
Röösli et al., Sci. Adv. 2021; 7 : eabf5547     7 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 7

P H Y S I C S

Fractional Coulomb blockade for quasi-particle 
tunneling between edge channels
Marc P. Röösli1*, Michael Hug1, Giorgio Nicolí1, Peter Märki1, Christian Reichl1, Bernd Rosenow2, 
Werner Wegscheider1, Klaus Ensslin1, Thomas Ihn1

In the fractional quantum Hall effect, the elementary excitations are quasi-particles with fractional charges as 
predicted by theory and demonstrated by noise and interference experiments. We observe Coulomb blockade of 
fractional charges in the measured magneto-conductance of a 1.4-micron-wide quantum dot. Interaction-driven 
edge reconstruction separates the dot into concentric compressible regions with fractionally charged excitations 
and incompressible regions acting as tunnel barriers for quasi-particles. Our data show the formation of in-
compressible regions of filling factors 2/3 and 1/3. Comparing data at fractional filling factors to filling factor 2, 
we extract the fractional quasi-particle charge e*/e = 0.32 ± 0.03 and 0.35 ± 0.05. Our investigations extend and 
complement quantum Hall Fabry-Pérot interference experiments investigating the nature of anyonic fractional 
quasi-particles.

INTRODUCTION
Large quantum dots (QDs) can be used to study physical processes 
in the quantum Hall regime. Nevertheless, no effects of quasi-particle 
tunneling have been observed for Coulomb blockaded QDs in the 
fractional quantum Hall regime so far (1). The reason is that tunnel-
ing barriers connecting a QD in the Coulomb blockade to source and 
drain regions are strongly backscattering and therefore only allow 
for electron tunneling (2). Operating barriers in the regime of 
weak backscattering allows for quasi-particle tunneling. Evidence for 
fractionally charged quasi-particles has previously been observed in 
experiments on shot noise of a quantum point contact (3–7), capac-
itively probed localized states (8), anti-dots (9), photo-assisted shot 
noise (10, 11), or quantum Hall Fabry-Pérot interferometers (12). 
In general, quantum Hall Fabry-Pérot interferometer experiments 
(13–17) in the fractional quantum Hall regime offer the opportunity 
to study anyonic statistics of fractional quasi-particles (12, 18–27). 
Anyonic fractional statistics were recently detected in two seminal 
experiments by Bartolomei et al. (28) and by Nakamura et al. (29). 
Mach-Zehnder interferometers in the quantum Hall regime (30) 
were proposed as an alternative probe to study quasi-particle statistics 
(31, 32). The close relation between QDs and Fabry-Pérot interfer-
ometers in the quantum Hall regime (33–37) promises complemen-
tary experimental observations on fractional quasi-particles in QDs.

Here, we study the magneto-transport through a large QD con-
taining roughly 900 electrons in the fractional quantum Hall regime 
for filling factors  < 1. The QD forms concentric compressible re-
gions separated by incompressible regions (38). In the integer quan-
tum Hall regime, this has been established by experiments (39–42) 
and theory (43). By reconstructing the charge carrier distribution in 
the QD at zero magnetic field, we can show that in two specific re-
gions of magnetic field, the incompressible region corresponds to a 
fractional filling factor in = 1/3 or 2/3, respectively. In our experi-
ments, the QD is weakly tunnel-coupled to its leads and occupied 
by an integer number of electrons N. In this regime, conductance 

peaks arise each time the chemical potential of the Nth electron 
state and the leads are degenerate, as usual in Coulomb blockade 
experiments. While only an integer number of electrons can tunnel 
between the QD and the leads (2), we observe fractional quasi-particle 
tunneling between the compressible regions inside the QD with a 
fractional charge corresponding to e* = e/3, as predicted theoretically. 
In the properly tuned regime, the tunnel coupling across the incom-
pressible region is strong enough to enable tunneling of fractionally 
charged quasi-particles and weak enough to lead to a detectable 
Coulomb blockade signal via rearrangement of (fractional) charges. 
As each compressible region forms a QD, the quasi-particle tunneling 
can be treated in a capacitive single particle model as the fractional 
Coulomb blockade between two nested QDs. We construct a phase 
diagram of stable charge, which was previously proposed theoreti-
cally (44) and measured for integer Landau levels (37, 45–50).

