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Secondary lymphedema is characterized by lymphatic fluid retention and subsequent
tissue swelling in one or both limbs that can lead to decreased quality of life. It often
arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial
modalities, such as lymphatic insults after surgery, immune system dysfunction,
deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation.
Although secondary lymphedema is often associated with breast cancer, the condition
can occur in patients with any type of cancer that requires lymphadenectomy such as
gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal
roles in regulating gene expression in biological processes such as lymphangiogenesis,
angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA
profiling has led to the discovery of the molecular mechanisms involved in the
pathophysiology of auto-immune, inflammation-related, and metabolic diseases.
Although the role of microRNAs in regulating secondary lymphedema is yet to be
elucidated, the crosstalk between microRNAs and molecular factors involved in the
pathological features of lymphedema, such as skin fibrosis, inflammation, immune
dysregulation, and aberrant lipid metabolism have been demonstrated in several studies.
MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of
their roles in lymphedema can provide a better understanding or new insights of the
mechanisms underlying this debilitating condition.
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INTRODUCTION

Lymphedema is a serious chronic condition characterized by swelling, resulting from the
abnormal accumulation of protein-rich lymph fluid in the interstitial spaces due to an
imbalance between lymph fluid production and transport (Greene and Maclellan, 2013;
Ducoli and Detmar, 2021). Unlike primary lymphedema, which is usually driven by inherited
mutations, secondary lymphedema is a consequence of cancer treatment (i.e., radiotherapy
or surgery) or infections. Radiotherapy and surgical excision induce trauma or insults to
the lymph nodes and lymphatic structures, leading to the obstruction of lymph flow and
the accumulation of protein-rich fluid at the affected area (Cueni and Detmar, 2008; Alitalo,
2011). Prolonged blockage of lymphatic flow and the accumulation of lymph lead to the
pathological features of lymphedema, including inflammation, immune dysfunction, tissue
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remodeling, fibrosis, and aberrant lipid metabolism. To date,
there is no molecular-based therapy for secondary lymphedema
and the condition is usually treated with massage, manual
lymphatic drainage, compression bandages, remedial exercise,
and dietary intervention programs (Do et al., 2017; Jung
et al., 2020). Although, the damage to lymphatic vessels
may be treated through pharmaceutical therapies, stimulating
lymphangiogenesis; clinical trials to evaluate growth factor
therapy have yet to be conducted (Forte et al., 2019). In the
absence of targeted therapies, further investigations into the
molecular mechanisms of lymphedema may highlight additional
treatment avenues. The aim of this review is to identify the
epigenetic mechanisms, including small regulatory RNAs, which
are aberrant in the processes that cause this condition, this may
highlight dysregulated pathways in lymphedema and reveal novel
therapeutic targets.

Hereditary or primary lymphedema is associated with
mutations in genes that encode for lymphatic endothelial
markers; vascular endothelial growth factor-C (VEGFC) and its
receptor (VEGFR), such as Fms-related receptor tyrosine kinase-
4 (FLT4), SRY-box transcription factor 18 (SOX18), forkhead box
C2 (FOXC2), and angiopoietin (ANGPT2) (Miaskowski et al.,
2013; Brouillard et al., 2014; Leppanen et al., 2020). Meanwhile,
studies on genetic predisposition of secondary lymphedema
have demonstrated a significant association of VEGFR, RAR-
related orphan receptor C (RORC), FOXC2, and interleukin-6
(IL6) genes with secondary lymphedema (Newman et al., 2012;
Miaskowski et al., 2013; Leung et al., 2014). However, the reported
genes explain <30% of this debilitating condition (Leppanen
et al., 2020), hence more studies are needed to further clarify
the pathways involved in lymphedema. Epigenetics can alter
gene expression in the absence of genomic mutations and may
contribute to the pathophysiology of lymphedema. One form
of epigenetics that has gained increasing interest over the years
due to its biomarker potential and possible involvement in
post-transcriptional gene regulation, are microRNAs (miRNAs)
(Alitalo, 2011; Treiber et al., 2019). MiRNAs are non-coding
RNAs of 20–25 nucleotides and their biogenesis involves
transcription of larger primary miRNAs by polymerase II,
cleavage by the nuclear enzyme Drosha into pre-miRNAs,
and then export into the cytoplasm through exportin 5. In
the cytoplasm, pre-miRNAs undergo a final processing step
orchestrated by Dicer, to form mature miRNAs. Mature miRNAs
can bind to the 3′untranslated region (3′UTR) of messenger
RNA (mRNA) causing translational repression or degradation
through the RNA-induced silencing complex (RISC) (Treiber
et al., 2019). MiRNA expression has been linked to a plethora
of physiological processes and their dysregulation has been
linked to many diseases, sparking the development of therapeutic
miRNA inhibitors (Baumann and Winkler, 2014). Many miRNA
functions were elucidated through knockout and overexpression
models, and tools to predict their target genes based on sequence
complementarity to 3′UTRs have also been developed and are
vital for hypothesis generation (Chen et al., 2019). The regulation
of miRNAs has been extensively reviewed by several research
groups (Roberts, 2014; Liu et al., 2018; Paul et al., 2018). MiRNAs
represent an attractive non-invasive biomarker for diseases

