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Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the progressive dysfunction
and loss of neurons. Here, we distil and discuss the current state of modeling in the area of neurodegeneration, and
objectively compare the gaps between existing clinical knowledge and the mechanistic understanding of the major
pathological processes implicated in neurodegenerative disorders. We also discuss new directions in the field of
neurodegeneration that hold potential for furthering therapeutic interventions and strategies.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 73–86; doi:10.1002/psp4.12155; published online 7 January 2017.

BACKGROUND

Neurodegenerative diseases (ND) are complex disorders
that result in progressive degeneration and death of nerve
cells. As neurons deteriorate, symptoms such as difficulties
with movement (ataxias, dyskinesias, and akinesias) and
mental function (dementias) begin to manifest and progres-
sively worsen. These debilitating conditions are incurable
and exert a tremendous burden upon affected individuals,
their families, and on society as a whole. Moreover, the
incidence of these disorders is increasing with life expec-
tancies in both developed and developing countries. Hence,
there is now an urgent need for novel therapies to either
halt or reverse the progression of these disorders.

To date, numerous molecular and cellular events contrib-
uting to these disorders have been elucidated. However,
since neurodegeneration is a complex heterogeneous pro-
cess, the molecular mechanisms underlying its initiation or
propagation are still not very well characterized, despite the
availability of extensive data and both in vitro and animal
models. Furthermore, mounting evidence suggests that
many ND conditions overlap at multiple levels,1,2 i.e., they
share similar dysfunctional phenotypes. For example, many
neurodegenerative diseases are associated with the occur-
rence of disease-specific misfolded aggregated proteins
and peptides in damaged neurological tissues. It is still
unclear whether the formation of aggregates is the cause
or consequence of neurodegeneration, which raises the
question of whether blocking this aggregation therapeutical-
ly would be beneficial or harmful? This increasingly recog-
nized clinical and pathological overlap across different ND
disorders has not only made the clinical diagnoses of these
conditions difficult, but has also hampered the development
of drugs that could broadly halt neuronal loss in humans.3,4

The lack of information regarding the relative importance
of contributing molecular components and processes within
existing knowledge is the major obstacle in the systems-
level understanding of these complex disorders. This is

reflected in the difficulties with clinical diagnosis and drug
development. Systems modeling provides a means to inte-
grate existing knowledge about these processes as a
sequence of events, and is used to elucidate complex and
dynamic crosstalk between multiple biological processes.
Therefore, the systems modeling approach is being used to
investigate the molecular and cellular mechanisms involved
in the pathophysiology of complex multietiological diseases;
it is increasingly being used to better characterize, under-
stand, and predict pharmacological modulation of biological
targets in a quantitative manner.5–7 Furthermore, pharma-
ceutical industries rigorously prioritize a model-informed
drug discovery and development (MID3) framework, for pre-
diction and extrapolation, aimed at improving the quality,
efficiency, and cost-effectiveness of decision-making.

Considering the complex heterogeneity of neurodegener-
ation, efforts on a systems-level understanding of the dis-
ease using mathematical modeling approaches are being
undertaken. The available models of neurodegeneration,
developed at different biological scales, provide insights
into the mechanisms underlying the pathogenicity involving
multiple pathways. With a particular focus on Alzheimer’s
(AD) and Parkinson’s (PD) disease, we collected 89 mathe-
matical models from the literature, developed over the past
two decades, which describe different aspects of neurode-
generation in AD and PD. Besides analyzing the model
space in neurodegeneration, we also encoded several of
these models using the standard model description language:
Systems Biology Markup Language (SBML). These models
can be accessed from BioModels,8,9 a public repository con-
taining models of biological and biomedical processes.

The mechanisms elucidated from these models, combined
with understanding gained from the literature and other
resources on neurodegeneration, enables us to highlight the
gap between existing clinical or experimental knowledge and
the mechanistic description of the processes underlying it.
This gap in the existing knowledge and the mechanistic
understanding allows us to probe into the mechanisms that
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are not well characterized and in the process expand the cur-
rent knowledgebase of ND modeling. This work, the first
comprehensive review in the field, aims to provide an infor-
mation resource, forming a base for further development of
integrated models for describing ND processes. We also dis-
cuss new avenues for research and conclude by addressing
open challenges in the field.

BIOLOGY OF NEURODEGENERATION AND

ASSOCIATED MATHEMATICAL MODELS

Neurodegeneration is a complex multifactorial disease and

several reviews discuss the molecular processes involved

in the initiation and progression of the disease.1,2 Mizuno

et al.10 and Fujita et al.11 have integrated the molecular

processes associated with AD and PD from the literature,

and have generated comprehensive interaction maps for

AD (AlzPathway) and PD (PDMap), respectively. In this

analysis, we review 89 mathematical models that describe

the molecular mechanisms underlying the pathogenesis of

AD and PD, or in general neurodegenerative disorder. The

models were collected by simple keyword search in refer-

ence literature databases such as PubMed and Europe

PMC. We used combinations of complex, generic, and

specific terms associated with mathematical modeling, neu-

rodegeneration and disease mechanism to capture the ND

related models from the literature.
In this section, we briefly discuss the molecular process-

es involved in different aspects of ND pathology and

describe the few selected mathematical models that are

developed to understand the mechanism underlying these

pathological processes. The entire list of 89 models, their

purpose for development, and their mechanistic descriptions

are detailed in the Supplementary Material (Table SI1). We

discovered that for certain aspects of ND, where there is

substantial experimental knowledge on molecular processes,

the mechanistic understanding is lacking. The gap between

experimental/clinical knowledge and mechanistic description

is discussed in later sections.