RESULTS AND DISCUSSION
Experimental setup and characterization
The QD sample is fabricated on an AlGaAs/GaAs heterostructure 
etched into a Hall bar structure. It hosts a two-dimensional electron 
gas (2DEG) 130 nm below the surface, which is contacted by an-
nealed AuGeNi ohmic contacts. We measure a bulk electron density 
nbulk = 1.44 × 1011cm−2 and electron mobility  = 5.6 × 106cm2/Vs at 
temperature T = 30 mK. The bulk electron density can be altered 
by applying a voltage to the prepatterned, overgrown back gate ex-
tending underneath the Hall bar 1 m below the 2DEG (51). For all 
measurements in this paper, the back gate was grounded. However, 
the presence of back gates or additional gates can influence the con-
finement potential, which was exploited in previous experiments 
(12, 27, 52, 53).

The detailed gate design of the inner structure of the QD sample 
is shown in Fig. 1A. The QD with a width of 1.4 m and a litho-
graphic area of ≈ 2 m2 is formed by four metallic gates [labeled center 
barrier (CB), left and right barriers (LB and RB), and plunger gate 
(PG); yellow] that are lithographically patterned on the surface of 
the AlGaAs/GaAs heterostructure (dark blue). We form the QD by 
applying negative voltages to the gates, thereby depleting the elec-
tron gas underneath. Depletion of the electron gas below the gate 
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occurs at −0.35 V. By applying a small voltage VSD between the 
source and drain contacts and measuring the resulting current ISD, 
we study the two-terminal linear conductance Gdot = VSD/ISD of the 
QD. First, we tune the QD system into the Coulomb blockade re-
gime. The CB gate and the LB and RB gates tune the transmission of 
the right and left barriers, respectively. The transmitted conduc-
tance through both barriers is set to ≪ e2/h such that the QD is only 
weakly coupled to its leads. We fix the voltage of the CB gate VCB = 
−1.2 V, while the voltage on LB and RB is changed to retune the 
barrier coupling of the QD for different measurements. The voltage 
on the PG is varied around VPG ≈ −0.4 V and used to tune the dis-
crete energy levels of the QD.

The measurements were conducted in a dilution refrigerator at 
the base temperature T = 30 mK. All measurements presented within 
this paper were performed on the same sample during one cooldown. 
The presented modulation of the Coulomb peaks was reproduced 
in a second cooldown with similar gate voltages. In addition, simi-
lar measurements were reproduced with another sample using a 
different heterostructure and gate design.

The electron density in the QD region is reduced compared to 
the bulk density of the 2DEG by the applied confining gate voltages. 
To estimate the effective electron density ndot inside the QD, we an-
alyze the conductance Gdot through the QD in the integer quantum 
Hall regime. Figure 1B shows the normalized conductance Gdot/Gmax 
as a function of magnetic field B applied perpendicular to the sam-
ple surface and the PG voltage VPG. For improved visibility of all res-
onances, each conductance trace (PG voltage varied, magnetic 
field fixed) is normalized by the maximal local conductance Gmax 
of the five adjacent traces. In addition, the transmission of the barri-
ers of the QD changes slowly with magnetic field. Therefore, the bar-
rier gate voltages VLB and VRB needed to be retuned at some magnetic 
fields to ensure that the conductance through the barriers stays in 

the desired range of weak coupling. In Fig. 1B, we therefore com-
bine seven measurements taken over finite magnetic field ranges 
where different barrier gate voltage settings were applied (transi-
tions marked by arrows). We combine the seven measurements 
into one figure by shifting them in PG voltage such that the peaks 
match at the boundary of the individual measurements. We observe 
Coulomb blockade resonances as a function of the PG voltage. Their 
position in gate voltage shows a 1/B-periodic modulation as indicated 
by dashed lines in Fig. 1B. This 1/B-periodic oscillation is directly re-
lated to the changing quantum capacitance of the QD that follows 
the 1/B-dependent density of states at the Fermi energy. Identifying 
these features with integer filling factors dot = 2,3,4,5,6,8,10,12, and 
14 in the QD allows us to extract the electron density ndot = (1.11 ± 
0.04) × 1011cm−2 in the QD by fitting the relation  = ndoth/(eB). All 
of the 1/B-periodic modulations used for determining the density 
ndot in the QD are within the magnetic field range of one single 
measurement with one specific gate voltage setting. We will see lat-
er that this density corresponds to the maximum local density in the 
QD center.

