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Chinese hamster ovary (CHO) cell culture has a major importance on the production

of biopharmaceuticals, including recombinant therapeutic proteins such as monoclonal

antibodies (MAb). Mathematical modeling of biological systems can successfully assess

metabolism complexity while providing logical and systematic methods for relevant

genetic target and culture parameter identification toward cell growth and productivity

improvements. Most modeling approaches on CHO cells have been performed under

stationary constraints, and only a few dynamic models have been presented on simplified

reaction sets, due to substantial overparameterization problems. The hybrid cybernetic

modeling (HCM) approach has been recently used to describe the dynamic behavior

by incorporating regulation between different metabolic states by elementary mode

participation control, with sets of equations evaluated by objective functions. However,

as metabolic networks evaluated are constructed toward a genomic scale, and cell

compartmentalization is considered, identification of the active set becomesmore difficult

as EM number exponentially grows. Thus, the development of robust approaches for EM

active set selection and analysis with smaller computational requirements is required to

impulse the use of cybernetic modeling on larger up to genome-scale networks. In this

report, a novel elementarymode selection strategy, based on a polar representation of the

convex solution space is presented and coupled to a cybernetic approach to model the

dynamic physiologic and metabolic behavior of CHO-S cell cultures. The proposed Polar

Space Yield Analysis (PSYA) was compared to other reported elementary mode selection

approaches derived from Common Metabolic Objective Analysis (CMOA) used in Flux

Balance Analysis (FBA), Yield Space Analysis (YSA), and Lumped Yield Space Analysis

(LYSA). For this purpose, exponential growth phase dynamic metabolic models were

calculated using kinetic rate equations based on previously modeled growth parameters.

Finally, complete culture dynamic metabolic flux models were constructed using the HCM

approach with selected elementary mode sets. The yield space elementary mode- and
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the polar space elementary mode- hybrid cybernetic models presented the best fits

and performances. Also, a flux reaction perturbation prediction approach based on the

polar yield solution space resulted useful for metabolic network flux distribution capability

analysis and identification of potential genetic modifications targets.

Keywords: elementary mode analysis, dynamic modeling, cybernetic modeling, CHO metabolism, metabolic

engineering

1. INTRODUCTION

Mammalian cell culture has significant importance on the
production of biopharmaceuticals, including recombinant
therapeutic proteins such as monoclonal antibodies (MAb)
(Ahn and Antoniewicz, 2011; Meshram et al., 2011; Nolan and
Lee, 2012; Rodrigues et al., 2012). Almost 70% of MAb for
diagnostic and therapeutic applications are obtained from large
scale mammalian cell cultures (Naderi et al., 2010). Furthermore,
most of all recombinant therapeutic proteins are produced
on mammalian cell cultures, and their global sales accounted
for between $5 and 14 billion each by 2015 (Nolan and Lee,
2011; Jozala et al., 2016). Within mammalian cell lines, Chinese
hamster ovary (CHO) cells have been the standard industrial
host due to their well-known gene transfection, amplification,
and clone selection technologies (Ahn and Antoniewicz, 2011;
Nolan and Lee, 2011; Rodrigues et al., 2012). More so, CHO
cell lines have shown to be stable, scalable, high-yield protein
expression platforms with proper post-translational processing
capabilities for several therapeutic applications (Nolan and Lee,
2011; Rodrigues et al., 2012; Kildegaard et al., 2013). However,
productivity optimization is challenging, due to the intricate
cellular machinery, compartmentalized metabolism and complex
regulation and interconnection between multiple biological and
media components that determine not only product quantity,
but also quality (Palomares et al., 2004; Serrato et al., 2007;
Hagrot et al., 2015). Systematic screening and derived statistical
information have been useful, but often do not offer any insight
on cell metabolism and regulation, making the exploration of
multiple process and genetic modification targets difficult to
assess and perform (Nolan and Lee, 2012; Hagrot et al., 2015).

Mathematical modeling of biological systems has been
successfully used for assessing the metabolism complexity of
many organisms while providing logical and systematic methods
for growth and product enhancement (Haag et al., 2004; Naderi
et al., 2010; Nolan and Lee, 2011, 2012; Ghorbaniaghdam et al.,
2014). On the past two decades, many different models have been
introduced for CHO cell lines to study growth (Naderi et al.,
2010; Zamorano et al., 2010, 2013; Ahn and Antoniewicz, 2011;
Meshram et al., 2011; Nicolae et al., 2015), media composition
(Ahn and Antoniewicz, 2011; Nolan and Lee, 2011; Hagrot

Abbreviations: EM, Elementary Mode(s); EMA, EM Analysis; CMOA, Common

Metabolic Objective Analysis; PSYA, Polar Space Yield Analysis; LPSYA, Lumped

Polar Space Yield Analysis; YSA, Yield Space Analysis; LYSA, Lumped Yield

Space Analysis; MOMA, Minimization Of Metabolic Adjustment; EMPA, EM

Perturbation Analysis; SSE, Sum of the Square Error; MAPE, Mean Absolute

Percentage Error; PE, Prediction Error; MPPE, Mean Prediction Percentage Error;

HCM, Hybrid Cybernetic Modeling.

et al., 2015; Nicolae et al., 2015), culture parameters (Nolan
and Lee, 2011; Martínez et al., 2015), determination of key
metabolites for by-product accumulations (Nolan and Lee, 2012;
Martínez et al., 2015), and amino acid metabolism (Zamorano
et al., 2010, 2013; Ahn and Antoniewicz, 2011; Hagrot et al.,
2015; Rejc et al., 2017). Within them, the most used modeling
approaches, are metabolic flux analysis (MFA) and Flux Balance
Analysis (FBA), which are based on pseudo-steady state mass flux
balances (Nolan and Lee, 2011). These approaches can provide a
reliable snapshot in time for the distribution of internal fluxes
on specific conditions (Nolan and Lee, 2011; Ghorbaniaghdam
et al., 2014). Nevertheless, it is seldom when steady states are
prevalent on biological processes, especially in mammalian cell
cultures, where a constant dynamic response to medium changes,
concentrations between compartments, and other perturbations
are observed and sometimes relied on for biotechnological
production purposes (Nolan and Lee, 2012). This characteristic
stresses the need to design and construct dynamic approaches
to better assess changes in metabolism (Nolan and Lee, 2012;
Ghorbaniaghdam et al., 2014).

Up to this day, few dynamic metabolic models have been
published for CHO cells with approaches such asmechanistic and
hybrid models. Mechanistic models define algebraic expressions
for the reaction rates as a function of metabolite concentrations
but are often difficult to perform, as they generally rely on
the estimation of a large number of kinetic parameters, and
therefore usually limited to a small number of reactions (Nolan
and Lee, 2012; Hagrot et al., 2015). On the other hand, hybrid
models establish different culture stages and calculate the average
flux on each step, along with MFA. These models are used to
address changes in the metabolic conditions along a culture but
often present difficulties for revealing the temporal evolution
of individual fluxes providing little information about their
regulation (Martínez et al., 2015). Regarding this last-mentioned
limitation, the dynamic cybernetic modeling approach has been
developed, by Ramkrishna and collaborators, to address dynamic
changes even with suboptimal information of the mechanistic
regulatory details (Kompala et al., 1986; Varner and Ramkrishna,
1999; Ramkrishna and Song, 2012; Song and Ramkrishna, 2012).

Cybernetic modeling (CM) introduces regulation using two
dynamic vector variables, which modify the participation of
minimal and unique reaction flux subsets, or elementary
modes (EM), obtained from the stoichiometric matrix analysis.
These cybernetic variables are regulated by objective functions
evaluated with sets of matching law equations. This approach
has been proved useful to describe dynamic metabolic state
fluxes and regulation even with little information on the
mechanistic particularities, allowing reasonable dynamic flux
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distribution modeling (Song and Ramkrishna, 2010; Ramkrishna
and Song, 2012). The hybrid cybernetic approach relies on
the selection of a small and feasible subset of active EM that
can describe the experimental observations. Therefore, a most
critical limitation arises as metabolic networks evaluated are
constructed toward a genome-scale, making identification of
the active set more difficult and computationally intensive as
EM number exponentially grows (Song and Ramkrishna, 2010).
On that regard, Song and Ramkrishna have developed EM
analysis and selection strategies based on transforming the EM
information from the flux solution space to a yield solution space
and performing linear programming and integer programming
solution calculations to select a subset of active EM or a lumped
vector with all the known experimental yield data (Song and
Ramkrishna, 2009, 2010, 2012; Ramkrishna and Song, 2012).
With these approaches, they have been able to successfully
model themetabolism ofmultiple organisms withmore extensive
networks but still far from genome-scale. Thus, the development
of new robust approaches for EM active set selection and analysis
with smaller computational requirements could impulse the
possibility of using of cybernetic modeling toward genome-scale
networks. The work presented herein pretends to contribute to
reduce computational requirements of EM selection analyses and
to extend on predictive capabilities with EM Analysis (EMA) for
dynamic cybernetic modeling.