PROTEIN AGGREGATION

Neurodegeneration is often associated with the accumulation

of disease-specific misfolded aggregated proteins in different

areas of the aging brain, causing cell death and inflammatory

damage. This phenomenon is the outcome of several dysre-

gulated molecular processes including protein cleavage, fold-

ing, and clearance. Dysregulation of amyloid precursor

protein (APP) cleavage causes Ab (b-amyloid) aggregation

in AD, which is believed to have neurotoxic effects. APP

cleavage kinetics, Ab clearance, and the Ab aggregation pro-

cess in AD have been extensively studied using mathematical

models.12–14 Another prominent feature in AD is Tauopathy,

which is the accumulation of hyperphosphorylated Tau pro-

teins; excessive Tau phosphorylation affects microtubule-

mediated transport within neurons, resulting in aggregation of

Tau as pathological neurofibrillary tangles in the somatoden-

dritic compartment. The regulation of Tau phosphorylation

and the conditions that lead to Tau protein aggregation have
been mechanistically investigated by various groups.15–18

The hallmark of PD is the formation of intracellular inclu-
sion bodies composed of a-synuclein (a-Syn). When a-Syn
levels are high, they tend to misfold and aggregate into
fibrils, protofibrils, and eventually Lewy bodies. The inter-
play between oxidative stress and a-Syn kinetics,19 failure
of a-Syn degradation machinery causing a-Syn aggrega-
tion,20 a-Syn transport in axons under normal and diseased
state,21 and various other factors regulating a-Syn aggrega-
tion in PD have all been studied using mathematical
models.22,23

Protein aggregates are also featured in other neurode-
generative diseases: Pick bodies are prevalent in Pick’s dis-
ease, nuclear aggregates appear in Huntington’s disease
(HD), modified prion protein accumulates in Creutzfeldt-
Jacob disease, and superoxide dismutase accumulates in
familial amyotrophic lateral sclerosis (ALS).

The counter mechanism to handle protein aggregates
involves the use of clearance processes such as protein
refolding, degradation, or transport across the blood–brain
barrier. These clearance operations have been found to be
impaired under ND conditions. The misfolded aggregates
are not only resistant to degradation but also disrupt pro-
teasome function, which is illustrated in Figure 5a. The
mechanisms underlying the dysregulation of clearance pro-
cesses in AD, PD, and in other ND have been investigated
using mathematical models.19,20,24–26

METABOLISM, CELLULAR STRESS, AND
NEUROTRANSMISSION

In the brain, glucose metabolism is the primary energy
source for neurons. Dysregulation of the energy metabo-
lism process has been implicated to play a key role in neu-
ronal death. A mathematical model formulated to study the
role of a-ketoglutarate dehydrogenase complex in neuronal
energy metabolism suggests that it has a strong influence
on energy metabolism in neurons via ATP and reactive oxy-
gen species (ROS) generation.27 Several models that
describe the mechanism of dysregulation in neuronal ener-
gy metabolism,28 and metabolic balance in the brain that
includes the activation of glycogen breakdown in astrocytes
during sensory stimulation,29 suggest that the control of
energy metabolism and transport processes is critical in the
metabolic behavior of cerebral tissue.

Oxidative stress is another key process involved in neu-
rotoxicity. Oxidative stress is closely linked with mitochon-
drial energy metabolism and is known to favor the amyloid
peptide aggregation process in neurons. The mechanism
underlying the basic mitochondrial processes such as ener-
gy metabolism, free-radical generation, specific interactions
of disease-related proteins with mitochondria, or its dys-
function leading to generation of oxidative stress have been
investigated using mathematical models.19,30–32 Additional-
ly, oxidative stress and various other cellular insults trigger
the apoptotic pathway in neurons leading to cell death,11

and these processes have been extensively studied using
mathematical models to determine the key elements of
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apoptotic machinery in ND.26,33–35 Ion homoeostasis and

synaptic transmission are two key operations in regulating

the electrochemical stimulation of neurons. These two pro-

cesses are interrelated and also directly influenced by ener-

gy metabolism. Several models have been developed to

understand the role of ion homoeostasis and synaptic

transmission in ND.36–38

GENETICS AND CELL CROSSTALK

Studies on the underlying mechanisms of aberrant ND pro-

cesses also reveal a genetic component to the disease.

Increasing evidence is emerging about the role of genetic

factors, such as apolipoprotein E (ApoE) allele variation, in

the disease pathology. The interplay between the effects of

variations in the ApoE allele and the inflammation dynamics

in AD has been studied using a mathematical model, which

suggests that a late onset peak of Ab in the ApoE4 case

lead to localized neuronal loss, which could be improved by

application of short-term proinflammatory mediators.39

Chronic activation of the brain immune cell, microglia, is

believed to impair survival-related processes leading to

decreased protein synthesis and cellular energy, which

affect neurotransmitter concentrations and neuronal activity

in general. Dunster et al.40 developed a mathematical mod-

el to understand the inflammatory process by studying the

crosstalk between neutrophils and macrophages. The mod-

el suggested that the therapeutic manipulation of the rate

of macrophage phagocytosis could aid in reducing inflam-

mation, but that it may depend on the neutrophil apoptosis.

Along these lines, the mechanisms underlying the aggrega-

tion of microglia and formation of local accumulation of

chemicals observed in AD senile plaques have been inves-

tigated to understand the inflammation-associated patholo-

gy in AD.41 Inflammatory activation of microglia plays a key

role in the progression of neurodegeneration. Proctor et al.

and Puri et al. have formulated mathematical models that

postulate microglia as a potential target for the prevention

and treatment of AD.34,35

SIGNALING NETWORKS

Over the years, experimental investigations on understand-

ing ND pathology implicated several abberant signaling

pathways as being involved in neurodegeneration (support-

ing references are provided in Supplementary Information

SI-3):

• Mitogen-activated protein kinase (MAPK) signaling induces hyper-
phosphorylation of Tau proteins via APP cleavage processing.

• Tau protein aggregation is also induced by mTOR (mammalian tar-
get of rapamycin) signaling via the autophagy process. Neurotrophin
signaling activates receptors (p70/Trk), triggering cyclic AMP-
response element binding (CREB), a transcriptional factor involved
in synaptic plasticity.

• CREB is also activated by other signals such as oxidative stress
and b-secretase.

• Activated JAK2/STAT3 pathway has been shown to protect neurons
from Ab toxicity in AD.