Periodic modulation of Coulomb resonances 
for fractional filling
We now study the conductance of the weakly coupled QD in the 
fractional quantum Hall regime for filling factor dot ≳ 2/3 and 
compare it to the integer quantum Hall regime at dot ≈ 2. First, we 
look at the conductance around filling factor dot ≈ 2 as a function 
of PG voltage and magnetic field shown in Fig. 2A. The Coulomb 
resonances show a distinct periodic pattern in magnetic field that 
has been studied in previous works (36, 37, 47, 49, 50). The pattern 
originates from an interplay of the two compressible regions 
emerging from the two filled Landau levels at filling factor 2 as sche-
matically depicted by the light blue regions in Fig. 1A. Regions of 
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Fig. 1. Sample schematic and density characterization. (A) atomic force microscopy image of the QD device. Top gates (labeled LB, PG, RB, and CB) appear in yellow, 
while the uncovered semiconductor is dark blue. A magnetic field is applied perpendicular to the sample surface. The overlaid schematics show the chiral compressible 
regions separated by an incompressible in = 1 filling factor region for a bulk filling factor b ≈ 2. We apply a source-drain bias VSD and measure the current ISD. (B) Normal-
ized conductance Gdot/Gmax through the QD as a function of the PG voltage VPG and the magnetic field B, where Gmax is the local maximum of the conductance over five 
adjacent PG voltage traces. Seven measurements with different barrier gate voltages VLB and VRB are combined by shifting in PG voltage such that the peaks match at the 
boundaries of the individual measurements. The boundaries between measurements are marked with white arrows. The Coulomb peaks show a 1/B-periodic behavior that 
can be related to integer filling factors dot = 2,3,4,5,6,8,10,12, and 14 in the QD (dashed lines). Fitting these features results in an electron density ndot = (1.11 ± 0.04) × 1011cm−2 
in the QD. A corresponding filling factor (dot) axis is indicated on the right.
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stable charge (N1 and N2) (separated by white lines in Fig. 2A) can 
be described by a capacitance model (33, 35, 37, 44) where N1 
and N2 correspond to the number of electrons on the outer and in-
ner compressible region, respectively.

Changing to the fractional quantum Hall regime, the conduc-
tance depending on the magnetic field and the PG voltage is 

shown in Fig.  2B around filling factor dot ≳ 2/3. The Coulomb 
resonances of the QD show a periodic modulation in the amplitude 
and the position in PG voltage as a function of the magnetic field. The 
modulations are clearly visible while being less pronounced and 
extended compared to filling factor 2. The visible conductance res-
onances are continuously connected, in contrast to the clearly sepa-
rated resonances around filling factor 2. The observation of modulated 
Coulomb resonances suggests the existence of a nontrivial fractional 
quantum Hall state inside the QD. Such a periodic pattern has pre-
viously not been observed for QDs in the fractional quantum Hall 
regime for filling factor dot < 1 to the best of our knowledge.