In this report, a novel EMA and selection approach is
proposed, evaluated, and coupled with hybrid cybernetic models
to describe a CHO-S cell line metabolic and phenotype behavior
during a batch process fermentation. The presented approach
relies on a variable description transformation from the Cartesian
convex solution space (flux or yield) to an angular space or
polar description, to determine a reduced and feasible EM active
set. This novel PSYA was compared to other EMA approaches
derived from optimization around CMOA often used in FBA
(Schuetz et al., 2007), Yield Space Analysis (YSA), and Lumped
Yield Space Analysis (LYSA) (Song and Ramkrishna, 2009,
2012; Ramkrishna and Song, 2012). Kinetic dynamic models
were initially calculated for comparison during the exponential
growth phase using rate equations derived from descriptive
physiological models. Whole bioprocess dynamic models were
then built using selected EM and the hybrid cybernetic modeling
(HCM) approach. The PSYA- and YSA- HCM approaches were
found to have the best performance regarding experimental data
fitting and CHO-S cell metabolic characteristics. Also, a reaction
flux perturbation prediction approach based on the PSYA is
proposed. Such EM Perturbation Analysis (EMPA) was useful for
modified reaction flux distribution analysis and the identification
of potential genetic targets.

2. MATERIALS AND METHODS

2.1. Strains and Cultures
An Invitrogen aneuploid CHO-S R© cell line was used to obtain
the experimental data for modeling. Cultures were performed by
triplicate on 25 mL shake-flasks incubated at 130 rpm at 37◦C.
Cultures were inoculated to start at 1 × 106 cells/mL on CD
FortiCHO (Gibco) media containing 28 mM glucose (GLC) and

supplemented with 8 mM glutamine (GLN). Cultures were kept
for 144 h and samples were taken every 24 h. Samples were
analyzed for viable (Xv) and dead (Xd) cell concentrations by
cell counting with the trypan blue exclusion. Major dissolved
components, GLC, lactic acid (LAC), GLN, and glutamic acid
(GLU), were determined on culture supernatant, with a YSI
2950D biochemical analyzer equipped with specific membranes
for each compound. Specific growth, uptake and production rates
approximations were obtained by linear regressions during mid-
exponential growth phase and mid stationary/cell-death phase
and used as initial values for model parameter determination.
Biomass units were transformed from cells/mL to mM with a
conversion established by Nolan and Lee (2011).

2.2. Physiological Model Construction and
Analysis
Models were constructed with differential mass balance equation
sets for culture macroscopic characterization. Total biomass (X)
was set to be the sum of viable (Xv) and dead (Xd) biomass
and described by a classical logistic growth equation (Equation
1). Xd was described by Equation (2). Finally, Xv was obtained
by the difference between both previously described equations,
such that:

dX

dt
=

dXv

dt
+

dXd

dt
= µmaxX

(

1−
X

Xmax

)

(1)

dXd

dt
= kdXd (2)

⇒
dXv

dt
=

dX

dt
−

dXd

dt
= µmaxX

(

1−
X

Xmax

)

− kdXd (3)

where µmax is the maximum biomass growth rate, Xmax is
the maximum total biomass and kd is the maximum biomass
death rate. For the major dissolved components on media
(substrates or products) models were constructed starting from
the following simple differential equation for any external
metabolite (Mi) concentration:

dMi

dt
= qiXv (4)

where qi refers to its specific rate of consumption/production.
To better describe the behavior during cell growth, viable cells
can be segregated into two states: a growth metabolic state and
a stationary metabolic state (before cell death). Therefore, the
two populations with different metabolic characteristics can be
described as:

Xv = Xe
v + Xs

v (5)

whereXe
v is related to the viable growing cells andX

s
v, to the viable

cells in a stationary state. These different populations can then be
expressed with respect to the total Xv as:

Xe
v = Xv9

e ; dXs
v = Xv9

s (6)
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where 9e and 9s represent fractional allocations of cells on the
different stages, such that 9e + 9s = 1 (Martinez et al., 2018).
This fractional allocation can be dynamically represented using
the changing ratio between X and Xmax during the different
culture phases:

9e =

(

1−
X

Xmax

)

(7)

9s =

(

X

Xmax

)

(8)

Substitution of Equations (6) to (8) into Equation (4) allows the
expression the external metabolite differential equations as:

dMi

dt
= qeiXv9

e + qsiXv9
s = qeiXv

(

1−
X

Xmax

)

+ qsiXv

(

X

Xmax

)

(9)

Finally, the specific rates qi for each phase can be defined
as Michaelis–Menten equations sets with maximum specific
rates and saturation constants for each Mi regarding the key
metabolite(s) consumed for its production/consumption. As
this equation is difficult to resolve analytically, a numeric
approximation for the differential can then be proposed.
Therefore, the extended model equations for the CHO-S
external metabolites production/consumption constructed for
the metabolites measured on this report were:

GLC(t) = GLC(t−1t) + qeg

(

[GLC](t−1t)

Kg + [GLC](t−1t)

)

Xv(t)9
e
t 1t

+ qsg

(

[GLC](t−1t)

Kg + [GLC](t−1t)

)

Xv(t)9
s
t1t (10)

GLN(t) = GLN(t−1t) + qen

(

[GLN](t−1t)

Kn + [GLN](t−1t)

)

Xv(t)9
e
t 1t

+ qsn

(

[GLN](t−1t)

Kg + [GLN](t−1t)

)

Xv(t)9
s
t1t (11)

LAC(t) = LAC(t−1t) + qel

(

[GLC](t−1t)

Kg + [GLC](t−1t)

)

Xv(t)9
e
t 1t

+ qsl

(

[LAC](t−1t)

Kl + [LAC](t−1t)

)

Xv(t)9
s
t1t (12)

GLU(t) = GLU(t−1t) + qeu

(

[GLN](t−1t)

Kn + [GLN](t−1t)

)

Xv(t)9
e
t 1t

+ qsu

(

[GLN](t−1t)

Kn + [GLN](t−1t)

)

Xv(t)9
s
t1t (13)

where sub-indexes g, n, l, u, and h refer to GLC, GLN, LAC,
and GLU, respectively. The q parameters refer to the maximum
specific production/consumption rates and are specific for
exponential (e) or stationary (s) phases. The K parameters
refer to the Michaelis–Menten saturation constants for each
key metabolite. Note that the Michaelis–Menten sections of the
presented model can be extended for many key metabolites, but
on this report only the main contributions (GLC, GLN, and
LAC) were selected in order to reduce the number of parameters.

Equations (10) to (13) were numerically integrated with 1t =

0.1h, which is at least three orders of magnitude below from those
where sensible changes on growth and metabolite concentration
occur. Production and consumption rates were approximated by
Sum of the Square Error (SSE) against experimental data. Models
constructed were evaluated by the Mean Absolute Percentage
Error (MAPE), the Prediction Error (PE), and a Mean Prediction
Percentage Error (MPPE) calculations (Zhao and Kurata, 2010;
Kim and Kim, 2016; Martinez et al., 2018), as follows:

SSE =

n
∑

1

(e−m)2 (14)

PE =

(

SSE

n

)1/2

(15)

MAPE =
100

n

n
∑

1

|
e−m

e
| (16)

MPPE =

(

SSE

(
∑n

1 e
2)n

)1/2

(17)

where e andm refer to the experimental and modeled data points
respectively, and n is the number of data points.

2.3. Metabolic Models Construction and
Analysis
2.3.1. Metabolic Network Construction
A metabolic network was constructed from Nolan and Lee
(2011), Ahn and Antoniewicz (2011), Zamorano et al. (2010),
Nicolae et al. (2015), and Robitaille et al. (2015) networks. The
metabolic network was integrated by adding the reactions listed
by the cited authors, repeated entries were eliminated, and some
reactions were combined. The resulting network comprised 89
reactions with 25 extracellular metabolites and 62 intracellular
metabolites and is presented on Supplementary Material 1.
Mitochondrial compartmentalization was performed by
separating metabolite pools dependent on mitochondrial
transport reactions. The metabolic network considered
glycolysis, pentose phosphate pathway, tricarboxylic acid
cycle, amino acid metabolism, DNA, RNA and protein
synthesis, mitochondrial transport, biomass formation, and
energetic metabolism reactions. Figure 1 presents a simplified
representation of the reaction network used on this work,
reaction, and metabolites names will be used as shown
forward on, and their complete description can be found
on Supplementary Material 1. A stoichiometric matrix was
constructed and then expanded to a series of EM computed with
the efmtool protocol tool (Terzer and Stelling, 2008) embedded
in MATLAB.

2.3.2. Elementary Mode Analysis and Selection
For the dynamic modeling of cell line metabolism, a novel
approach for EMA and selection was constructed in this work.
This approach consisted on reconstructing the convex solution
space from a Cartesian description, where fluxes or yields are
described by vertexes positions, to a Polar representation, where
angles and modules describe their magnitude and proportion.
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FIGURE 1 | Reaction network used for stoichiometric matrix construction for metabolic modeling.

