic signature for HCC patients based on
bioinformatic analyses of publicly available data. The
prognostic model proposed is based on six differentially
expressed genes (PZP, HMMR, LCAT, GRAMD1C, LPL, and
ANGPTL1). In our prognostic model, overexpression of PZP,
Frontiers in Immunology | www.frontiersin.org 10
LCAT, GRAMD1C, and ANGPTL1 was associated with better
prognosis in HCC patients, while overexpression of HMMR and
LPL was associated with worse prognosis. The prognostic
performance of the six-gene expression signature in the
present study was robust in both TCGA cohort and the ICGC
validation cohort. The AUC for one-, two-, and three-year
overall survival was high, but the model proved poor at
predicting progression-free interval. For both overall survival
and progression-free interval, the risk score was an independent
prognostic factor in HCC patients, and the prognosis of patients
in the high-risk group was significantly worse than that in the
low-risk group. Based on these results, our risk score may be
useful as a predictor of HCC patient survival.

The genes in our signature have previously been linked to HCC
or other cancers. Human pregnancy zone protein (PZP) is
abundant in the serum of women in late pregnancy, and its
levels are closely related to immunosuppression during
pregnancy (38). Downregulation of PZP in HCC tissues
correlates with poor prognosis (39), which is consistent with our
A B

D

C

FIGURE 6 | Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analysis based on the six-gene expression signature. PCA
and t-SNE plot of (A) overall survival or (B) progression-free interval in TCGA cohort, or (C) overall survival in the ICGC cohort. (D) Forest plot of the six genes in the
prognostic risk model and overall survival in TCGA cohort. AIC, Akaike Information Criterion.
December 2021 | Volume 12 | Article 723271

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yan et al. Six-Gene Signature in Hepatocellular Carcinoma
results; PZP overexpression inhibits proliferation, invasion, and
migration of HCC cells, and the downregulation of PZP in HCC
has been linked to hypermethylation of the gene (40). These
observations suggest that overexpression of PZP can play a
protective role in patients with HCC. Future studies should
clarify the role of PZP in HCC.

HMMR, also known as RHAMM, is associated with
neoplastic processes in multiple tumor types, and it is a breast
cancer susceptibility gene (41). HMMR induces the epithelial-
mesenchymal transition, promoting resistance to chemotherapy
(42). HMMR is overexpressed in lung adenocarcinoma tissues,
and HMMR knockdown in lung adenocarcinoma inhibits cell
proliferation, migration and invasion, while increasing apoptosis
(43). Future work should explore the role of HMMR in HCC.

Lecithin-cholesterol acyltransferase (LCAT) is produced by the
liver and secreted into the circulation, and patients with liver disease
show reduced LCAT activity (44). Lower LCAT expression has been
linked to poor HCC prognosis (45), in agreement with our data.
Frontiers in Immunology | www.frontiersin.org 11
Similarly, low expression of GRAMD1C correlates with poor
prognosis, worse tumor pathology and distant metastasis in
patients with kidney renal clear cell carcinoma (46). Our
results highlight the need to explore the role of GRAMD1C
in HCC.

Lipoprotein lipase (LPL) plays a central role in the hydrolysis
of circulating triglycerides present in chylomicrons and very-
low-density lipoproteins (47). Overexpression of LPL has been
linked to poor prognosis in HCC patients, and silencing the gene
inhibits proliferation of HCC cell lines (48). The ability of LPL
overexpression to worsen prognosis may relate to the protein’s
ability to enhance uptake of exogenous lipids, which activates
HCC cell proliferation (49).