To further study the modulated Coulomb oscillations at filling 
factor dot ≳ 2/3 and get quantitative predictions, we extend the model 
for the integer quantum Hall effect discussed in our previous work 
(37) to fractional filling factors. We assume the existence of two 
compressible regions for the fractional filling factor dot ≳ 2/3 sepa-
rated by an incompressible in = 2/3 region as schematically depicted 
in Fig. 1A and similar to the situation at dot = 2 where the incom-
pressible region assumes filling factor in = 1. In thermodynamic 
equilibrium, the charge distribution in the QD minimizes the elec-
trostatic energy. Changing the magnetic field by B or the PG voltage 
by VPG charge imbalances Qi (i = 1,2) arise between the outer (i = 1) 
and inner (i = 2) compressible region

	​​
δ​Q​ 1​​  =  Δ ​n​ 1​​ − ​ν​ in​​ δB​   A ​ / ​ϕ​ 0​​ − ​C​ 1​​ δ​V​ PG​​ / e

​   
δ​Q​ 2​​  =  Δ ​n​ 2​​ + ​ν​ in​​ δB​   A ​ / ​ϕ​ 0​​ − ​C​ 2​​ δ​V​ PG​​ / e

​​	 (1)

The charge imbalances Qi are denoted in units of the elementary 
charge e. The ni describes discrete changes in charge of the respec-
tive region due to quasi-particle tunneling to the other compressible 
region or the leads. In the fractional quantum Hall regime, this can 
take fractional values corresponding to a multiple of the fractional 
charge e* for tunneling events between the compressible regions 
and is not required to be an integer number of the elementary 
charge e. Changing the magnetic flux through the area ​​A ̄ ​​ enclosed 
by the incompressible stripe at in = 2/3, a Hall current ​​​ in​​ δB​A ̄ ​ / ​​ 0​​​ 
will flow from the outer to the inner compressible region. Conse-
quently, the (fractional) charge ine will be shifted when adding one 
flux quantum 0 = h/e, not necessarily corresponding to the qua-
si-particle charge e*. The PG couples to the compressible regions 
over the effective capacitances Ci > 0. The change in total electro-
static energy can then be calculated to be

	​ E  = ​  1 ─ 2 ​ ​K​ 1​​  ​Q​1​ 2​ + ​ 1 ─ 2 ​ ​K​ 2​​  ​Q​2​ 2​ + ​K​ 12​​  ​Q​ 1​​  ​Q​ 2​​​	 (2)

where the Ki (i = 1,2) describes the charging energies of the com-
pressible regions and K12 the cross-charging energy due to capaci-
tive coupling between the compressible regions. This model predicts 
hexagonally shaped regions of stable charge as a function of the 
magnetic field and PG voltage as the system minimizes the energy 
functional (Eq. 2) by assuming suitable ni.

We interpret the data in Fig. 2B at dot ≳ 2/3 according to this 
model and draw the charge stability diagram. We will now look at 
charging events where a fractional charge e* is rearranged between 
the two compressible regions, i.e., n1 = +e*/e, n2 = −e*/e. The 
corresponding magnetic field spacing B coincides with the mag-
netic field period as indicated in Fig. 2B. The measured magnetic 
field period B is shown in Fig. 3A as a function of magnetic field B 
for the regions where periodic modulations are observed. We find a 
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Fig. 2. Conductance Gdot as a function of the PG voltage VPG and the magnetic 
field B for different dot filling factors. (A) dot ≈ 2, (B) dot ≳ 2/3, and (C) dot ≳ 
1/3. The exact dot filling factor dot at the middle of the magnetic field range is indicat-
ed with experimental uncertainty in parentheses. Regions of constant charge (N1, N2) are 
indicated in the charge stability diagram by white lines. The charge on the outer and 
inner compressible regions is denoted by eN1 and eN2, respectively. The situation for 
and 1/3 in (B) and (C) allows for fractional charging of e* = e/3.
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stable period of B = 5.6 mT (corresponding to an area ​​A  ̄​  =  0.74  ​m​​ 2​​) 
at dot ≈ 2 (blue dots) slowly rising toward and diverging at dot ≈ 1, 
which is directly related to the decreasing area enclosed by the in-
compressible in = 1 stripe as the upper spin-split branch of the low-
est Landau level is depopulated (37). For dot ≳ 2/3 (green squares), 
the period quickly increases with increasing B as well.