This reconstruction allows to redistribute the convex solution
space and characterize its structure from another perspective,
where subsets of consecutive angles and modules represent a

pathway across the polytope, compressing network information.
For a better description of the approach, it can be stated that
every EM on the convex hull can be described by its position
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on the convex space as a vector consisting on the yields for each
coordinate as:

EMi = [Y i
1,Y

i
2,Y

i
3, ...,Y

i
n−1,Y

i
n] (18)

where Yn represents the yield of the nth reaction of the network
within the ith EM. However, yield convex solution space hull
information can also be described as a module for each EM
(λi) and angles θi describing its directions across the polytope,
as follows:

λi = (Y2
1 + Y2

2 + Y2
3 + ...+ Y2

n−1 + Y2
n)

1/2 (19)

θi = cos−1











(
j

∑

1
Y2
j )

1/2

(
j−1
∑

1
Y2
k
)1/2











; 2 < j ≤ n (20)

where j is the number of reactions yields that are being addressed
for a θ angle, up to the total nth reaction. Therefore, the convex
solution hull can be transformed from a Cartesian convex hull
space to multiple Polar convex spaces depending on different
θi subsets, derived from different yield compositions and orders
used for calculations. Each subset of angles does not only reflect
the information about yields, but their ordered relationship and
ratio. As a result, a set of calculated angles can be thought of as a
pathway description through the n-dimensional polytope of the
solution space.

The modules and angles from any set can then be conformed
into two vectors that define the polar convex hull description
3 and 2. From which also a parallel subset can be calculated
containing only the known reaction yields, such that:

3 = [λ1, λ2..., λn] ‖ 3ǫ = [λǫ
1, λ

ǫ
2..., λ

ǫ
n] (21)

2 = [θ1, θ2, ..., θn−1] ‖ 2ǫ = [θ ǫ
1 , θ

ǫ
2 , ..., θ

ǫ
n−1] (22)

where super-index ǫ refers to the vectors calculated using only
the EM values for reactions with known experimental yield data.
Experimental yields can also be located on the solution space with
similar vectors, 8 for the angle information and Ŵ as the scalar
module. This allows an easy comparison of all EM, where at least
one can be selected by finding the minimum difference with the
experimental data, given by:

ϒ3 =

[

3ǫ − Ŵ

Ŵ

]2

(23)

ϒ2
(1..n) =

[

(2ǫ − 8) ·
1

8

]2

(24)

min[ϒ] = min[ϒ3 + ϒ2] (25)

If ϒ for the selected EM equals 0, then a single EMι can be
used to describe the metabolic behavior. However, this happens
seldom, so a minimal active set should be constructed around
the experimental data. The next EM are selected consecutively
by maximizing the distance to the middle point between the

previously selected EM while minimizing the distance to the
experimental data point. This procedure allows the construction
of a polyhedral structure composed of the minimal set of EMact

containing the polar space experimental data point. Also, this
EMact can be lumped by a linear combination of the selected
EM. The algorithmic implementation diagram of the presented
approach can be found in Supplementary Material 1.

It’s essential to notice that multiple 2, 2ǫ , and 8 sets can be
calculated as stated before, as different starting angle calculation
orders can be performed, each one describing a particular
path inside the polytope toward the point it is describing, and
therefore, representing different information about yield ratios
between different reactions. This arises a particularly interesting
property of the solution space: if all permutations constructing
all the 3ǫ sets for a particular EM or destination 8, given
they are parallel (meaning being calculated in the same yield
order), gives the same results for the closest selected EM, then
the solution space may be orthogonal for all its coordinates.
However, if the results are different, the solution space must
be a non-Euclidean space. In fact, for the data presented on
this work, various permutations were performed, and slightly
different solutions were found (different closest EMι to 8, but
within the same fist≈15 closest EM in different orders). However,
extended experiments and calculations to this possible conjecture
will be presented elsewhere, as it is not in the scope of this
report. In this work, yields used for calculation vector definitions
were Yg/x, Yn/x, Yl/x, and Yu/x, and used in that order as
chosen by the following ordering rules: (1) substrates before
products, (2) higher consumption/production participation. This
definition allowed to select a minimal set of EM with PSYA
and Lumped Elementary Mode Analysis (LPSYA) to describe the
metabolic behavior.

2.3.3. Elementary Mode Analysis Validation and

Comparison
To analyze and compare PSYA and LPSYA approaches, different
EM selection approaches were also used for the construction
of dynamic exponential growth metabolic models. An EMA
selection approach was derived from theminimization analysis of
metabolic objectives (CMOA) commonly used in FBA (Schuetz
et al., 2007). The used metabolic objectives were max biomass
yield over GLC, max biomass yield over GLN, max ATP yield
over GLC, max ATP yield over GLN, max ATP yield over
flux unit, max biomass over flux unit, max GLC consumption
over biomass, max GLN consumption over biomass, max
ATP yield over reaction step, minimum reaction steps, and
minimum flux units. Also, YSA and LYSA, as developed by
Song and Ramkrishna (2009), were used for EMA comparison.
All different EMA methods were used on EM sets calculated
from the metabolic network reduced by 4, 6, and 8 constraints.
These constraints were constructed either from experimental
observations or known CHO metabolism and were: (1) v87 >

0 (biomass production), (2) v12 > 0 (GLN consumption), (3) v2r
> 0 (LAC production), (4) v7r > 0 (GLU production), (5) 39 > 0
(Pyruvate mitochondrial transport), (6) v53r> 0 (TCA cycle), (7)
v41> 0 (GLNmitochondrial transport), (8) v30> 0 (PEP to PYR
cytosol conversion). They are expressed as on the stoichiometric
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matrix (Supplementary Material 1), in the most biological sense
or prevailing direction (e.g., GLC ext→ GLC cytosol), where the
sign referrers to the reaction direction (forward or reverse). The
three subsets presented sequentially smaller sizes and were used
to analyze the EMA selection methods for computational time
requirements and dynamic modeling accuracy.

The selected EM from all EMA approaches were used then
to render metabolite consumption/productions profiles with the
use of the physiological model of biomass growth described
previously, where 1[X] were calculated for each 1t of 0.1 h,
as follows:

1Mi =

[

Zi

ZX

]

1X (26)

where Zi refers to the stoichiometric flux index for the ith

metabolite, and ZX refers to the stoichiometric flux index for
the biomass on the EM flux vector. This equation allowed to
obtain dynamic profiles for the metabolic outputs and internal
fluxes within the first 48 h of fermentation (the first section of the
exponential growth phase). The dynamic exponential metabolic
models constructed were evaluated for their experimental data
approximation performance by SSE, PE, MAPE, and MPPE
and their CPU usage times. All calculations were performed
on MATLAB with a Lenovo, Intel Core i7, 2.5 GHz computer
with 16.0 GB RAM, and Windows 10 running only the
operative system andMATLAB. CPU usage times were calculated
considering only the EMA sections without network loading, any
plotting, displaying or other processing, and normalized against
EM mode number for each constrained system.

2.3.4. Cybernetic Modeling of CHO-S Metabolic

Behavior
HCM approach was used for the final dynamic characterization
of the metabolic behavior of CHO-S cells during the complete
culture coupled to YSA, LYSA, PSYA, and LPSYA. Mathematical
description of the cybernetic approach can be found on
Ramkrishna et al. reports (Kompala et al., 1986; Varner and
Ramkrishna, 1999; Ramkrishna and Song, 2012; Song and
Ramkrishna, 2012). Briefly, this approach states that each EM can
be simplified as the consumption of one or more substrates (Si)
catalyzed by a critical enzyme (Ei) to produce biomass and other
products. Recursively, Ei synthesis is upregulated by the presence
of its specific substrate Si. Therefore, it can be written :

Si + X
Ei
−→ (1+ Yx/s)X + ... (27)

Si + X
Si
−→ X′ + Ei + ... (28)

Where X′ represents the biomass excluding the critical enzyme
Ei. These two reactions can be described kinetically byMichaelis–
Menten equations, which are commonly used to describe
enzymatic catalysis, as stated below:

ri =
kieisiX

Ki + si
(29)

rEi =
αsiX

K ′
i + si

(30)

By introducing growth, dilution and enzymatic decay, the rate to
the kinetic description can be described as:

dei

dt
=

αisi

K ′
i + si

ui +
d

dt
(lnX)ei − βiei (31)

where αi and βi are the production and decay constants of the
enzyme and have been calculated for various microorganisms
and cell lines (Kompala et al., 1986; Ramkrishna and Song, 2012).
ei is the specific concentration of the enzyme ei such that eiX is the
total concentration of this enzyme. α is the maximum synthesis
rate for this enzyme and kiei substitutes the maximum flux
rate of the classic Michaelis–Menten equation. Then, cybernetic
modeling solves the difficulty of calculating ei, by the assumption
that the maximum rate is defined by the maximum quantity of
enzyme that can be present in the biomass. Therefore:

kmax
i = kie

max
i (32)

emax
i =

αi

kmax
i + βi

(33)

within these equations, it can be deduced that the enzyme
concentration value can be substituted by a relative enzyme value
respective to the maximum enzyme concentration given that:

kiei = kmax
i =

[

ei

emax
i

]

(34)

Finally, the cybernetic modeling introduces the regulation
of the inhibition/activation of enzyme expression and
repression/induction of enzyme activity by the introduction
of the variables υ y ν which regulate enzyme synthesis rEi and
activity ri along the model. This is made such that:

dEi

dt
= rEiυi (0 < υi < 1 ;

∑

i

υi = 1) (35)

dMi

dt
=

∑

riνi (0 ≤ νi ≤ 1) (36)

The cybernetic variables υ and ν are calculated with the use
of matching law equations constructed for specific metabolic
objectives such as growth, carbon consumption, oxygen
consumption or others. In this way the cybernetic variables can
compare the “returns” of each EM and regulate its participation
onmetabolism across time. The equations used for the cybernetic
variables are the following:

υi =
Ri

∑

j Rj
(37)

νi =
Ri

maxj(Rj)
(38)

where Ri represents the return of each alternative EM calculated
from the metabolic objective. In this way, dynamic flux
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distribution can be calculated to describe metabolic and
physiologic behavior and characteristics given by a metabolic
network (Kompala et al., 1986; Varner and Ramkrishna, 1999;
Ramkrishna and Song, 2012, 2016).