ANGPTL1, a member of the angiopoietin-like protein family,
inhibits tumor angiogenesis and metastasis (50, 51). In HCC
cells, ANGPTL1 promotes apoptosis by inhibiting the STAT3/
Bcl-2-mediated anti-apoptotic pathway, and it downregulates the
transcription factors SNAIL and SLUG, thereby decreasing cell
A B D
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FIGURE 7 | Correlations of the risk score based on the six-gene prognostic model with tumor mutational burden; expression of PD1, PD-L1, and CTLA4; and the
differential expression of the six signature genes between the high- and low-risk groups in TCGA cohort based on overall survival. (A) The risk score did not correlate
with tumor mutational burden. The risk score did not correlate with (B) PD-1 expression, (C) PD-L1 expression, or (D) CTLA-4 expression. (E–J) Expression of
HMMR, LPL, GRAMD1C, ANGPTL1, PZP, and LCAT in the high- and low-risk groups of TCGA cohort based on overall survival. P values were adjusted using the
Benjamini-Hochberg method. (K) Distribution of patient survival status between the high- and low-risk groups.
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migration and invasion (52). ANGPTL1 overexpression inhibits
the MET receptor-AKT/ERK-Egr-1-Slug signaling cascade,
repressing the epithelial–mesenchymal transition and thereby
counteracting sorafenib resistance and cancer stemness in HCC
cells (53). Consistently with these observations, we found that
ANGPTL1 expression was lower in high-risk patients than in
low-risk patients.

However, our study presents several limitations. First, our
results are based on bioinformatic analyses of publicly available
data, and clinical validation is needed. In particular, future
experiments should elucidate the molecular mechanisms of
the six signature genes in HCC. Second, some genes associated
with prognosis might have been excluded from the study
and from our prognostic risk model, perhaps as a result of
Frontiers in Immunology | www.frontiersin.org 12
the rigorous thresholds that we applied during screening.
Third, in some cases we used the KNN algorithm to fill in
missing values for gene expression, which might have
introduced bias.
CONCLUSION

Despite these limitations, the present work provides a
comprehensive analysis of gene expression data in HCC from
TCGA, GEO, and ICGC databases. We established a robust six-
gene prognostic model for HCC patients. The signature genes
may serve as biomarkers for HCC, providing patients with
personalized prognostic prediction.
A B
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C

FIGURE 8 | Gene set enrichment analysis in TCGA cohort, and ssGSEA scores between the high- and low-risk groups in TCGA and ICGC cohorts. (A) Significantly
enriched pathways in the Hallmark gene sets between the two risk groups in TCGA cohort. (B) Enriched pathways in the KEGG analysis between the two risk
groups in TCGA cohort. The enrichment scores of 28 types of tumor-infiltrating immune cells are shown in the violin plot for (C) TCGA cohort and (D) the ICGC
cohort. ns, not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
December 2021 | Volume 12 | Article 723271

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yan et al. Six-Gene Signature in Hepatocellular Carcinoma
DATA AVAILABILITY STATEMENT

Publicly available datasets were used in this study. These data can be
found here: The Cancer Genome Atlas (TCGA-LIHC, https://gdc.
cancer.gov/), the corresponding clinical and survival data of TCGA
cohort (TCGA Liver Cancer (LIHC) (19 datasets), https://
xenabrowser.net/), Gene Expression Omnibus (GSE54236 and
GSE104310, https://www.ncbi.nlm.nih.gov/geo/), and International
Cancer Genome Consortium (LIRI-JP, https://icgc.org/).
AUTHOR CONTRIBUTIONS

ZCY conceived and designed the study, performed the
bioinformatic analysis, conducted the statistical analysis, analyzed
the data, and wrote the manuscript. MLH, LFH, and LXW revised
the manuscript. YMZ revised the manuscript and provided
financial support. All authors contributed to the article and
approved the submitted version.
Frontiers in Immunology | www.frontiersin.org 13
FUNDING

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.
ACKNOWLEDGMENTS

We thank patients, investigators, clinicians, technical personnel,
and funding bodies who contributed to TCGA, GEO, and ICGC,
thereby making this study possible.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
723271/full#supplementary-material
REFERENCES
1. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al.

Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost,
Years Lived With Disability, and Disability-Adjusted Life-Years for 32 Cancer
Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease
Study. JAMA Oncol (2017) 3(4):524–48. doi: 10.1001/jamaoncol.2016.5688

2. Medavaram S, Zhang Y. Emerging Therapies in Advanced Hepatocellular
Carcinoma. Exp Hematol Oncol (2018) 7:17. doi: 10.1186/s40164-018-0109-6

3. Daher S, Massarwa M, Benson AA, Khoury T. Current and Future Treatment
of Hepatocellular Carcinoma: An Updated Comprehensive Review. J Clin
Transl Hepatol (2018) 6(1):69–78. doi: 10.14218/JCTH.2017.00031

4. Alqahtani A, Khan Z, Alloghbi A, Said Ahmed TS, Ashraf M, Hammouda
DM. Hepatocellular Carcinoma: Molecular Mechanisms and Targeted
Therapies. Med (Kaunas) (2019) 55(9):526. doi: 10.3390/medicina55090526

5. Hartke J, Johnson M, Ghabril M. The Diagnosis and Treatment of
Hepatocellular Carcinoma. Semin Diagn Pathol (2017) 34(2):153–9.
doi: 10.1053/j.semdp.2016.12.011

6. Cabrera R, Nelson DR. Review Article: The Management of Hepatocellular
Carcinoma. Aliment Pharmacol Ther (2010) 31(4):461–76. doi: 10.1111/
j.1365-2036.2009.04200.x

7. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the
Microenvironment in the Pathogenesis and Treatment of Hepatocellular
Carcinoma. Gastroenterology (2013) 144(3):512–27. doi: 10.1053/j.
gastro.2013.01.002

8. Wang H, Chen L. Tumor Microenviroment and Hepatocellular Carcinoma
Metastasis. J Gastroenterol Hepatol (2013) 28 Suppl 1:43–8. doi: 10.1111/jgh.12091

9. Manson G, Norwood J, Marabelle A, Kohrt H, Houot R. Biomarkers
Associated With Checkpoint Inhibitors. Ann Oncol (2016) 27(7):1199–206.
doi: 10.1093/annonc/mdw181

10. Havel JJ, Chowell D, Chan TA. The Evolving Landscape of Biomarkers for
Checkpoint Inhibitor Immunotherapy. Nat Rev Cancer (2019) 19(3):133–50.
doi: 10.1038/s41568-019-0116-x

11. Koboldt DC, Larson DE, Wilson RK. Using VarScan 2 for Germline Variant
Calling and Somatic Mutation Detection. Curr Protoc Bioinf (2013) 44:15 4 1–
7. doi: 10.1002/0471250953.bi1504s44

12. Villa E, Critelli R, Lei B, Marzocchi G, Camma C, Giannelli G, et al.
Neoangiogenesis-Related Genes Are Hallmarks of Fast-Growing
Hepatocellular Carcinomas and Worst Survival. Results From a Prospective
Study. Gut (2016) 65(5):861–9. doi: 10.1136/gutjnl-2014-308483

13. Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, et al.
Whole-Genome Mutational Landscape and Characterization of Noncoding
and Structural Mutations in Liver Cancer. Nat Genet (2016) 48(5):500–9.
doi: 10.1038/ng.3547

14. Torgo L. Data Mining With R: Learning With Case Studies. New York:
Chapman & Hall/CRC (2010).

15. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al.
Missing Value Estimation Methods for DNA Microarrays. Bioinformatics
(2001) 17(6):520–5. doi: 10.1093/bioinformatics/17.6.520

16. Durinck S, Spellman PT, Birney E, Huber W. Mapping Identifiers for the
Integration of Genomic Datasets With the R/Bioconductor Package biomaRt.
Nat Protoc (2009) 4(8):1184–91. doi: 10.1038/nprot.2009.97

17. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al.
BioMart and Bioconductor: A Powerful Link Between Biological Databases
and Microarray Data Analysis. Bioinformatics (2005) 21(16):3439–40.
doi: 10.1093/bioinformatics/bti525

18. McCarthy DJ, Chen Y, Smyth GK. Differential Expression Analysis of
Multifactor RNA-Seq Experiments With Respect to Biological Variation.
Nucleic Acids Res (2012) 40(10):4288–97. doi: 10.1093/nar/gks042

19. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor Package for
Differential Expression Analysis of Digital Gene Expression Data.
Bioinformatics (2010) 26(1):139–40. doi: 10.1093/bioinformatics/btp616