• The insulin signaling pathway is responsible for glucose metabolism
and is a key process in ND. Neurons are sensitive to glucose
metabolism and a disruption in this process can be toxic.

• Retinoic acid signaling pathways are also reported to be involved in
ND pathogenesis.

• Melanocortin signaling can influence synaptic plasticity and is known
to be deregulated in AD.

Despite the availability of significant experimental eviden-
ces on the role of signaling networks in ND pathology, there
are currently no efforts invested in the mechanistic under-
standing using mathematical models in the context of ND.

LIPID-RELATED PROCESSES AND CELL SURVIVAL
MECHANISMS

Other factors involved in ND pathology have been identified
within lipid pathways, metabolic processes, and generic cell
survival processes (supporting references are provided in
Supplementary Information SI-3):

• Ceramide, a lipid second messenger induces Ab aggregation in AD.
• Arachidonic acid, a free fatty acid triggers neurotoxicity through sev-

eral mechanisms—by inducing apoptosis, generating oxidative
stress, and promoting Tau polymerization.

• Membrane microdomains called lipid rafts are rich in cholesterol and
sphingolipids. These lipid rafts in neurons are known to influence
Ab production, aggregation, and toxicity in AD.

• The cell cycle is also known to influence ND pathology; Ab activates a
noncanonical DNA replication pathway that triggers p53-dependent
apoptosis in AD.

• The extracellular matrix is another component known to influence
genesis, survival, migration, and toxicity in neurons.

• Vitamin K-dependent proteins such as Gas6 are known to regulate
several functions of glial cells and neurons including chemotaxis,
myelination, and potentially cell death.

• The c-Jun N-terminal kinases (JNKs) induce neuronal death by trig-
gering apoptosis in ND diseases.

In spite of abundant experimental knowledge, there are
no mathematical models formulated to understand the
underlying mechanism of the above processes.

LANDSCAPE OF MODELS DESCRIBING ND
PROCESSES

The molecular biology of neurodegeneration has been
extensively studied, providing detailed information about the
key players involved, and the systems-level understanding
of these key players using predictive mathematical models
is also rapidly increasing. This encourages a consolidated
analysis of the two knowledge sources, where comparison
between the existing mathematical models and available
knowledge of ND processes may lead to valuable insights.

We constructed a landscape of ND-related molecular pro-
cesses using the mechanisms described in our collection of
89 models (Figure 1). To link the molecular processes
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described in different models, we referred to the AlzPath-

way10 and the PDMap,11 the knowledge-driven inter- and

intracellular molecular interaction map of AD and PD, respec-

tively. The objectives of generating this model landscape

map are 3-fold. First, we wanted to obtain an overview of the

coverage of mathematical models describing the processes

underlying neurodegeneration. Second, we wished to

identify patterns in the description of processes involved in

neurodegeneration through mathematical modeling, which

project the potential scope in the field. Third, this

visualization could serve as a reference map for researchers

to guide future work. To the best of our knowledge, this is the

first attempt to collectively analyze the mathematical models

describing different aspects of ND processes, and this may

aid in focusing activities on untouched areas and in building

composite models in the field of neurodegeneration.
To generate the landscape (Figure 1), neurodegeneration-

related molecular processes were categorized into 15 differ-

ent functional modules using the mechanisms described in

our model collection. Owing to spatial constraints, we repre-

sent only the core regulations of the molecular processes,

limited to important components. The models are formulated

based on the assumption that cellular processes are modular

in nature, allowing convenient classification of the models

into different categories based on Gene Ontology biological

processes: “inflammatory response,” “intercellular signaling,”

“oxidative metabolism,” “energy metabolism,” “apoptosis,”

“ion homoeostasis,” “synaptic transmission,” “blood–brain

barrier transport,” “protein degradation,” “protein refolding,”

“fibril organization,” “Tauopathy,” “APP breakdown,”

“microtubule-based transport,” and “genetics.” The models

are distributed in the map based on the processes they

describe. Each process is colored with an intensity that is

proportional to the number of models in that module.
The consensus clinical indication of neurodegeneration is

misfolding, aggregation, and accumulation of disease-

specific proteins in the brain, resulting in neuronal apopto-

sis. This is reflected in modeling studies (Figure 1), where

several groups attempted to understand the mechanism

underlying “fibril organization.” While the proteins that mis-

fold are disease-specific, they may have a common mecha-

nism of formation of these fibrils, and hence, this has been

extensively investigated. Mechanisms of neuron stimulation

and ROS generation, grouped under “oxidative stress” and

“synaptic transmission,” respectively, are the next most highly

studied ND processes. On the contrary, “microtubule-based

transport,” “protein refolding,” “intercellular signaling,” and

“genetics” have fewer models.

Figure 1 Model space in neurodegeneration—model landscape map. Cellular and molecular processes of ND that are described in our
collection of 89 models are presented here. It is an abstract representation of the processes involved, i.e., only important mechanisms
of each process are shown for better visualization. Boundaries of subcellular organelles are represented as solid lines, cell boundaries
as thick solid lines, and the blood–brain barrier as thick dashed lines. The 15 biological processes associated with ND that the models
describe are in capital bold red font. The models falling under each of these processes are displayed as numbers (from 1 to 89) and
are listed on the right; the bibliographic reference numbers to these models are within square brackets. The density of distribution of
models belonging to each process is illustrated as color gradients (gradient definition is provided in the figure). An interactive version of
this map is available from the ND specific page of BioModels8.
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Mathematical models in biology include several features

such as molecular entities considered, theoretical/empirical

approach, and source of empirical data, which dictate their

complexity, robustness, and biological validity. To summa-

rize the complexity and validity of the 89 ND models in our

list, we generated a model-process interaction network

(Figure 2a). We observe a range of distinct properties

across the 89 models including processes modeled, num-

ber of molecular components considered, and empirical cal-

ibration. Models in the network can be divided into two

classes: those involving multiple ND processes (shared

models) and those dedicated to a single process (exclusive

models). The “fibril organization,” “APP breakdown,” and

“synaptic transmission” processes have the most exclusive

models. This may be due to the fact that these processes

are specifically aberrant in ND and deserve closer attention

to study the underlying mechanisms and their kinetics.