In this work, each cybernetic approach was implemented
using two EM selected families constructed by YSA, LYSA, PSYA,
and LPSYA performed with yields calculated at the start of the
culture (first family, GLC preferential consumption) and time of
maximum LAC consumption rate (second family). Cybernetic
modeling was then performed as reported by Ramkrishna et al.
(Kompala et al., 1986; Varner and Ramkrishna, 1999; Ramkrishna
and Song, 2012). The initial relative enzyme concentration
ratio was set to 0.9 for the first EM and 0.1 for the EM of
the second family. Carbon consumption was selected as the
metabolic objective and calculated for each EM for all consumed
metabolites. All other cybernetic model parameters for enzyme
production and decay rates were set, as described by Ramkrishna
et al. (Kompala et al., 1986; Song and Ramkrishna, 2009, 2012;
Ramkrishna and Song, 2012). Dynamic model rates for each EM
(rι) selected were described with rate equations similar to the
physiological model.

rι = kι

(

[M]ι

Kι + [M]ι

)

(39)

where Mι refers to the preferential metabolite consumed for
each family (GLC, LAC), kι refers to the maximum consumption
rate on each fermentation process section. Kι refers to the
saturation constant for each selected EM. Flux rate equation
parameters were approximated to experimental data using a
genetic algorithm programmed by Martinez et al. (2018). Briefly,
the MATLAB algorithm started with assigning kι and Kι initial
values of 1 and 10, respectively, for every EM. Then, by
perturbation of one parameter at a time by a random numeric
factor, new parameter sets were obtained. Subsequently, the
sets were used for 200 step SSE driven non-linear numeric
minimization algorithms to generate new daughter kι and Kι

parameter model sets. From these daughter models, the set with
the lowest SSE was extracted and crossed with the second-lowest
SSE set by acquiring the value of its perturbed parameter (kι

or Kι). This inter-crossed set passed onto the next generation,
where another round of individual parameter perturbation was
made. The algorithm was cycled until either a constant SSE was
obtained or more than ten cycles were performed without finding
a smaller SSE value. Finally, these parameters were subjected to
a final SSE non-linear numeric minimization to model the flux
rates of each EM and the final metabolic dynamic flux model for
each fermentation.

2.4. Polar Space Analysis Predictors for
Genetic Modification and Metabolic
Engineering of CHO Cells
The most difficult assessment for metabolic models constructed
around EM selection by experimental data, is their prediction
capabilities, specifically regarding genetic modifications. This
difficulty arises from the fact that no metabolic objective was
used for the selection of the principal EM used on the metabolic

network. This characteristic makes the straightforward selection
of a new EM with reaction perturbations (downregulation,
upregulation, knockouts, and more) difficult. In this work, an
approach to generate new EM active sets with modified reactions
was constructed with the use of the previously described polar
solution space. This approach is based on the assumption that
cells have redundant and highly regulated metabolic reactions,
which translate to the minimal metabolic modification possible
but efficient enough to adjust to new conditions, either abiotic
or biotic, as used on the Minimization Of Metabolic Adjustment
(MOMA) approach (Segrè et al., 2002; Shlomi et al., 2005).
With this assumption, it is possible to start on the modeled and
validated EMι and select a path of new EM, which has, at the
same time, the closest distance to it andminimize or maximize an
individual θy. This path can be calculated on an iterative process
replacing EMι by the new EM determined up until a certain

arbitrary or set parameter such as θ
y

f
=

θ
y
ι

2 or until reaction

knock out which means θ
y

f
= 0. The latter can be achieved

by calculation of distances between all EMi=ι+1...n and EMι, and
finding the next EM by:

EMι′ = EM(min[�
θi−θι

i ]|n(i=ι+1)) ∀ θi < θι (40)

where� is the subset of8 containing only the remaining EM and
ι′ refers to the newly selected EM to replace the ι one. This allows
to establish a modification path toward a reaction objective set
as the prediction query experiment. Changes in the selection of
θ
y

f
parameter would not change the path of the solution in any

way, but only on the number of EM selected derived from the
desired extent of the analysis. On the proof of concept presented
on this work, the maximization of v39 : PYR[c] ⇒ PYR[m] up to
a ten-time increase was used as the query.

3. RESULTS

3.1. Physiologic Model Construction and
Analysis
In Figure 2, the model results along with the experimental
data sets are presented. All models followed the experimental
behavior in good agreement. All experimental points fall into
the PE confidence bounds calculated except for the maximum
Xv data point. This late fermentation error increases on biomass
calculations are the result of the interaction with the simplified
first-order mathematical description of cell death, which results
in an overestimation on the Xd. This modeling simplification
was made to describe cell death as the best possible way
without introducing non-biomass terms to the death rate
equation, complicating further model calculations. However,
the simplification allows for the main dissolved metabolites to
be modeled in fair agreement to the experimental behavior
avoiding the construction of inseparable partial differential
equation systems. As can be observed in Figure 2, GLC, GLN,
LAC, and GLU model and error bounds calculated comprise all
experimental data points. The accuracy and error evaluation is
presented in Figure 3. In these figures, Xv presents the highest
SSE and, therefore, the highest PE of all models with values of
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FIGURE 2 | Physiological modeling results compared to experimental data. biomass models with Equations (1) (X ), 3 (Xv ) and 2 (Xd ). Models for GLC (Equation 10),

GLN (Equation 11), LAC (Equation 12), and GLU (Equation 13). Red dashed lines are the confidence curves for each model.

83.8 mM2 and 3.46mM, respectively. Comparison of these values
between all metabolites is difficult as they are not normalized
values. Therefore, MAPE was calculated as it is one of the most
utilized parameters used for measuringmodel accuracy (Kim and
Kim, 2016). MAPE calculation produced errors below 20 % for

all metabolites except for GLN, presenting a percentage up to
21.7 %. This parameter would suggest a relatively low model
accuracy contrasting with the observed behaviors in Figure 3.
Therefore, MPPE calculations were obtained and presented
values between 10% and 5% for all models, having a similar
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FIGURE 3 | SSE, Prediction error (PE), Mean Absolute Percentage Error (MAPE), and Mean Prediction Percentage Error (MPPE) calculated for biomass, GLC, GLN,

LAC, and GLU models.

behavior from MAPE in terms of model accuracy distribution
(Figure 3), but with more consistent values with the observations
of Figure 2, and without MAPE outlier percentage errors derive
from normalization calculations with lower that one values
(Kim and Kim, 2016). Therefore, MPPE was preferred as the
model accuracy value on this report as it presented a more
robust calculation on small values than MAPE, at least for these
experimental calculations with many data points having lower
than 1 value (Kim and Kim, 2016).

Result observations and error estimations suggested that all
models were able to describe, with acceptable accuracy, the
physiological behavior of the cultured CHO-S cells. Therefore,
all parameters derived and calculated from them can be used
as descriptors to characterize cell line behavior. Since models
were numerically integrated, approximate rate values were
calculated for the biomass and the main dissolved extracellular
metabolites at every 1t = 0.1, from the beginning up to 144
h of culture. These calculations allowed the approximation of
effective instantaneous specific rates and apparent biomass yields
(using the total biomass dynamic model values). The results for
the concentration, rates, specific rates, and yields against X for
Xv, GLC, GLN, LAC, and GLU are presented in Figure 4. In
this figure, different rate maxima can be observed for different
metabolites. The first process corresponds to the maximum LAC
production rate at 44.3 h, closely followed by the maximum GLN
consumption at 46.3 h of culture. Meanwhile, GLC maximum
consumption rate was obtained at 62.9 h and found to be in the
middle of the exponential growth phase. Yields were stable along
most of the exponential growth phase, as expected, apart from

LAC and GLN. This behavior indicates that a second metabolic
state is emerging at 44 h using LAC as the main substrate.
Finally, a non-growth consumption of remaining metabolites
occurred before cell death was observed starting at Xv rate equal
to zero (≈106 h), and having LAC consumption rate decreased to
approximately its half. This death process was nearly immediate
to substrate exhaustion and suggested high cell maintenance cost.
All parameters for specific rates and statistical data from equation
models can be found in Supplementary Material 2.