20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma Powers
Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007

21. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. J R Stat Soc: Ser B (Methodological)
(1995) 57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

22. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized
Linear Models via Coordinate Descent. J Stat Softw (2010) 33(1):1–22. doi:
10.18637/jss.v033.i01

23. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization Paths for Cox’s
Proportional Hazards Model via Coordinate Descent. J Stat Softw (2011) 39
(5):1–13. doi: 10.18637/jss.v039.i05

24. Tibshirani R. The Lasso Method for Variable Selection in the Cox Model. Stat
Med (1997) 16(4):385–95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::
aid-sim380>3.0.co;2-3

25. R Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria: Foundation for Statistical Computing (2019).

26. Therneau T M, Lumley T. Package Survival’[J]. Survival Analysi. CRAN
(2014) 2(3):119. Available at: https://CRAN.R-project.org/package=survival.

27. Kassambara A, Kosinski M, Biecek P, Fabian S. Survminer: Drawing Survival
Curves Using’ggplot2’. R Package Version 03, Vol. 1. (2017). Available at:
https://CRAN.R-project.org/package=survminer.
December 2021 | Volume 12 | Article 723271

https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://xenabrowser.net/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://icgc.org/
https://www.frontiersin.org/articles/10.3389/fimmu.2021.723271/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.723271/full#supplementary-material
https://doi.org/10.1001/jamaoncol.2016.5688
https://doi.org/10.1186/s40164-018-0109-6
https://doi.org/10.14218/JCTH.2017.00031
https://doi.org/10.3390/medicina55090526
https://doi.org/10.1053/j.semdp.2016.12.011
https://doi.org/10.1111/j.1365-2036.2009.04200.x
https://doi.org/10.1111/j.1365-2036.2009.04200.x
https://doi.org/10.1053/j.gastro.2013.01.002
https://doi.org/10.1053/j.gastro.2013.01.002
https://doi.org/10.1111/jgh.12091
https://doi.org/10.1093/annonc/mdw181
https://doi.org/10.1038/s41568-019-0116-x
https://doi.org/10.1002/0471250953.bi1504s44
https://doi.org/10.1136/gutjnl-2014-308483
https://doi.org/10.1038/ng.3547
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1038/nprot.2009.97
https://doi.org/10.1093/bioinformatics/bti525
https://doi.org/10.1093/nar/gks042
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3C385::aid-sim380%3E3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3C385::aid-sim380%3E3.0.co;2-3
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survminer
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yan et al. Six-Gene Signature in Hepatocellular Carcinoma
28. Donaldson J. tsne: T-Distributed Stochastic Neighbor Embedding for R (t-SNE).
R package version 0.1-3. (2016). Available at: https://CRAN.R-project.org/
package=tsne.

29. Harrison E, Drake T, Ots R. finalfit: Quickly Create Elegant Regression Results
Tables and Plots When Modelling (2020). Available at: https://CRANR-
projectorg/package=finalfit.

30. Heagerty P, Saha-Chaudhuri P. Time-Dependent ROC Curve Estimation From
Censored Survival Data. R Package Version 1.0. 3. 2013. (2016). Available at:
https://CRAN.R-project.org/package=survivalROC.

31. Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, et al. Tumor
Mutational Burden as a Predictive Biomarker for Response to Immune
Checkpoint Inhibitors: A Review of Current Evidence. Oncologist (2020) 25
(1):e147–59. doi: 10.1634/theoncologist.2019-0244

32. Ritterhouse LL. Tumor Mutational Burden. Cancer Cytopathol (2019) 127
(12):735–6. doi: 10.1002/cncy.22174

33. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D,
et al. Pan-Cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of Response to
Checkpoint Blockade. Cell Rep (2017) 18(1):248–62. doi: 10.1016/j.celrep.
2016.12.019

34. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC:
An Open-Source Package for R and S+ to Analyze and Compare ROC Curves.
BMC Bioinf (2011) 12:77. doi: 10.1186/1471-2105-12-77