Also, “fibril organization” has the highest number of exclu-

sive models, most of which have been calibrated with

empirical data from human cells/tissues, which indicates

the high robustness and biological validity of these models.

The models belonging to this category are relatively simple

and small, with fewer molecular entities; owing to the fact

that the fibrillation mechanism in ND is known to involve

only a few molecules that are specific to the type of the ND

condition. By analyzing the shared models, we observed

varied degrees of association between the different ND pro-

cesses (Figure 2b). The association between “fibril organ-

ization,” “protein degradation,” and “oxidative stress”

processes are frequent. In contrast, processes such as

“microtubule-based transport” and “protein refolding” are

less studied in combination with other ND processes.

Details of the ND processes and their associations in the

89 models are provided in Supplementary Table SI1.
Among the 89 mathematical models that we considered

in this analysis, 51 models are exclusive, i.e., they are built

to describe a particular ND process. We wanted to investi-

gate if there were any redundant efforts in describing the

same mechanism. In order to perform this analysis, we

chose to analyze the molecular components of the exclu-

sive models of “fibril organization,” “APP breakdown,” and

“synaptic transmission,” as these processes have the most

Figure 2 Model-process network in ND. (a) The 89 models describing the 15 different ND-related processes are presented as a net-
work graph using Cytoscape 3.4. The models and processes are represented as circles and diamonds, respectively. The size of the cir-
cle reflects the model size, i.e., the number of molecular components. Theoretical models (no empirical data) are colored yellow.
Models validated using human and nonhuman data are colored pink and green, respectively. The size of the diamond (process) reflects
the number of models belonging to that process. Each model is connected to the process(es) it describes. (b) Number of shared mod-
els between processes. This illustrates the degree of association between different processes. The data used in these figures are pro-
vided in Supplementary Table SI1.

Mathematical Models of Neurodegeneration
Lloret-Villas et al.

77

www.psp-journal.com



exclusive models (Figure SI2). The rationale for consider-
ing only the exclusive models is to analyze each process
separately. The results show that models studying exclu-
sively the “APP breakdown” process have high redundancy
(more overlap), while models exclusively investigating
“synaptic transmission” are more unique in their molecular
entities. The “fibril organization” process show only moder-
ate model redundancy despite having more exclusive
models and the model structure being very small. This is
because: “fibril organization” being the major clinical indica-
tion of diverse ND, the mechanism of fibril formation has
been studied for different molecules, e.g., Ab, a-Syn, etc.,
and their variants.

In summary, we infer that the 89 models in our list are
specific (with certain degree of overlap) in their size (number
of molecular entities included), nature of study (theoretical/
empirical), empirical data source (human/nonhuman), and
process studied (exclusive/shared). Taken together, this indi-
cates the varied degrees of mechanistic insights gained
using these models on different aspects of neurodegenera-
tion, the integration of which can potentially be a step for-
ward to understand ND pathology.

EVOLVING HETEROGENEOUS NATURE OF ND
MODELS

The expanding knowledge of ND mechanisms and the con-
sequent growing model numbers in neurodegeneration has
resulted in a wide range of diverse data. A holistic analysis
of ND mathematical models is required to obtain insights
into modeling trends. To determine the nature, evolution,
and pattern of mathematical modeling in describing ND
processes, we investigated several aspects of the available
ND models. This includes their chronology, pathology stud-
ied, study organism, modeling methods, and tools used.
Supplementary Table SI1 provides this information for
each of the models included in our analysis.

An analysis of model chronology illustrates that the math-
ematical modeling of neurodegeneration has become more
heterogeneous with respect to the processes described
(Figure 3a). One of the earliest models of neurodegenera-
tion in 1986 described only the “synaptic transmission”
mechanism. By 2000, there were six processes, which
include “synaptic transmission,” “apoptosis,” “ion homoeo-
stasis,” “fibril organization,” “oxidative stress,” and “APP
breakdown.” This addition of new processes to ND disor-
ders indicates the emergence of new knowledge in the
domain during the intervening period and hence the model-
ing studies to understand the underlying mechanisms. To
date (2016), the mechanistically studied molecular process-
es of neurodegeneration fall under 15 biological processes.
This count may increase in the years to come.

Among the 15 ND processes upon which the models are
classified (Figure 3b), the majority have been studied in
the context of AD. While this review discusses mathemati-
cal modeling of neurodegeneration with a particular focus
on AD and PD, we also consider models that study generic
ND mechanism such as protein aggregation and ion
homoeostasis. This has resulted in the inclusion of a few

other ND disorders including prion disease, HD, and ALS.
Bearing in mind the interest of this study, we used only
three disease categories: “AD,” “PD,” and “other ND.”

Figure 3 Evolving heterogeneous nature of ND models. (a) This
plot shows the chronological evolution of mathematical models
describing different ND processes developed over the past two
decades in 5-year increments. The size of the transparent bubble
at each timepoint is proportional to the number of the models pre-
sent at that time. The colored bubbles within represent different
processes that have models and their size indicates the number of
models describing the associated process. The number in brack-
ets adjacent to each process indicates the total number of models
describing the process. (b) This heat map shows a comparison
between the 15 processes and the diseases for which the mecha-
nisms are described using models. As this review is focused on
AD and PD, our model collections are biased towards AD and PD
models. There are three categories of diseases, AD, PD, and other
ND. “Other ND” includes generic ND conditions (not specific to any
particular disease), HD, prion disease, and ALS. The absolute
model numbers are shown in red within the boxes. (c) This stacked
bar chart depicts the diversity of the taxonomies, software and
modeling approaches used in describing ND models (Supplemen-
tary Material Table SI1). The vertical axis represents the percent-
age of each component while the absolute numbers are indicated
within brackets. ODE, Ordinary Differential Equations; SDE, Sto-
chastic Differential Equations; PDE, Partial Differential Equations;
FBA, Flux Balance Analysis.
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Generic models and those models describing the mecha-
nisms that underlie diseases other than AD and PD are
thus grouped under “other ND.” Our results show that sev-
eral processes are modeled in the context of AD, with “APP
breakdown” and “fibril organization” being the most-studied
mechanisms. For PD, the most extensively investigated
mechanisms are “fibril organization” and “oxidative stress.”
“Fibril organization,” the consensus clinical indication of
most ND, is also the most extensively studied process in
the “other ND” category.