3.2. Metabolic Models Construction and
Analysis
3.2.1. Metabolic Network and Solution Space

Analysis
The metabolic network constructed (Figure 1), is a
simplified representation of the actual metabolic complexity
(Supplementary Material 1). Yet, stoichiometric matrix
calculations resulted in 18,110,823 EM. Expansion of network
even by the addition of one more reaction resulted in an
exponential growth of calculated EM incapable of being
computed by the MATLAB efmtool protocol tool (Terzer and
Stelling, 2008) and therefore further analyzed by the herein
used computational resources (exhaustion of the 16 RAM
capacity used in this work). However, calculations of more
extensive networks can be performed with this software on
larger computational setups (Terzer and Stelling, 2008). EM
can be understood as unique, indivisible metabolic reaction
compositions or states conforming the vertexes of a convex
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FIGURE 4 | Modeled results for Concentration, Rates, Specific rates, and Yields calculated by numeric approximation with 1t = 0.1.

solution space for metabolic behavior of the CHO-S cells. In this
work, the proposed EMA was used on the constructed network
reduced by 4, 6, and 8 sequential and simple constraint sets to
evaluate its selection capabilities. Constraints produced subsets
with 4,032,330, 153,574, and 7,855 EM for the exponential phase,
characterized by GLC and GLN consumption and biomass,
LAC, GLU production. The other identified apparent metabolic
state constraint composition and EM sizes can be found on
Supplementary Material 1.

Figure 5 shows the EM set of the 6-constraint system on
the convex yield solution space (Figures 5C,D) and the polar

yields solution space (Figures 5A,B). A gray dot represents
each calculated EM on these figures. The polar space allows
an expanded visualization of the different EM, whereas, on the
yield space, many of the EM are concentrated on a smaller area
(Figure 5). This characteristic may allow better discrimination
and selection of EM with specific traits. Furthermore, from
the top representation (Figure 5), it can be observed that
EM construct more explicit cluster structures or cluster-
paths, containing even EM with distant discrete angular
values. When these cluster-paths were studied, it was found
that they consist of EM with similar characteristics, such as
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FIGURE 5 | Polar Space reconstruction (A,B) and Yield space reconstruction (C,D) for EM found with the Reaction network analyzed with 6 simple constraints.

Solutions found for EM Analysis with CMOA, YSA, PSYA, and Lumped LYSA and LPSYA are presented on both reconstructed spaces.

changes in some specific set of reactions while maintaining
constant all the others. This observation means that they
could be described as reaction modification pathways across
the solution space and may be used for predictive reaction
perturbation analyses, as will be presented and discussed further
in this report.

In Figures 5A,B, θ1 refers to the angular calculation between
GLC and GLN biomass yields, which means that as angle
reaches 90◦ a higher ratio of GLN consumption is preferred
and in the limits of 0 degrees only GLC consumption is
preferred. θ2 represents the angular proportion for the yield
of LAC production and the distribution between GLC and
GLN consumption. Therefore, it shows the LAC production EM
possibilities from no LAC production at 0◦ to the maximum
output at 90◦. As it can be observed, there are EM with
high production of LAC on every θ1 substrate consumption
composition, but there are more EM which relate to LAC
production with GLC. More than 90 percent of EM found
with LAC higher than 20◦ have less than 45◦ on θ1, which
represents a higher GLC consumption reliance as expected.
Meanwhile, θ3 represents the proportion of GLU production
distribution to the ratio of LAC production over GLC and
GLN consumption. Therefore, with higher values of θ3, higher
distribution toward GLU production will be obtained. The
EM distribution shows that higher GLU production is possible
with higher GLN consumption proportion, as expected, but
a tendency of reduction of GLU production with higher

LAC production was also observed. Furthermore, at low
LAC production (lower than 20◦ on θ2), very few EM
are found.

Figure 5A reveals two different path sets, the most abundant
one curving on to higher production of LAC as GLC
consumption proportion rises and a less populated set (between
3 and 5 paths), that curve into lower LAC production
toward higher GLC proportion. The first most abundant
path set behavior was expected and readily reported in
the literature. However, the second set was less anticipated,
and its behavior may be against literature reports. When
these latter paths were analyzed, a high GLU production
with diminishing mitochondrial glutaminolysis metabolism
and with LAC production reduction was observed in all
EM. All of them present increasing transport from pyruvate
(PYR) into the mitochondria, increasing alpha-keto-glutarate
(AKG), and acetyl-CoenzymeA production and transport to the
mitochondria, the latter mainly from threonine and other amino
acid catabolism. These path set of EM, seem to reduce LAC
production while augmenting GLC consumption proportion
respective to GLN, and are characterized by a high carbon
transport toward the mitochondria with an activated first half of
the TCA up to AKG, transforming AKG to GLU and exporting it
out of the cell, even on high GLC consumption yields. However,
it is essential to note that this simplified example analysis
corresponds only to a single path arbitrarily selected and signaled
by the red arrow in Figure 5.
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FIGURE 6 | Dynamic model solution for the exponential growth phase according to Equation (26), for the best CMOA, YSA, LYSA, and LPSYA EM found during

analysis on different constrained systems.

3.2.2. Elementary Model Analysis and Selection for

Dynamic Modeling
Within the convex solution spaces, the experimental yield
position was calculated and located, as shown in Figure 5 by the
red filled circles. The PSYA selected EM active set is shown in
Figures 5A–D with filled purple circles. The selected EM were
able to form a polyhedron containing the experimental condition
data point, meaning that they may be able to describe it by a
linear combination (Figure 5). The other methodologies used for
EM selection are also presented, yellow filled circles for CMOA
and blue filled circles for the YSA as described by Song and
Ramkrishna (2009). The CMOA approach, based on metabolic
objective functionsminimization, presented the highest distances
toward the experimental data point, and no polyhedron could be
constructed containing the experimental data point (Figure 5B).
In contrast, YSA was also capable of building a polyhedron
containing within its volume the experimental behavior point.
Moreover, the LYSA approach achieved the smallest distance
to the experimental yields position on the solution space (blue
triangle in Figure 5). As a comparison to this approach, the
EM selected by the PSYA approach were also lumped into a
virtual EM (LPSYA), and its solution presented the second closest
distance to the experimental point (red triangle on Figure 5).

Dynamic metabolic profiles were calculated with Equation
(26) for the best EM selected by each EMA in each constrained
network, marked as a sub-index (Figure 6). It can be observed
that the profiles derived from the EM selected by the CMOA

approach do not follow the experimental behavior. The YSA
approach, along with LSYA and LPSYA performed much better
in these broad constraints limited systems (Figure 6). The
profile shown for YSA was calculated using all its selected EM
combined by the weights this approach uses for approximation
to the experimental yields as described by Song and Ramkrishna
(2009). The mayor deviations for these approaches were found
for the GLN profile where YSA and LYSA overestimated and
underestimated its consumption, respectively. LPSYA seems to be
the better performing approach, not only because their profiles
follow in better agreement the experimental data, but because
its dispersion across the differently constrained systems was
narrower than the YSA and LYSA approaches. This observation is
more evident on the GLC and the GLN profiles, suggesting that
the proposed PSYA approach selects very similar EM solutions
within all constrained systems and therefore performs more
robustly. On Figure 6 profiles, the vertical dashed line indicates
the point of maximum rate of glucose consumption (Figure 4).
It thus shows the shift of predominance for an alternative
metabolic state, moving away from the initial exponential growth
glucose-based metabolism. The EM used for all approaches
in the presented comparison are the ones obtained with the
information of this initial metabolic state. Therefore, it is
expected that toward this dashed line (and further on), all
calculated models will fall farther away from the experimental
data. The latter is more evident for LAC, as cells shift to
its consumption.
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FIGURE 7 | MPPE and CPU usage time over EM analyzed for the best CMOA, YSA, LYSA, and LPSYA exponential growth phase dynamic models, numerical

sub-index indicates for the 4-,6-, or 8-contraint systems.

The MPPE and CPU usage times for each approach and EM
set are presented in Figure 7. CMOA showed higher percentage
errors (between 3 and 10 times higher than the othermethods), as
expected from previous observations. On the other hand, MPPE
for YSA, LYSA, and LPSYA were similar, ranging within 20 to 10
%, being LPSYA the most robust with smaller MPPE deviations
among all sets. However, when comparing CPU usage times,
the CMOA approach presented the lowest values and exhibited
high robustness along all EM constrained sets. Moreover, PSYA
and CMOA derived approaches were used to calculate dynamic
profiles on the EM set without any constraint (on 18,110,823
EM). Their results are presented in Figure 6 by the purple and
yellow continuous lines, respectively. As can be observed, CMOA
fell far away from the experimental data set, but PSYA was able to
perform with similar accuracy to the results of the constrained
system. Furthermore, PSYA was finished within 723.13 s (0.04
ms/EMs of CPU usage time), which is only five times higher
than the lowest time determined for CMOA derived calculations.
YSA and LYSA were also tried but exceeded the computational
capacities. Therefore, dynamic profiles could not be obtained
without constraints.