Periodic modulations of the conductance are also observed for 
filling factors 1/2 > dot > 1/3 as shown in Fig. 2C as a function of 
PG voltage and magnetic field (see also Fig. 4, G and H). The charge 
stability diagram is indicated and very similar to dot ≳ 2/3  in 
Fig. 2B. For the region where dot ≳ 1/3, the QD exhibits two com-
pressible regions separated by an incompressible region at in = 1/3, 

and we can apply the same model as described above for dot ≳ 2/3 
where in = 2/3. The corresponding magnetic period for 1/2 > dot > 
1/3 is displayed in Fig. 3A (orange triangles) and shows a slow in-
crease similar to the behavior close to dot ≈ 2. For all three regimes 
(in = 1, 2/3, or 1/3) in Fig. 3A, a periodic modulation is only ob-
served for dot ≳ in within the experimental uncertainty that stems 
from the uncertainty in the calculated dot density ndot.

Extracting the dot density distribution
The magnetic field spacing between two rearrangements resulting 
from the model is ​B  =  (​e​​ *​ / e ) ​​ 0​​ / (​​ in​​​A  ̄​)​. Assuming a circular charge 
distribution of the QD, we can calculate the radius of the incom-
pressible region according to

	​ r(B ) = ​√ 

_

 ​ ​e​​ *​ / e ─ ​​ in​​ ​ ​ 
​​ 0​​ ─ 
B ​ ​​	 (3)

with a density in the incompressible region

	​ n(r, B ) = ​ eB ─ h ​ ​​ in​​​	 (4)

Using these two equations enables us to reconstruct the zero 
magnetic field charge density distribution n0, dot in the QD from the 
measured magnetic period B(B) in Fig. 3A. We assume fractional 
charge e* = e/3 for dot ≳ 1/3 and 2/3 and charge e for dot ≈ 2 while 
having an incompressible region at in = 1/3, 2/3, and 1, respectively. 
This results in the dot density n0,dot shown in Fig. 3B with a flux 
quantum periodicity 0 for dot ≈ 2 (blue dots) and dot ≳ 1/3 (orange 
triangles) and a half-flux quantum periodicity 0/2 for dot ≳ 2/3 
(green squares). All three different regimes line up to form a smooth 
radial density dependence. The slightly higher radii for dot ≳ 1/3 
probably reflect the lower voltages applied to the barrier gates in 
this regime. For dot ≳ 2/3, we can exclude periodic modulations 
spaced by a full flux quantum 0 that would originate from an in-
compressible region of in = 1/3. They would lead to the light green, 
empty diamonds in Fig. 3B that do not line up with the points of the 
other regimes.

In a study of an anti-dot embedded into a  = 2/3 fractional quantum 
Hall (FQH) state (9), a flux period of 0 was found. This experiment 
was analyzed with the help of an electrostatic model which assumed 
that the edge of the  = 2/3 quantum Hall state consists of a down-
stream propagating integer channel and an upstream propagating 
fractional 1/3 channel (54). This edge structure was proposed by 
MacDonald (55). Depending on the strength of the Coulomb repulsion 
between these channels, the flux periodicity was found to be 0 for 
weak coupling and 0/2 for strong coupling. In the latter case, the 
two channels can be described as a single compressible region, as in our 
model. In the present experiment, we cannot distinguish any addi-
tional 0 period. We conclude that in our experiment the 2/3 edge 
does not exhibit signatures of an additional neutral mode. The 
absence of other incompressible stripes with fractional filling fac-
tors <2/3 might be due to the increasing steepness of the confining 
potential closer to the edge. Edge reconstruction will only occur 
when the fractional gap exceeds the potential gradient times the 
magnetic length.