Next, we analyzed the statistics of ND model attributes
(Figure 3c). Model studies include validating experiments
on several organisms including human, mouse, rat, ham-
ster, monkey, dog, and cat. Experiments in these organisms
are reported as being of different biological scales including
in vitro, cell culture, tissues, in vivo, and clinical. The majori-
ty of available model parameters are taken from experi-
ments performed in human (Homo sapiens). However, we
observe that more than half of the modeling studies are
theoretical, and therefore without empirical validation.
Together, these factors define the complexity, robustness,
and validity of the models of ND. A visual representation of
this information is provided in Figure 2a. Among the vari-
ous modeling approaches used, we found that ordinary dif-
ferential equations (ODEs) were the predominant technique.
In terms of software implementations, MatLab (MathWorks,
Natick, MA) was found to be the most-used software to
solve those equations.

MATHEMATICAL MODELS AND DRUG TARGETS IN
ND: PROMISING SCOPE

Mathematical modeling facilitates a systems-level under-
standing of biological networks. This holistic approach helps
to study the relationship between different components and
also to perform qualitative and quantitative analysis of the
system. Such comprehensive studies can be quite useful
for clinical purposes to identify drug targets or understand
off-target drug effects. The integration of systems biology
with pharmacodynamics/pharmacokinetics has led to the
emergence of a quantitative systems pharmacology (QSP)
approach,5,7 which permits an understanding of the
mechanism of dynamic interactions between drug(s) and a
biological system. Furthermore, systems biology studies
can fuel the drug repositioning process where novel scope
is identified for existing drugs.

Bearing in mind the potential role of mathematical model-
ing in drug discovery and development, a comparative anal-
ysis was performed between the drug-targets of ND and
the processes that have mathematical models. This study
informs us about correlations, gaps, and scope for mathe-
matical models in the clinical domain of ND. Information on
drugs for ND was obtained from ChEMBL using Human
Disease Ontology (DOID) terms. Diseases listed as child
terms of “neurodegeneration” in DOID were searched
against ChEMBL to fetch the available drugs corresponding
to these diseases. A total of 166 clinical drugs targeting 10
ND were retrieved from ChEMBL (Figure 4a). The drug
types include small molecules, proteins, enzymes, and

antibodies. The complete list of drug-target-disease infor-
mation is available from Supplementary Table SI1.

Analyses show that mathematical models and clinical
drugs for ND have chronologically evolved in separate
ways. We compared the molecular processes of neurode-
generation that have known drug targets in the correspond-
ing pathways with those that have mechanistic models.
Temporal distribution of the former and latter shows differ-
ent evolution patterns between the processes (Figure 4b).
An obvious difference is the inception—clinical drugs for
ND that have been available since 1959, while mathemati-
cal models emerge only from 1986. There are significantly
fewer mathematical models than clinical drugs for ND. The
“ion homoeostasis” process has increasingly been targeted
for treating ND patients, i.e., it has the highest number of
clinical drugs. This is not surprising, as in general “ion
homoeostasis” is an often targeted process in the treatment
of most diseases. The next significantly targeted process is
“synaptic transmission,” where drugs are administered to
regulate the signaling between neurons. Conversely, “fibril
organization” is a well characterized mechanism, followed
by “oxidative stress” and “synaptic transmission” according
to the model space of ND. An interesting similarity between
drug-targeted and modeled ND processes is that historical-
ly, “synaptic transmission” was an initial and significant area
of interest.

For several clinically targeted ND processes we did not
find mathematical models in our list of 89 models. We
investigated whether there was an overlap between the
drug targets for ND and the molecular entities that have
been included in ND models (Figure 4c). The results show
that there exists a range of processes including certain sig-
naling pathways, Jun/Fos transcription, lipid, and vitamin-K
metabolism and cell aggregation, growth, migration that
have clinical drugs, but our list does not have models
describing these mechanisms in the context of ND. We
acknowledge that there are generic models, or models
described in other cell types available for some of these
processes. However, we do not consider them for our anal-
ysis as they do not describe mechanism in brain cells or
the dynamics of ND pathology. Note that most of these pro-
cesses such as cell growth, migration, and extracellular
matrix regulation are fundamental for cell survival and we
speculate that this may be a reason for not exploring them
in an ND context. The physiological roles of these process-
es in ND pathogenesis have been discussed in the “Biology
of neurodegeneration and associated mathematical models”
section. On the other hand, we did not find any drugs for
some molecular processes that are well characterized
using mathematical models (Figure 4b,c). For example,
our query did not fetch any drug from ChEMBL for
“fibril organization,” despite it being the consensus clinical
indication of most ND, and for which the underlying mecha-
nism are extensively investigated using mathematical
models.

Finally, we performed a 3-way comparative analysis with
the available literature on experimental and clinical studies
against the processes that have been mechanistically
described using mathematical models, and against the pro-
cesses for which there are approved drugs (Figure 4d).
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While no conclusions can be drawn solely based on abun-

dance of publicly available models, it is interesting to note

that there is partial overlap between the three knowledge

domains. Several processes such as JNK signaling and

vitamin K metabolism have been targeted by clinical drugs

for ND, but have no mathematical models. On the other

hand, Arc pathway and CREB pathway are empirically

known to be involved in ND but have not been considered

in modeling studies. The current state of mismatch between

literature information, mathematical modeling, and clinical

drugs may indicate scope for integrating the three knowl-

edge bases to achieve a more complete mechanistic under-

standing of ND pathogenesis. Alzpathway10 and PDMap11

have developed a knowledge-driven interaction map for AD

and PD, respectively. This comprehensive interaction map

can be used as a reference to build mathematical models

of processes that have not been investigated so far. Quanti-

tatively analyzing these processes for their role in ND may

provide new insights into the pathology of the disease. Fur-

thermore, such studies may aid in the discovery of novel

drug targets for ND.