3.2.3. Metabolic Hybrid Cybernetic Modeling
To better evaluate and compare the proposed EMA approach,
hybrid cybernetic models were constructed for the whole culture
process with the YSA, LYSA, PSYA, and LPSYA methods. Results
to be presented correspond to the best performing HCMs.
Presented results for YSA-HCM and LYSA-HCMwere calculated
using the metabolic network with eight constraints, whereas
for PSYA-HCM and LPSYA-HCM, the 6-constraints system is
shown. For this matter, different EMA were performed on
different culture stages to obtain multiple EM to be used by

the cybernetic modeling approach, as described in the section
2. Instantaneous apparent Yields and effective rates from the
physiological modeling analyses, allowed the identification of
two apparent mean metabolic states during culture growth: the
first based on GLC consumption favoring growth and LAC
production, and a second one composed on a smaller growth rate
and using LAC as primary substrate (with GLC co-utilization).
Yield data for these two states were calculated at the start
of culture and maximum LAC consumption (44.3 and 92.1,
respectively) and used for EMA-HCM construction. Constraints
for the 92.1 h changed on the LAC reaction, where it wasmodified
to its consumption (v2r > 0, see Supplementary Material 1).

The measured external metabolites results for the HCM using
YSA, LYSA, PSYA, and LPSYA are presented in Figure 8. All
models displayed MPPE values smaller than 10%. YSA-HCM,
PSYA-HCM, and LPSYA-HCM gave similar biomass results, but
the YSA-HCM and LYSA-HCM continued biomass growth past
the 100 h. In most cases, the models slightly overestimated
the biomass concentration, except for the LYSA-HCM, which
underestimated the biomass by presenting a low growth rate on
phases consuming both GLC and LAC (over 44 h). For the GLC
profiles, all models presented similar results up to ≈ 80 h where
YSA-HCM and LYSA-HCM overestimated its concentration by
lower consumption rates. Most of the models underestimated
GLN consumption rates and therefore estimated higher GLN
concentrations along the culture. LYSA-HCM and PSYA-HCM
achieved the closest GLN profile to experimental data. However,
in these profiles, PSYA-HCM performed best since LYSA-HCM
exhausted GLN before experimental data (≈ 80 h). All models
allowed LAC production and later consumption, having peaks
on similar times except for LYSA-HCM, which started LAC
consumption at later times. This characteristic is related to the
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FIGURE 8 | Hybrid Cybernetic Modeling Approach results for YSA, LYSA, PSYA, and LPSYA for the external measured metabolites and its SSE.

underestimation of biomass concentration and growth, with
lower GLC consumption and higher GLN consumption. The
latter impacts significantly on the GLU produced, where LYSA-
HCM and YSA-HCM presented very different profiles, being
more evident within the YSA-HCM where the overestimation
is about double of the concentration of the experimental data
point at 72 h. On its part, LYSA-HCM presents an almost linear
GLU production from 20 to 72 h, achieving the closest final
titter concentration of all models. However, this behavior slightly
underestimated the GLU concentration along the culture since
most of it was produced before 44 h, meaning that ≈63 %
of all GLU was produced on this first third of culture time.
In contrast, the PSYA-HCM and LPSYA-HCM followed GLU
experimental data with better accuracy on this same time frame
but overestimated its production on the following culture hours
resulting in an almost 0.5 mM excess at 72 h. However, regarding
all modeled metabolites, PSYA-HCM and LPSYA-HCM seem to
have the closest approximations to experimental data presenting
lower MPPE values, of about 1.38 and 4.39, respectively. And
their mayor deviations were due to their underestimations on
GLN consumption and GLU production overestimation.

To observe if the best performing HCM (PSYA-HCM) was not
only approximating to the experimental data, but also modeling
plausible metabolic flux distributions, their biomass normalized
flux distributions along time were calculated. Figure 9 presents
the PSYA-HCM biomass normalized flux distributions at 0,
44, 72, and 106 h, where the arrow width represents higher
fluxes (all data is available on Supplementary Material 3). As

it can be observed, from time 0 to 44 h, metabolism remained
almost constant, as also was found on the instantaneous
yield distributions of the physiological models. The flux
distribution characteristics were in accordance with the known
metabolism characteristics of CHO cells during growth (Ahn
and Antoniewicz, 2011; Wahrheit et al., 2014; Galleguillos et al.,
2017). Themain features found for these initial distributions were
low pentose phosphate flux (either oxidative or reductive sections
of this pathway), high LAC production, derived from high
glycolytic flux with low PYR mitochondrial transport (Warburg
effect) (Ahn and Antoniewicz, 2011; Wahrheit et al., 2014). The
latter caused a low TCA activation on citrate to isocitrate flux,
high conversion from pyruvate to oxaloacetate by anaplerotic
reactions that depend on mitochondrial glutaminolysis for TCA
second half activation and GTP/NADH production needed for
growth. Amino acid catabolism remained almost inexistent
for most amino acids and presented alanine production and
excretion (Ahn and Antoniewicz, 2011; Wahrheit et al., 2014).

As GLC started to diminish, less glycolytic flux was observed
accompanied by an increase of pyruvate transformation to
alanine coupled to GLU transformation to AKG (reaction v63)
from 72 h and onward (Figure 9). The latter was due to
the start of LAC consumption without a PYR mitochondrial
transport increase, which is known to be a common limitation
(Vacanti et al., 2014; Nicolae et al., 2015). Furthermore, this
resulted in a reduction of GLN consumption without the loss
of GLU production since carbon seemed to be introduced to
the mitochondria via the malate pump in higher proportion,
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FIGURE 9 | Metabolic fluxes modeled with the PSYA-Hybrid Cybernetic Model across 4 different experimental times: 0, 44, 72, and 106 h, corresponding to

important stages identified by the physiological modeling step. Reaction arrow width is in direct correlation with flux distribution normalized to X.

converted to AKG, then GLU, and then exported back to
the cytosol. These malate fluxes provided the needed carbon
skeletons to maintain the TCA active (Ahn and Antoniewicz,
2011; Wahrheit et al., 2014). As GLN consumption lowered and

TCA increased, it was also found that the oxidative pentose
phosphate pathway increased, even with carbon cycling through
the reaction converting F6P to G6P (Figure 9) (Ahn and
Antoniewicz, 2011; Sengupta et al., 2011; Galleguillos et al., 2017).
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FIGURE 10 | EMPA constructed for R39 increase. (A,B) spatial plots: Polar Space EM (purple), Initial EM selected by PSYA (Red) and minimum distance road toward

R39 increase across polar Space EM selection (Blue). (C–G) Examples of relevant reactions found modified by R39 increase across CHO-S metabolism.
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3.3. Polar Space Analysis Predictors for
Genetic Modification and Metabolic
Engineering of CHO Cells
As PSYA showed good metabolic modeling performance,
prediction capabilities for this approach were analyzed, as
presented in the methods section. Figures 10A,B show the polar
yield space and the path created by the EMPA for the increase of
the mitochondrial transport of PYR. This reaction was selected
as it was identified on the PSYA-HCM model as limiting for
TCA activation and therefore increasing LAC production. On
these Figures 10A,B, the path followed along the cluster proposes
a reduction on the parameter θ2, which would reduce LAC
production and an increase in θ1 and θ3, meaning an increase
on the proportion of GLN consumption and concomitant GLU
production. The latter could be related to a higher need for TCA
anaplerotic reactions derived from glutaminolysis as the carbon
flux entering the mitochondria as PYR increases. EMPA selected
92 alongside EM that increase the flux of R39 consecutively up
to approximately ten times the initial value and reduced LAC
production almost by 42% on the best scenario.

Selected reactions behavior along the R39 perturbation are
presented in Figures 10C–G. Apparent linear relationships were
found, giving information about distribution node modification,
allowing predictive analysis to be performed as follows. LAC
production was found to be reduced but only after a two-
fold increase in R39 flux yield. Interestingly, below such value,
some selected EM presented slightly higher LAC productions
(v2r, Figure 10C). During this threshold, biomass production
seems to be reduced and then increased after this same
threshold value but never presenting higher production than
the parental PSYA selected EM (v87, Figure 10C). Phospho-
enol-pyruvate (PEP) conversion to PYR presented a slight
reduction in flux distribution after the same threshold (v30,
Figure 10E), suggesting lower glycolytic flux toward PYR even
at high mitochondrial transport conditions. However, TCA
flux presented an almost 15-fold increase (v50 and v51,
Figures 10E,F) accompanied by increases on glutamine transport
into the mitochondria (v41, Figure 10E). These increases
were related to an equivalent increase on mitochondrial PYR
transformation to oxaloacetate (OA) (v58, Figure 10F) and GLN
conversion to GLU (v59, Figure 10F). These probably due to the
need for increased OA and GLU conversion to AKG and ASP
(v61r, Figure 10G) with the aid of the GLU-ASP mitochondrial
pump (v48r, Figure 10C) which could help to maintain TCA
active. Interestingly, reactions for ATP production from NADH
do not increase at the same rate, showing only a two-fold increase
after the two-fold increase threshold of reaction v39, and even
showing a reduction before this same threshold, having the
same behavior as the biomass reaction (Figure 10C). The latter
suggests a limitation on the ATP production rates and NADH
consumption rates, either by respiration limitations or by ADP
availability on the cell.