We can fit the dot density n0,dot(r) in Fig. 3B using a model pro-
posed by Lier and Gerhardts (56) for the position of incompressible 
stripes at the gated edge of quantum Hall systems. The presence 
of a charged gate leads to a reduction of the bulk density nbulk by a 
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  C D E
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Fig. 3. Analysis of periodicity in magnetic field and gate voltage. (A) Magnetic 
field period B indicated in Fig. 2 (A to C) as a function of magnetic field B. A period-
ic modulation is only observed for the shaded magnetic field regions. (B) Zero 
magnetic field density n0, dot of the QD as a function of the radius r calculated from 
the magnetic field periodicities in (A) according to Eqs. 3 and 4, mirrored around 
r = 0. We assume a magnetic field periodicity B corresponding to a flux quantum 
0 for 2 > dot > 1 [(C), blue dots] and dot ≳ 1/3 [(E), orange triangles] and 0/2 for 
dot ≳ 2/3 [(D), green squares]. Assuming a flux quantum periodicity 0 and an in-
compressible stripe at in = 1/3 for dot ≳ 2/3 instead (light green empty diamonds), 
the calculated charge distribution does not agree with the data of other filling fac-
tors. The blue line shows a fit according to Eq. 5. (C to E) Ratio V12/V1 of the PG 
voltages indicated in Fig. 2 (A and B) depending on B for dot filling factors around 
(C) dot ≈ 2, (D) dot ≳ 2/3, and (E) 1/2 > dot ≳ 1/3. Quasi-particle charge ratios e*/e 
calculated by Eq. 8 are indicated.
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factor s. To calculate the density distribution, we assume two gates 
placed symmetrically around the center at r = 0 resulting in

	​​
​n​ 0,dot​​(r ) = ​n​ bulk​​ s(r, ​r​ 0​​, d ) s(r, − ​r​ 0​​, − d) with

​    
s(r, ​r​ 0​​, d ) = ​√ 

________________
  (​r​ 0​​ − r ) / (​r​ 0​​ + d − r) ​
  ​​	 (5)

where r0 is the radius where the density drops to 0 and d is the de-
pletion length around the gate. The fit (blue line) to our data at dot ≈ 
2 is shown in Fig. 3B with r0 = (517 ± 1)nm and d = (131 ± 4) nm. 
This agrees well with the lithographic dot size rlith ≈ 0.7 m ≈ r0 + d.

From electrostatic simulations using COMSOL, we calculate a 
magnetic field period B = 6.3 mT at a magnetic field of B = 10T for 
filling factor dot ≳ 1/3 and gate voltages comparable to the experimen-
tally applied values, which is in good agreement with the experimen-
tally determined value. Similarly, we get B = 11.6 mT at a magnetic 
field of B = 7T for filling factor dot ≳ 2/3, again in good agreement 
with the experiment. The calculated total charge on the QD corre-
sponds roughly to ​​N​tot​ 

(sim)​  =  870​ electrons. This is comparable to the 
experimentally derived value of ​​N​tot​ 

(exp)​  =  820​ from experimental 
values for the density ndot and the area ​​A ̄ ​​. The results of the electro-
static simulations agree well with the experimental observations.

Returning to the charge stability diagram in Fig. 2B, we calculate 
within our model the slope of an internal charging line between the 
two compressible regions

	​​ ​  B ─ 
 ​V​ PG​​ ​​|​​​ rearr.

​​  =  − ​  1 ─ ​​ in​​ ​ ​ 
​​ 0​​ e(​​ 1​​ − ​​ 2​​)  ────────────────   

​   A ​ [ (​K​ 1​​ − ​K​ 12​​ ) + (​K​ 2​​ − ​K​ 12​​ ) ]
 ​  <  0​	 (6)

where 1 = (K1C1 + K12C2)/e2 and 2 = (K12C1 + K2C2)/e2 denote the 
lever arms of the PG on the respective compressible region. This slope 
is negative as generally 1 > 2, which limits the ways we can draw 
the recharging lines connecting the visible Coulomb oscillations. 

In addition, we calculate the slopes corresponding to a constant 
charge on either of the two compressible regions

	​​
​​  B ─ 
 ​V​ PG​​ ​​|​​​ ​n​ 1​​=0

​​
​ 

= − ​  1 ─ ​​ in​​ ​ ​C​ 1​​ ​​ 0​​ / (e​   A ​)
​ 

<  0,
​   

​​  B ─ 
 ​V​ PG​​ ​​|​​​ ​n​ 2​​=0

​​
​ 

= ​  1 ─ ​​ in​​ ​ ​C​ 2​​ ​​ 0​​ / (e​   A ​)
​ 

>  0
 ​​	 (7)