DISCUSSION AND FUTURE DIRECTIONS

The unprecedented and rapidly growing amount of data
from in vitro, in vivo, and clinical studies, at the molecular,
physiological, and clinical levels, has opened up new hori-
zons in biomedical research. Mathematical modeling plays
a vital role in utilizing these large-scale, multilevel datasets
and generating predictive hypotheses, potentially providing

significant insights into the mechanism of complex multietio-

logical diseases and drug action. The last two decades

have witnessed an exponential increase, both in the num-

ber and complexity of models that describe ND processes.

The abstract model landscape map (Figure 1), that we

have constructed by integrating the mechanisms described

in the 89 ND models available in the literature to date, pro-

vides an overview of the evolution of models describing het-

erogeneous ND processes.

To effectively use the growing mathematical models in
the literature, it is essential to have a comprehensive repos-
itory of models, where the models are verified and stored in
standard formats such as SBML. As a part of this work,

Figure 4 Mathematical models and drug targets in ND. (a) Available drugs for 10 ND conditions obtained from ChEMBL. The stacked
bar charts show the distribution of drug type and their target diseases (Supplementary Material Table SI1). (b) Chronological (vertical
axis, 5-year increments) evolution of drug targets discovered in the pathways of the 15 processes that have mathematical models. The
two heat maps provided here illustrate the evolution of drug targets and mathematical models against the 15 ND processes, respective-
ly. Cumulative values are displayed in red within the boxes. (c) This section illustrates the relationship between the protein molecules
incorporated in the models and drug targets to investigate if there is an overlap. The Venn diagram shows the overlap between the for-
mer and latter, and the mutually exclusive sets of molecules that have mathematical models and that are known drug targets. In all,
132 protein molecules belonging to eight ND processes that are already a known target of ND have their pathways described using
mathematical models. The pie charts below indicate the process distribution of the unique and overlapping regions (absolute values
displayed) of the protein molecules. (d) This Venn diagram shows the comparison of ND processes from the literature (knowledge-driv-
en) (blue), models (green), and drug-targets (red).
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most models considered for analysis were also encoded in
SBML, curated to verify simulated results, and deposited in
BioModels,9 a public repository of mathematical models of
biological and biomedical systems. The models and the
interactive model landscape map (Figure 1) can be
accessed from the dedicated ND page.8 This page will be
updated on a regular basis as new models in this domain
are submitted.

A comparative analysis of existing experimental or clinical
knowledge vs. mathematical models developed to under-
stand ND processes has provided key insights into the
nature of research in the field. Chronological investigations
of models developed over the last two decades (Figure 3a)
shows that the approach of mathematical modeling in ND
has evolved from studying single or a few processes in the
1990s to as many as 15 diverse molecular processes
today. This development may indicate the realization that
ND is a multifactorial disorder, i.e., as the knowledge of
molecular and cellular events contributing to ND expanded,
more mathematical models may have been formulated to

understand the underlying mechanisms. The model land-
scape map (Figure 1), generated by integrating the mecha-
nism described in our collection of 89 models, clearly
illustrates that there are some processes that are densely
populated while others are sparse. Furthermore, Figure 2a
depicts the varying complexities and robustness of the
models in each process. These multiple factors indicate the
different levels of knowledge we have of ND processes.
The low degree of mechanistic understanding of certain
processes may be due in part to the lack of experimental
data and/or of effort in that domain, or of the lack of inte-
gration of mathematical models with existing experimental
knowledge. For example, Figure 5b suggests that several
steps of the APP breakdown process have not been mech-
anistically studied using mathematical models. Moreover,
this process shows high model redundancy (Figure SI2).
Thus, a future direction in understanding APP breakdown
mechanism may be to model unknown phenomenon and
use well-characterized existing mechanistic models for inte-
gration. The model landscape map (Figure 1) and the

Figure 5 Mechanistic description of aggregation and APP breakdown in ND: Potential future direction. (a) The “fibril organization” pro-
cess is well characterized using mathematical models: Here, we represent the formation of protein aggregation in three stages, native
proteins!misfolded proteins!aggregated proteins for AD, ND in general, and PD. The mechanism of formation of 1) Ab aggregates
specific to AD (pink panel); 2) amyloid aggregates (i.e., proteins that can form aggregates) in ND conditions in general (light green pan-
el); and 3) a-Syn aggregates specific to PD (light yellow panel) are represented as SBGN Process Description. The aggregates are
resistant to degradation and disrupt proteasome function, which is illustrated as a thin arrow and inhibition curve, respectively. The
detailed biological description of the individual processes and the corresponding model references are in Box 1. (b) Certain aspects of
the “APP breakdown” process lack mechanistic knowledge. The transmembrane protein APP can be processed through four different
routes: 1) it may remain at the cell surface; 2) be internalized and recycled or degraded; 3) cleaved via the nonamyloidogenic a-
pathway; 4) or cleaved via the amyloidogenic b-pathway. The reactions are illustrated as SBGN Activity Flows. Modeled events are col-
ored in green. The components that are colored red illustrate the gap between the experimental knowledge and the mechanistic
understanding. In other words, red denotes the phenomenon for which the mechanism of action is unclear. The detailed biological
description with associated references is in Box 2.
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model-process network (Figure 2a) suggest the need for
more mechanistic models to describe certain aspects of
ND.