35. Vickers AJ, Elkin EB. Decision Curve Analysis: A Novel Method for
Evaluating Prediction Models. Med Decis Making (2006) 26(6):565–74.
doi: 10.1177/0272989x06295361

36. Fitzgerald M, Saville BR, Lewis RJ. Decision Curve Analysis. Jama (2015) 313
(4):409–10. doi: 10.1001/jama.2015.37

37. Akaike H. A New Look at the Statistical Model Identification. IEEE Trans
automatic control (1974) 19(6):716–23. doi: 10.1109/TAC.1974.1100705

38. Kashiwagi H, Ishimoto H, Izumi SI, Seki T, Kinami R, Otomo A, et al. Human
PZP and Common Marmoset A2ML1 as Pregnancy Related Proteins. Sci Rep
(2020) 10(1):5088. doi: 10.1038/s41598-020-61714-8

39. Su L, Zhang G, Kong X. Prognostic Significance of Pregnancy Zone Protein
and Its Correlation With Immune Infiltrates in Hepatocellular Carcinoma.
Cancer Manag Res (2020) 12:9883–91. doi: 10.2147/CMAR.S269215

40. Wu M, Lan H, Ye Z, Wang Y. Hypermethylation of the PZP Gene Is
Associated With Hepatocellular Carcinoma Cell Proliferation, Invasion and
Migration. FEBS Open Bio (2021) 11(3):826–32. doi: 10.1002/2211-
5463.13093

41. He Z, Mei L, Connell M, Maxwell CA. Hyaluronan Mediated Motility
Receptor (HMMR) Encodes an Evolutionarily Conserved Homeostasis,
Mitosis, and Meiosis Regulator Rather Than a Hyaluronan Receptor. Cells
(2020) 9(4):819. doi: 10.3390/cells9040819

42. Zhang H, Ren L, Ding Y, Li F, Chen X, Ouyang Y, et al. Hyaluronan-Mediated
Motility Receptor Confers Resistance to Chemotherapy via TGFbeta/Smad2-
Induced Epithelial-Mesenchymal Transition in Gastric Cancer. FASEB J
(2019) 33(5):6365–77. doi: 10.1096/fj.201802186R

43. Li W, Pan T, Jiang W, Zhao H. HCG18/miR-34a-5p/HMMR Axis Accelerates
the Progression of Lung Adenocarcinoma. BioMed Pharmacother (2020)
129:110217. doi: 10.1016/j.biopha.2020.110217
Frontiers in Immunology | www.frontiersin.org 14
44. Tahara D, Nakanishi T, Akazawa S, Yamaguchi Y, Yamamoto H, Akashi M,
et al. Lecithin-Cholesterol Acyltransferase and Lipid Transfer Protein
Activities in Liver Disease. Metabolism (1993) 42(1):19–23. doi: 10.1016/
0026-0495(93)90166-l

45. Hlady RA, Sathyanarayan A, Thompson JJ, Zhou D, Wu Q, Pham K, et al.
Integrating the Epigenome to Identify Drivers of Hepatocellular Carcinoma.
Hepatology (2019) 69(2):639–52. doi: 10.1002/hep.30211

46. Hao H, Wang Z, Ren S, Shen H, Xian H, Ge W, et al. Reduced
GRAMD1C Expression Correlates to Poor Prognosis and Immune
Infiltrates in Kidney Renal Clear Cell Carcinoma. PeerJ (2019) 7:
e8205. doi: 10.7717/peerj.8205

47. Santamarina-Fojo S, Brewer HB Jr. Lipoprotein Lipase: Structure, Function
andMechanism of Action. Int J Clin Lab Res (1994) 24(3):143–7. doi: 10.1007/
bf02592444

48. Cao D, Song X, Che L, Li X, Pilo MG, Vidili G, et al. BothDe Novo Synthetized
and Exogenous Fatty Acids Support the Growth of Hepatocellular Carcinoma
Cells. Liver Int (2017) 37(1):80–9. doi: 10.1111/liv.13183