These constraints define the orientation of hexagons in the 
charge stability diagram as shown in Fig. 2B. Crossing any segment 
of the hexagon boundary with nonzero conductance in VPG direc-
tion in Fig. 2B, the total charge on the QD changes by e. We see that 
crossing the boundary segment with negative slope implies n1 = 1 
and n2 = 0, while crossing it along a segment with positive slope 
corresponds to n1 = 2/3 and n2 = 1/3. The charge of an electron 
tunneling into the QD can therefore be split among the compress-
ible regions into fractional quasi-particle charges. This could be the 
reason why the Coulomb resonances are connected for ​​​ dot​​ ≲ 2 / 3​ (Fig. 2B). 
At dot ≈ 2, on the other hand, the Corbino ≳conductance across 
the incompressible region might be very small, such that electron 
tunneling into the inner compressible region is not substantial on trans-
port time scales, giving rise to clearly separated resonances (Fig. 2A).

Fractional charge
So far, we have considered ideal values for the fractional charge to 
determine the flux periodicities, the density distribution, and the 
parameter of the charging model. Now, we extract an experimental 
value for the quasi-particle charge for fractional filling factors dot ≳ 
2/3 and 1/3 by further analyzing the charge stability diagram for the 
integer and fractional quantum Hall regimes in Fig. 2. To this end, 
we calculate from the model the voltage differences V1 = K1/(e1) 
and V12 = (e*/e)(K1 − K12)/(e1), which appear in the measurements 

A B C D

E F G H

Fig. 4. Conductance Gdot as a function of the PG voltage VPG and the magnetic field B for decreasing dot filling factors 2>dot >1/3. The filling factor dot is indicat-
ed with the corresponding experimental uncertainty in parentheses. Periodic modulation of the Coulomb peaks are observed in (A), (D), (E), (G), and (H) corresponding 
to filling factors in the regions marked in Fig. 3A. No periodic modulations are observed in (B), (C), and (F).
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in Fig. 2 (A to C) as separations of visible charging lines as indicat-
ed. By taking the ratio V12/V1, we eliminate the lever arm 1. As-
suming that the ratio K1/K12 is independent of the filling factor, the 
quasi-particle charge is then calculated by comparing the ratios for 
the integer and fractional filling factors

	​​  ​e​​ *​ ─ e ​  = ​  
​V​12​ (fract)​ / ​V​1​ (fract)​

 ─ 
​V​12​ (int)​ / ​V​1​ (int)​

  ​​	 (8)

Figure  3  (C  to  E) shows the ratio V12/V1 as a function of the 
magnetic field for filling factors around dot ≈ 2, ≳ 2/3, and ≳ 1/3. 
Each point corresponds to a measurement as depicted in Fig. 2 (A 
to C) centered around a certain magnetic field value. The extracted 
relevant parameters are averaged over several hexagons of such a 
charge stability diagram. The ratio V12/V1 is roughly constant with-
in each filling factor regime. We extract a fractional charge e*/e = 
0.32 ± 0.03 and e*/e = 0.35 ± 0.05, respectively, by comparison to 
dot ≈ 2. This indicates a fractional charge e* = e/3 for quasi-particles 
tunneling in the QD for both dot ≳ 2/3 and ≳1/3. For  = 1/3, frac-
tional charge e* = e/3 has previously been found from measure-
ments on shot noise (3, 4), localized states (8), photo-assisted shot 
noise (10), or quantum Hall Fabry-Pérot interferometers (12), while 
at  = 2/3, different experiments indicated different values, namely, 
e/3 (7, 11), 2e/3 (7, 9), and e (12).

Evolution for different filling factors
To give an overview of the evolution of the conductance measure-
ments for decreasing filling factors 2 > dot > 1/3, we show addition-
al data in Fig. 4. As indicated in Fig. 3A, periodic modulations of the 
Coulomb resonances are only observed within the marked regions. 
The evolution from the distinct pattern at dot = 2 in Fig. 4A toward 
filling factor 1 has been studied in detail in previous work (37) and 
is found here to behave in the same way. For a regime 1 > dot ≳ 0.75, 
the Coulomb resonances show no periodic modulations as seen in 
Fig. 4 (B and C). In the fractional quantum Hall regime, the Cou-
lomb resonances are modulated around filling factor dot ≳ 2/3 and 
1/2 > dot as shown in Fig. 4 (D, E, G, and H). The two regions 
are interrupted by a region around filling factor dot = 1/2 where no 
modulations are observed (see Fig. 4F).