Our analyses of existing models suggest several direc-
tions for further investigation by the community. The model
coverage of ND processes is heterogeneous, as can be
seen in Figure 1. For instance, there are plenty of models
describing the mechanism of “fibril organization” in AD
(Ab), PD (a-Syn), and in general all ND (amyloid protein)
(Figure 5a). All components involved in this process are

mechanistically well characterized. In contrast, there are
several domains that have few or no mathematical models
at all. Cell aggregation, cell cycle, and signaling pathways
such as mTOR, MAPK, and insulin are some of the exam-
ples. Diverting attention to these areas may yield a better
picture of ND pathogenesis.

Another potentially fruitful approach in ND modeling
could be in the construction of unified models. The avail-
ability of several models within the same category now per-
mits systematic comparative analysis of the mechanisms

Fibril Organization

A common characteristic of neurodegenerative diseases is the presence of intracellular and extracellular aggregates, such as
senile plaques and neurofibrillary tangles, of otherwise soluble proteins. An SBGN illustration of the aggregation process spe-
cific to AD (pink panel), PD (light yellow panel) and in general ND (light green panel), is shown in the Figure 5a. This figure
was generated using the mechanistic details synthesised from the models discussed below. Destabilization of native protein
conformation is believed to be the key driving force in protein aggregation. The misfolded aggregates are not only resistant to
degradation, but also disrupt proteasome function. This is illustrated as a thin arrow and inhibition curve, respectively.

Generic Amyloid Fibrillation: Primarily, partially folded amyloid intermediates have increased aggregation propensity.
They tend to assemble as toxic fibrillar structures, which may in turn associate into mature amyloid inclusions. Several
mathematical models have been proposed to explain the protein aggregation process in ND:

• Stochastic nucleation and fibril dynamics, for instance, have been modelled using a two-step reaction mechanism 42–47 and validated with
empirical data 48.

• A micelle intermediate on the pathway of protein aggregation has been described using mathematical models 49,50.
• Furthermore, models of inhibiting end-blocking drugs have also been formulated for describing the protein aggregation process 51–53.

Alzheimer’s Disease (AD) – Ab Fibrillation: Deposits of toxic species of Ab, such as oligomers, fibrils, senile plaques
and neuro fibrillary tangles (NFT) in the brain are characteristic of AD. The mechanism of formation of Ab fibrils has
been modelled by several groups:

• Kinetics of Ab aggregation has been described using mathematical models 12–14,39,54,55.
• Activated microglia increases the production of Ab through the secretion of Interleukin-1 (IL-1) whilst quiescent microglia helps to maintain

Ab production within a healthy range. Neuroinflammation associated with AD has been quantitatively investigated 41.
• The transcription factor p53, when present in high levels, increases the activity of the protein kinase GSK3b leading to enhanced pro-

duction of Ab 16.
• Sequestration of zinc (Zn) by Ab deposits triggers Ab aggregation, which promotes plaque formation 15.
• Experimentally introduced anti-Ab antibodies in the brain have shown to reduce Ab plaque levels. Models have been formulated to study the

effect of immunisation against Ab 34,56.

Parkinson’s Disease (PD) - a-Syn Fibrillation: A central hallmark of PD is the formation of intracellular inclusions
composed of a-Syn, a 140 amino acid pre-synaptic protein. Several factors that regulate a-Syn aggregation in PD have
been investigated for mechanistic understanding:

• Redox active metal ions, such as Iron (Fe) and Copper (Cu), are known to enhance nucleation and elongation of a-Syn. Bharathi et al.,
(2008) 22 studied the effect of metal ion on a-Syn aggregation kinetics using a mathematical model.

• Overexpression of the protein deglycase DJ-1 has been shown to reduce a-Syn dimerization. Buchel et al., (2013) 24 developed a mathemat-
ical model to investigate this mechanism.

• Dopamine (DA) slows the conversion of a-Syn aggregates from protofibrils to fibrils, leading to the accumulation of soluble oligomers. Several
computational models have been formulated to study the role of DA metabolism in a-Syn aggregation 19,24,57–59.

• Parkin, synphilin and ubiquitin (Ub) are essential components of the Lewy Bodies and are studied in an integrative model by Sass et al. (2009) 59.
• The role of reactive oxygen species (ROS) in a-Syn misfolding via a positive feedback loop has been investigated using the model developed

by Cloutier et al. (2012) 30.
• Impaired proteasomes disrupt the protein degradation process, which in turn favours the a-Syn aggregation mechanism 23.
• The transport of a-Syn in axons plays an important role in a-Syn aggregation and PD pathology. Spatial dynamics of a-Syn within axons has

been studied recently 20,21.
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described. This may pave the way to develop unified mod-

els for each category. As mentioned earlier, “fibril organ-

ization” is an exemplary process that has been well
characterized with numerous models (Figure 5a). Relevant

models of fibril organization may be integrated to formulate

a generic fibril organization process model. Since fibril

organization is dysregulated in several ND diseases, this

generic unified model may be tailored to suit any specific

disease of interest. On the other hand, processes such as

“APP breakdown” have empirical knowledge that has not
been used to understand the mechanistic insights using

mathematical models (Figure 5b). For example, low-

density lipoprotein receptor-related protein-1 (LRP1) is

known to be involved in APP b-secretase cleavage pathway

regulating Ab production and degradation, but the mechanism

of action is still not very clear. In such cases, additional

modeling effort is needed before the conception of a unified
model. Boxes 1 and 2 elaborate the molecular processes

illustrated as Systems Biology Graphical Notation (SBGN)