4. DISCUSSION

The physiological extracellular models presented herein were
able to describe the culture behavior even for LAC, which

presents a production and a later consumption phase during
growth. This description was not possible to model with
previously given equations for similar metabolic behaviors
(acetate on E. coli) by Martinez et al. (2018). In this work, this
was possible by modifying the model equations with Michaelis–
Menten terms, which describe the specific rate behavior in
relation to the concentration of key metabolites, whereas in
previous reports, inequality constraints were used to limit
the maximum specific rate participation (Martinez et al.,
2018). This addendum to the physiological model equations
previously reported resulted in a better description capability
within the same modeling approach. It should be noted that
CD Forti CHO complex media amino acids are consumed
by CHO cells and integrated into the metabolism. However,
glucose and glutamine concentrations account for 6.2 g/L, while
maximum biomass is 6.4 g/L (Kurano et al., 1990), which
means that these metabolites account for about 96% of the
mass. Therefore, the assumption of “key metabolite(s)” driving
the rates as mathematical substrates for the instantaneous
specific rate determination by the Michaelis–Menten type
equations should be enough to derive appropriate initial
approximations, parametrize the measured metabolites and
acquire an information basis toward EM selection for the
metabolic modeling approach.

For all models, MAPE showed relatively high values
for model-to-experiment correlations. However, it has been
recognized that MAPE produces outlier percentage errors
(extremely large) when the experimental or normalizing values
are lower than one (Kim and Kim, 2016). This problem is
intrinsic to the form of the Equation (16), where dividing by
against ever going smaller values increase MAPE values more
rapidly than the possible diminution of the error given by
the difference of the predicted and the experimental values,
presenting the tendency to produce infinite or undefined values
as the experimental values approach zero. On the MAPE
calculations, only GLC presented actual infinite values on the
data points 144, 120, and 96 h, where GLC was already
exhausted, and therefore could be ignored. Nonetheless, these
MAPE characteristics explain the high GLN and LAC percentage
errors, as they present many experimental values lower than 1,
producing outlier errors. Many approaches for the solution of
this problem can be found in the literature, mainly based on
either methods to exclude outliers (most having a problem of
arbitrariness) or by multiple modifications to the equation to
avoid division by small values (Kim and Kim, 2016). In this
report, the MPPE was used, as presented in Equation (17).
This calculation solves the problem by normalizing the sum
of errors by the sum of experimental values. Thus, it avoids
performing divisions with lower than 1 values to normalize
the error and renders comparable percentage error indicators
between different metabolites. Since the same experimental data
sets are used for the comparison of all EM selection approaches,
any intrinsic MAPE or MPPE limitations would apply evenly
for all methods. However, as the last error parameter performed
more robustly than MAPE, it was preferred to qualify model
accuracy for further analysis.

Modeled concentration, rates, and yield profiles suggested that
GLC is the most important growth rate determinant, even in the
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multi-amino acid composed media (FortiCHO). This suggestion
is derived from the observation that glucose consumption rates
follow the Biomass rates, presenting their maxima at the same
time with both values being |0.4| mM/mM*h. Even though
Biomass continues to accumulate after the GLC consumption
rate diminishes and other metabolites are being consumed more
rapidly (e.g., LAC), its rate decays after this point. Biomass rate
reduction becomes more evident as LAC re-consuming viable
cells increase their contribution to the culture metabolism up to
the maximum LAC consumption rate found at 92.1 h, just before
GLC exhaustion. It is also essential to notice that GLN yield was
reduced along with the LAC consumption, which means that
LAC production may be correlated to this compound. The fact
that GLC apparent yield and rate do not diminish up to ≈72
h, with already having LAC consumption metabolism activated,
and furthermore the GLN apparently beginning its rate reduction
(probably due to limiting concentrations), suggest that the LAC
metabolic shift may be partially regulated or correlated to GLN
concentration or its consumption rate. This correlation may be
possible due to the known high glutaminolysis mitochondrial
metabolism for TCA activation found in CHO cells (Ahn and
Antoniewicz, 2011; Altamirano et al., 2013; Zagari et al., 2013).

The parameters and observations obtained from extracellular
physiological modeling allowed to have useful starting
information toward metabolic modeling based on the use
of EM derived approaches. For EM to be useful for dynamic
modeling, first, an EMA must be performed to eliminate the
unnecessary or unused EM by the cells and select one or a
minimal set that better describes the metabolic behavior. As
a first step, a gross elimination was performed by imposing
constraints on the system, such as the known presence or
absence of metabolic reactions, reaction rates, metabolite
consumption or production rates, growth rates, or other known
parameters. Many metabolic modeling approaches have relied
on constraint strategies to calculate flux distributions such as
FBA, MFA, and others. However, as the metabolic network
gets larger, the more underdetermined the system may become,
and more parameters or constraints are needed to render
meaningful solutions. Therefore, an EMA that can be performed
with limited knowledge and fewer constraints should enhance
dynamic metabolic modeling usage along any biotechnology and
bioengineering system, and especially with CHO cells. On that
regard, PSYA localizes on the Polar solution space the values of
known reaction yields (or fluxes) with similar results in different
ranges of constrained systems. EM and experimental solutions
on PSYA are described by angles and modules instead of
Cartesian coordinates, making it easier to determine similarities
between EM and known yields. It is important to notice that θi
angles represent the yield distributions of a particular reaction
in relation to the plane of the previous angle θi−1, which means
that they contain the information of the reaction across the
yield distribution polytope for each angle calculated from
previously analyzed reactions. Their analysis can, therefore,
give insights into the network characteristics and reaction node
elasticity by analyzing their found polar space structure or
cluster-paths properties as described for Figure 5. However, it is
also important to note that even while the metabolic network is

at least stoichiometrically capable of having the flux distributions
described by this or any set, they may not be achievable due to
cell regulation, or other kinetic limitations, thus the importance
of coupling EMA to a dynamic modeling approach such
as HCM.

PSYA approach achieved a smaller volume solution
polyhedron than other EMA approaches such as YSA. This
characteristic alone does not mean that a better dynamic
modeling result must be achieved a priori. As it has been
reported, all minimal active sets on the yield space that contain
within the experimental condition point will provide similar
internal flux distribution and similar dynamical simulation
results (Provvost et al., 2006; Song and Ramkrishna, 2009).
However, as the EM fall farther away from the experimental data
point, they are more prone to individually misrepresent feasible
metabolic flux states useful for cellular behavior insight. This
assessment can be better observed on the Polar solution space,
where one of the four selected YSA EM is composed of almost
only GLN consumption, two of them of only GLC consumption
and only one of them with mixed metabolism, as they all fall
into highly different cluster-paths subsets of EM (Figure 5). On
that matter, YSA methodology analysis is designed to obtain the
larger polyhedron volume as it is more reliable and robust for
describing a wider spectrum of experimental flux distribution
behaviors with the same active EM set and also, for its increased
calculation efficiency compared to other methodologies (which
search all or many possible sets around the experimental
objective) (Song and Ramkrishna, 2009). However, it may be a
drawback for straightforward prediction and analysis performed
with the selected EM, as all of them are representations of what
the network is stoichiometrically capable, but most of them
may not be achievable by the cell due to regulation or other
limitations. Such problematic increases when EM numbers
get higher, either because of less available constraints or by
the expansion of the metabolic network, making analysis and
selection more difficult. Therefore, methodologies finding
efficiently smaller volume polyhedrons by closing into the
experimental data set may be useful for extracting biological
information regarding specific stoichiometric flux distribution
given by EM.

PSYA performance was found to produce similar or better
results in comparison to existing EMA strategies, as proved by
the dynamic kinetic models regarding approximation capability
to experimental points and the computational CPU time
used. Analysis of commonly used metabolic objectives, CMOE,
performed the farthest from the experimental behavior on all
constraint EM sets. The latter is because the system constraints
are broad, and no previous knowledge of the system was
administered to assure better performance such as FBA andMFA
approaches. In other words, as this approach relies on metabolic
objective assumptions, such as maximization or minimization
of some yields, rates or fluxes, and it requires more and more
specific constraints to limit the solution space to obtain reliable
solutions to the experimental behavior. This characteristic can be
observed in the Figure 6 in which it is clear that while the number
of constraints used increases from 4 to 8, the performance of the
CMOA also increases substantially. Also, It is important to note
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that the constraints used in this comparison are too broad for
performing FBA, as they only assert production, consumption
or existence of some reactions, without constraining them to
some values of the flux vector. The latter is important since
FBA derived from metabolic objectives are mostly used along
with specific constraints such as respiration rates, consumption
or growth rates, some production rates, and so on. However,
the scope of this report is to address EM selection for dynamic
metabolic modeling with the minimum amount of information
possible. Approximation to data has also been used as ametabolic
objective by FBA, and MFA approaches. However, the use of
this objective required the calculation of all the profiles for all
EM and its comparison to find the best performance, therefore
increases the calculation times and computational requirements
significantly. CMOA presented in this report, performed the best
regarding low CPU usage times on all sets. In contrast, YSA and
LYSA approaches presented CPU usage times ranging from 2 to
3 orders of magnitude higher than CMOA derived approaches.
On the other hand, the PSYA approach performed with lower
CPU usage times, approaching even close to CMOA used times
over EM as the system grows. CPU usage times seem to increase
in the 8-constraint set substantially for all EMA approaches but
CMOA. This apparent steep increase may be an artifact where
function and libraries loading times contribution to CPU usage
time is more significant than actual calculation time for this
7,855 EM size set, which is two orders of magnitude lower than
the 6-constraint set. This artifact is a result of the CPU usage
time normalization against EM set size, where constraints reduce
more rapidly the latter number compared to the reduction of
actual CPU usage time by each EMA approach. In fact, for
LPSYA 6- and 8-constraint calculations took about 4.81 and
4.36 s, a 10% reduction, meanwhile EM number reduction was
around 94%.