Conclusion
In conclusion, we have studied the magneto-conductance of a 
1.4-m-wide QD in the fractional quantum Hall regime for filling 
factors  < 1. Around dot ≳ 2/3 and 1/2 > dot > 1/3, we observe 
periodic modulations of Coulomb resonances as a function of 
magnetic field. Assuming two compressible regions separated by an 
incompressible stripe at in = 2/3 and in = 1/3, respectively, we have 
successfully used an electrostatic model to describe the phase dia-
gram as a function of magnetic field and PG voltage. We extract the 
charge density distribution of the QD at zero magnetic field. By 
comparing our measurements in the fractional regime with mea-
surements at dot ≈ 2, we find fractional Coulomb blockade be-
tween the compressible regions in the QD with quasi-particle 
tunneling of fractional charge e*/e = 0.32 ± 0.03 and e*/e = 0.35 ± 
0.05 for the two fractional regimes, respectively. QDs and quantum 
Hall Fabry-Pérot interferometers have been shown to be closely re-
lated in the integer quantum Hall regime (33–37). We have demon-
strated experimentally that this relation persists in the fractional 
regime. Groundbreaking recent experiments have detected anyonic 

phase jumps in a Fabry-Pérot interferometer at fractional filling 1/3 
(29), and fractional anyonic statistics were observed in anyon collision 
experiments (28). While interferometry experiments in the frac-
tional quantum Hall regime have been shown to be very intricate 
and sensitive (1, 12, 18, 27, 29), fully Coulomb blockaded devic-
es may provide an alternative experimental approach. Our obser-
vations complement and extend interferometry experiments of 
fractional quantum Hall states.

MATERIALS AND METHODS
Sample fabrication
The sample is fabricated using standard semiconductor fabrication 
techniques. We use a wafer that is overgrown with a standard mod-
ulation doped single interface AlGaAs/GaAs heterostructure by the 
Wegscheider group. The interface where the 2DEG accumulates lies 
130 nm below the surface. The Si -doping layer lies 60 nm below 
the surface with a spacer of 70 nm to the 2DEG. A patterned back 
gate is added before overgrowth in an established process detailed 
in (51) and lies roughly 1 m below the 2DEG. The mesa is pat-
terned using optical lithography and wet etched with diluted Piranha 
acid (H2O:H2O2:H2SO4, 100:3:3) with an etching depth slightly 
deeper than the 2DEG. Ohmic contacts are patterned using optical 
lithography. Using electron beam evaporation, we deposit a eutectic 
mixture of Ge/Au/Ni onto the sample and anneal at 500°C for 300 s 
[in 200 sccm H2/N2 (5%) flow] after liftoff. Then, we pattern the 
bond pads and large gate leads with optical lithography and evapo-
rate a Ti/Au (10 nm/80 nm) layer. The small gate structures that 
form the QD are patterned using electron beam lithography. The 
gates are then deposited by electron beam evaporation of Ti/Au 
(5 nm/25 nm). We check the gate structure with atomic force micros-
copy lithography (see Fig. 1A).

Measurement techniques
The sample is cooled down in a wet dilution refrigerator at a base 
temperature T = 30 mK. All lines connected to the sample are fil-
tered with a cold lowpass RC filter (R = 10 k, C = 1 nF, fcutoff ≈ 
15 kHz or R = 1 k, C = 100 pF, fcutoff ≈ 1.5 MHz) at the cold finger. 
The current ISD through the sample is measured by applying a voltage 
bias VSD over an current to voltage converter to the sample contact 
and measuring the resulting voltage over the reference resistance. The 
conductance is calculated as the ratio Gdot = ISD/VSD. The IV con-
verter is temperature stabilized, and offset voltages are corrected for.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/19/eabf5547/DC1
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