Process diagram for “fibril organization” (Figure 5a) and as

the SBGN Activity Flow for “APP breakdown” (Figure 5b),

respectively. When generic models are available for each cat-

egory, amalgamating them to assemble a complete ND model

could be the next promising step. The associations between

the different processes (Figure 2b) in the 89 models illustrate

the closely related ND mechanisms, which may serve as a

guide for model integration. The follow up of our study will be

to formulate unified models for each ND-related molecular

process and eventually merge them to form a whole modular

model.
One aim of systems-level studies is to generate useful

insights into clinical targets. MID3 is increasingly given

greater priority within the pharmaceutical industry, since it

has a greater potential for decision making. The compara-

tive analysis (Figure 4c) of available literature knowledge

on experimental and clinical studies against the processes

that have mathematical models and known drugs has given

several insights for future directions. There still exist molec-

ular processes that have experimental evidence for their

involvement in the initiation or progression of ND, but the

underlying mechanism is not clear. Analyzing these pro-

cesses for their role in ND using mechanistic models may

APP breakdown

The amyloid cascade hypothesis posits that the deposition of the Ab peptide in the brain is a central event in AD pathol-
ogy. According to this hypothesis, the overproduction of Ab is a key step and triggers the disease process. The 4-kDa
polypeptide Ab results from the sequential cleavage of APP and is believed to play an important role in synaptic activity,
but considered neurotoxic when reaching high concentration. The transmembrane protein APP can be processed
through four different routes as described in Figure 5b: 1) it may either remain at the cell surface, 2) be internalised
and recycled or degraded, 3) cleaved via the non-amyloidogenic a-pathway, or 4) cleaved via the amyloidogenic b-
pathway. Accordingly, the membrane secretase-mediated cleavage of APP is a key process in understanding Aß
formation and accumulation. Three different secretases are involved in the two-step splitting of APP: a-secretase, b-sec-
retase, and c-secretase. The a-secretase initially cleaves APP allowing the generation of nonamyloidogenic C83 inter-
mediates. Following this, b-secretase acts to generate amyloidogenic C99 intermediates. Both reactions generate
soluble nontoxic amyloid precursor protein fragments (sAPP) that are released to the extracellular space. Subsequently,
C83 and C99 amyloid intermediates are processed by c-secretase complex to p3 fragment and Ab, respectively. There
are several steps and molecular components involved in APP breakdown mechanism, which has been reported in the
literature. In Figure 5b, we illustrate the gap between the molecular events that are well characterized using mathemati-
cal models (green), and those that have experimental evidence but lack mechanistic details (red). If this gap is filled
with the development of mathematical models, new insights about AD pathology in the context of APP cleavage can be
elucidated. Supporting references are provided in Supplementary Information SI-3.

Mechanisms investigated using mathematical models [green in Figure 5b]:

• Presenilins (a subunit of c-secretase) are not only required for proteolytic processing/trafficking of APP, but also for a set of several trans-
membrane proteins. Several studies have investigated the dynamics of the different amyloid species under the effect of c-secretase modula-
tors 13,60–62.

• Sortilin-related proteins (SORLA) inhibit APP breakdown by interacting with them and limiting amyloidogenic proteolysis. SORLA dynamics
have been modelled in AD 63–65.

• Cholesterol is shown to inhibit b-secretase activity thereby decreasing the production of Ab. The role of cholesterol on amyloidogenic proc-
essing has been investigated 39.

• A decrease in acetylcholine (ACh) concentration causes an increase in the synthesis of APP and favours the processing of APP by the
b-pathway 66,67.

Mechanisms that are unclear – need of mathematical models [red in Figure 5b]:

• APP intracellular domain, co-product of the enzymatic reaction mediated by c-secretase, is found to play an important genetic regulatory role.
• LRP1 is involved in the degradation of Ab and also in the regulation of Ab production by directly binding to APP, b-secretase, and c-secretase.
• Notch proteins cleaved by the enzyme c-secretase can regulate gene expression by activating transcription.
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provide new insights into the pathology of the disease.
There are certain processes that are mechanistically well
characterized and have no drugs targeting the process and
vice versa. This mismatch may be due to the fact that
mathematical model formulation relies on biological knowl-
edge, while drug development depends on factors such as
safety, efficacy, and side effects. “Fibril organization” is a
good example of a well-studied process (Figure 5a) with
no clinically approved drugs. Ongoing efforts spanning
several years have attempted to block Ab protein as a ther-
apeutic strategy for AD. Recently, researchers have suc-
ceeded in developing an antibody—Aducanumab—that can
curb Ab aggregation and slow cognitive decline. Such
instances are excellent examples of achieving clinical goals
via thorough mechanistic understanding of ND processes.

Another avenue for exploration would be to expand the
region of intersection in Figure 4c, i.e., in the direction of
molecular entities that are already a known target and for
which mechanistic models are available. An interesting
question to ask is what would be the impact of the drugs
on a biological system. The development of QSP models
by integrating mathematical models with drug action kinet-
ics may provide insights into drug action at a systems level.
These models derive their predictive power by replacing the
classical view of one-drug-one-target with a paradigm
where one drug can interact with a complex network, or
multiple drugs can bind to a single target, both of which are
a source of clinical side effects. Such QSP models for ND
can potentially shed light on side effects and drug toxicity,
by following exposure and effect on non-targeted organs. A
QSP model describing the inhibition of the APP breakdown
process has identified compensating mechanisms for drug
action in the system. Another QSP model of ND predicted
the success rates of clinical trials of several drugs. Further-
more, recent studies discuss the need for integrative mech-
anistic modeling and QSP modeling of AD to provide
knowledge for drug discovery programs, target validation,
and optimization of clinical development (supporting refer-
ences are provided in Supplementary Information SI-3).
This corroborates our idea about unifying and integrating
ND models to generate clinically relevant QSP models.

CONCLUSION

The growing experimental knowledge and clinical indica-
tions of ND have expanded the field of study vastly, there-
by making the systems-level understanding of the disease
more challenging. Mathematical models provide fresh
insight into biological systems, by suggesting, for exam-
ple, how connections between local interactions between
systems components have wider biological effects.
Although there are several mathematical models that
describe different aspects of ND, there still exists a gap.
Continued efforts on the mechanistic description of neuro-
degeneration are instrumental in uncovering the interplay
between basic biological components associated with
neurodegeneration. We believe that the modeling of
untouched ND-related processes and integration with
available models is the best way forward to coalesce upon

a complete mechanistic understanding of neurodegenera-

tion. This would result in improving clinical diagnosis, ther-

apeutic interventions, and strategies. We believe that our

review will form a strong base for developing an integrated

modeling framework for the neurodegenerative disease

processes.
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