While CMOA may have the upper hand on retrieving
information on more extensive networks, given adequate
knowledge on fluxes rates or yields, YSA derived methodologies
can perform better with less available parameters. However,
the latter has higher computational requirements and
larger calculation times, making its use on large networks
demanding. There are reports presenting newmethodologies and
mathematical approximations toward hierarchical lumping of
EM that have proved to be useful in reducing the computational
demands of these approaches, making them more accessible
to large network modeling (Song and Ramkrishna, 2010).
Nonetheless, in this report, the novel approach for Polar yield
space analysis performs with similar accuracy to the YSA and
LYSA approaches while requiring much shorter calculation times
and computational requirements, closing in toward CMOA and
common FBA calculation time frames. Moreover, PSYA was able
to perform with similar accuracy between all of the constrained
systems within CPU usage times only five times higher than
CMOA calculations.

Furthermore, PSYA coupled with HCM allowed having
the most accurate performance to experimental data for
the constructed metabolic models (Figure 8). Metabolic flux
distributions were found to be in accordance with previous
reports on CHO metabolism. The modeled oxidative pentose

phosphate pathway increase after the reduction of GLN
extracellular concentration has been reported during stationary
culture phases by 13C MFA and has been proposed to regenerate
NADPH/NADP+, compensate oxidative stress during oxidative
growth and to cover NADPH requirements as metabolism
changes from consuming amino acids to the biosynthesis of
building blocks for protein production (Ahn and Antoniewicz,
2011; Sengupta et al., 2011; Wahrheit et al., 2014; Galleguillos
et al., 2017). In fact, for the non-growth phase, Sengupta et al.
(2011) reported high flux diversion to the pentose phosphate
pathway with carbon recycling from F6P to G6P. This effect
was also observed on the models constructed herein after 72 h
and increased toward the 106 has GLN consumption metabolism
diminished by its exhaustion (Figure 9). Finally, it was found that
as growth decreased (toward 106 h), glycolytic flux through EMP
was reduced, and the pentose pathway proportion augmented,
producing more carbon dioxide and GLU as the TCA decreased.
All the latter reactions are probably set to produce necessary
energy and amino acids for maintenance before entering the
death stage (Wahrheit et al., 2014).

As discussed, the PSYA-HCM approach produced reliable
flux distributions, which adjusted and helped to describe the
physiological and metabolic behavior of CHO-S cells under
typical culture conditions. However, it is relevant for an approach
to render easy and reliable information upon predicting changes
in the system. For that reason, EMPA was constructed over
the polar convex solution space. EMPA is sustained on the
same assumption as MOMA, that regulation on the cellular
machinery has the metabolic objective of minimizing change
while maximizing adaptation by minimizing the distance to a
previously known solution (Segrè et al., 2002; Shlomi et al., 2005).
EMPA finds a perturbed EM node can be calculated using a
known EMdescribing the behavior of the parental metabolic state
and then successively search for the closest EM that augments
(or reduces) the reaction that one wishes to perturb. This
calculation would theoretically provide a path with the lowest
metabolic modification rate (as a whole) while providing the
highest unique reaction rate modification. Normally, MOMA is
performed by the distance minimization for a given flux vector
solution previously calculated (commonly FBA) to determine
a mutant flux vector (Segrè et al., 2002; Shlomi et al., 2005).
Whereas, EMPA performs a sequential search on the EM sets
calculated on the polar yield space with the initial EM solution
found by PSYA. The Yield Polar Space description can be made
to describe and distribute EM around a particular reaction node
to be studied. As the angular data for each EM on the polar
space is calculated from consecutive ratios between reaction
yields, its spatial position contains the information about their
node yield distribution, with out losing other yields cumulative
information. This spatial transformation seems to cluster EM in
closely related sets. This sets also seem to provide information
of node behavior, such as sequential reaction yield diminution
or augment (EM paths), elasticity (when set or path breaks), or
others. However, more studies have to be perform to increase
the knowledge and possible analysis that could be performed on
this sets and solution space. It is noteworthy that this approach is
only valid (at least theoretically) under the same EM constrained
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set structure on the polar convex solution space (as defined in
the previous section). That is because the initial assumption
could fail upon changing apparent structured EM sets on the
polar space. It should be emphasized that this approach was only
tested as a proof of concept, while more needs to be done to
describe polar space characteristics (Euclidean or non-Euclidean,
clustering, nodes, dispersion among others) to devise a better
prediction methodology.

Despite this, EMPA provided useful information toward
metabolic and bioprocess engineering, as shown in Figure 10,
and allowed to review possible reaction interactions and
relationships, which may be attractive as genetic modification
targets toward reducing LAC production. EMPA suggested a
limitation on the ATP production rates, either by respiration
limitations or by ADP availability. On that matter, Nicolae
et al. (2015) presented a modeling approach for determining
active elementary flux modes on mitochondria using data
from selectively permeabilized CHO cells. They found that
adenosine diphosphate (ADP) augmented the uptake rate of
most metabolites by respiratory chain stimulation (Nicolae et al.,
2015). This effect was exacerbated by media fortification with
pyruvate (PYR), citrate (CIT), AKG and glutamic acid (GLU)
(Nicolae et al., 2015). Furthermore, they found that Isocitrate
dehydrogenase (ICdh) and the α-ketoglutarate dehydrogenase
(AKGdh) were the key regulators of the tricarboxylic acid cycle
(TCA) (Nicolae et al., 2015). The findings provided by the
proposed EMPA agree with these reports. A similar EMPA
was performed but changing the query toward LAC export
minimization as a query (v2r minimization) and presented
similar findings. EMPA results suggest the overexpression of
reactions v47 and v44 to transport cytosolic AKG to TCA by
a malate pump cycle instead of the GLN-GLU pump cycle
during growth. Also suggest upregulating the v66 reaction
to transport part of the glycolytic flux and remnant GLU
production toward AKG, which could help reduce the LAC
production without reducing growth or product yields. And
finally, other amino acid catabolic reactions consuming ATP
and producing AKG, succinate, and ACCOA, such as threonine,
valine, or leucine reactions (v69, v72, v74) are also suggested
as upregulation targets toward LAC production reduction and
protein production enhancement.

5. CONCLUSIONS

Polar Space Yield Analysis (PSYA) can be summarized as a
derived approach from the Yield Analysis presented by Song and
Ramkrishna (2009). With this novel approach, it was possible
to reconstruct the convex solution space and reveal, extract
and define subsets of EM capable of describing CHO-S cells
cultures and meaningful information and about its metabolism.
The critical aspect of PSYA is that it helps to simplify the solution
space description by rendering a pathway through the multi-
dimensional polytope bounding important information about
reaction relationships and yields. Moreover, PSYA can provide
critical information about specific node distributions required
for the study of reaction node elasticity, regulation, and other

relevant characteristics. PSYA and LPSYA performed with high
accuracy, can be coupled to dynamic HCM (Ramkrishna and
Song, 2012), and can be constructed with lower CPU usage times
(close to FBA analysis). Despite this, the presented approach
remains to be tested on large or even genome-scale networks to
better characterize its limitations.

In the case study considered in this report, PSYA-HCM and
LPSYA-HCM produced dynamic metabolic models that follow
with reasonable accuracy the experimental behavior of the CHO-
S cell culture. Moreover, flux distributions obtained with the
PSYA-HCM were in agreement with the metabolism knowledge
available in the literature, presenting low pentose phosphate
flux, high LAC production, and low PYR on cytosol to PYR
on mitochondria conversion, low TCA activation on isocitrate
dehydrogenase and high recirculation toward mitochondrial
PYR by malic enzymes, while catabolism of many amino acids
remained low.

The presented polar solution space also allowed to perform
a perturbation analysis based on finding the closest EM
sequentially to the previous parental EM, which maximizes or
minimizes a particular reaction. With EMPA analysis, we were
able to find and propose attractive modification reaction targets
that could reduce LAC production in CHO-S cells culture. The
findings regarding mitochondrial metabolism were found to
agree with previous reports from other research groups, while
some other not so evident targets were proposed. It is important
to stress that these analyses were performed as proofs of concept
for the further development of the presented PSYA, LPSYA,
and EMPA approaches, being this report the first to propose
a shift from Cartesian to Polar coordinates and tools for their
analysis, resulting as an apparently reliable and useful approach
for metabolic modeling by EM analysis.
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