49. Wu Z, Ma H, Wang L, Song X, Zhang J, Liu W, et al. Tumor Suppressor
ZHX2 Inhibits NAFLD-HCC Progression via Blocking LPL-Mediated Lipid
Uptake. Cell Death Differ (2020) 27(5):1693–708. doi: 10.1038/s41418-019-
0453-z

50. Endo M. The Roles of ANGPTL Families in Cancer Progression. J uoeh (2019)
41(3):317–25. doi: 10.7888/juoeh.41.317

51. Santulli G. Angiopoietin-Like Proteins: A Comprehensive Look. Front
Endocrinol (Lausanne) (2014) 5:4. doi: 10.3389/fendo.2014.00004

52. Yan Q, Jiang L, Liu M, Yu D, Zhang Y, Li Y, et al. ANGPTL1 Interacts With
Integrin Alpha1beta1 to Suppress HCC Angiogenesis and Metastasis by
Inhibiting JAK2/STAT3 Signaling. Cancer Res (2017) 77(21):5831–45.
doi: 10.1158/0008-5472.CAN-17-0579

53. Chen HA, Kuo TC, Tseng CF, Ma JT, Yang ST, Yen CJ, et al. Angiopoietin-
Like Protein 1 Antagonizes MET Receptor Activity to Repress Sorafenib
Resistance and Cancer Stemness in Hepatocellular Carcinoma. Hepatology
(2016) 64(5):1637–51. doi: 10.1002/hep.28773

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Yan, He, He, Wei and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
December 2021 | Volume 12 | Article 723271

https://CRAN.R-project.org/package=tsne
https://CRAN.R-project.org/package=tsne
https://CRANR-projectorg/package=finalfit
https://CRANR-projectorg/package=finalfit
https://CRAN.R-project.org/package=survivalROC
https://doi.org/10.1634/theoncologist.2019-0244
https://doi.org/10.1002/cncy.22174
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1177/0272989x06295361
https://doi.org/10.1001/jama.2015.37
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1038/s41598-020-61714-8
https://doi.org/10.2147/CMAR.S269215
https://doi.org/10.1002/2211-5463.13093
https://doi.org/10.1002/2211-5463.13093
https://doi.org/10.3390/cells9040819
https://doi.org/10.1096/fj.201802186R
https://doi.org/10.1016/j.biopha.2020.110217
https://doi.org/10.1016/0026-0495(93)90166-l
https://doi.org/10.1016/0026-0495(93)90166-l
https://doi.org/10.1002/hep.30211
https://doi.org/10.7717/peerj.8205
https://doi.org/10.1007/bf02592444
https://doi.org/10.1007/bf02592444
https://doi.org/10.1111/liv.13183
https://doi.org/10.1038/s41418-019-0453-z
https://doi.org/10.1038/s41418-019-0453-z
https://doi.org/10.7888/juoeh.41.317
https://doi.org/10.3389/fendo.2014.00004
https://doi.org/10.1158/0008-5472.CAN-17-0579
https://doi.org/10.1002/hep.28773
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Identification and Validation of a Novel Six-Gene Expression Signature for Predicting Hepatocellular Carcinoma Prognosis
	Introduction
	Materials and Methods
	Data Collection From TCGA, GEO, and ICGC Databases
	Processing of RNA-Sequencing and Microarray Data
	Analysis of Differentially Expressed Genes (DEGs)
	Identification and Validation of a Prognostic Gene Expression Signature
	Tumor Mutational Burden
	Gene Set Enrichment Analysis
	Correlation of the Risk Score With the Proportion of 28 Types of Tumor-Infiltrating Immune Cells
	Statistical Analysis

	Results
	Demographic and Clinical Characteristics of Patients
	DEG Analysis
	Construction of a Prognostic Signature From the Training Cohort
	Prognostic Value of the Six-Gene Expression Signature in the Training and Validation Cohorts
	Correlations Among Risk Score, Tumor Mutational Burden, Immune Checkpoint Genes, and Six-Gene Expression Signature in High- and Low-Risk Groups
	Gene Set Enrichment Analysis With the Six-Gene Signature
	Correlation Between the Risk Score and Immune Status

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