including lymphedema, because they are stable and detectable
in bodily fluids such as serum, plasma, and urine (Babalola
et al., 2013). This review will elucidate the roles of miRNAs in
the pathological features of secondary lymphedema including
inflammation, immune dysfunction, formation of fibrous tissue,
and obesity (Escobedo and Oliver, 2017; Kataru et al., 2019b;
Yuan et al., 2019; Azhar et al., 2020).

miRNA REGULATION IN PATHOLOGICAL
FEATURES OF SECONDARY
LYMPHEDEMA

Over the past decade, correlative studies on animal models and
human revealed several factors that lead to the development of
secondary lymphedema. Although research into the regulation of
miRNAs in secondary lymphedema is still in its infancy, several
miRNAs have been identified and implicated in inflammation,
immune system dysregulation, fibrosis, and obesity, all of which
play a role in lymphedema (Alitalo, 2011; García Nores et al.,
2016; Kataru et al., 2019b; Azhar et al., 2020). A summary of the
interplay between miRNAs and factors associated with secondary
lymphedema is presented in Figure 1.

miRNAs AND INFLAMMATION-INDUCED
LYMPHANGIOGENESIS

Mounting evidence suggests that lymphatic injury caused
by radiotherapy or surgical intrusion results in chronic
inflammatory changes (Kataru et al., 2019a; Allam et al., 2020).
The earliest factors that are activated in lymphatic injury are
danger-associated molecular patterns (DAMPs), endogenous
cellular products that induce a pro-inflammatory state in
the damaged tissue (Kataru et al., 2019a). Danger-associated
molecular patterns are expressed in lymphatic endothelial cells
(LECs), blood endothelial cells (BECs), and adipocytes. Two
common DAMPs, high mobility group box 1 (HMGB1) and heat
shock protein 70 (HSP-70), were found to be highly expressed
in mouse tail-lymphedema tissues and 5-mm punch biopsies
of human lymphedematous tissue compared to unaffected
sites (Zampell et al., 2011, 2012a). HMGB1 was also shown to
regulate lymphangiogenesis in vivo and its blockage resulted
in inflammatory lymphangiogenesis suppression (Qiu et al.,
2012; Kataru et al., 2019a). A recent study by Tang et al.
(2017) demonstrated HMGB1 harbors a miR-126 binding site
in its 3′UTR. Under the hyperglycemic conditions, miR-126
targeted HMGB1 and remarkably attenuated HMGB1 protein
expression in human umbilical vein endothelial cells (HUVEC),
via Akt/eNOS (endothelial nitric oxide synthase) signaling.
Subsequently, the miR-126/HMGB1 interaction suppressed
downstream elements of HMGB1, including tumor necrosis
factor-α (TNF-α) and nicotinamide adenine dinucleotide
phosphate oxidase (NADPH oxidase) (Tang et al., 2017).

Lymphatic stasis induces the accumulation of immune
cells including macrophages, which promote VEGF-C/VEGFR
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FIGURE 1 | A schematic model of miRNAs’ potential involvement in the pathological features of secondary lymphedema. (A) Inflammation-induced
lymphangiogenesis involves the release of inflammatory factors from both lymphatic and blood endothelial cells. Lymphatic markers, VEGF-C and VEGFR-3 are
negatively regulated by miR-1236, miR-128-3p, and miR-9. miR-466, miR-155, and miR-146b are expressed during inflammation to induce lymphangiogenesis. (B)
Surgery insults to lymphatic vessels and lymph nodes induces abnormal immune regulation as immune cells are trafficked in lymphatic vessels. Due to the disruption
of lymph flow, immune cells accumulate in the extracellular matrix (ECM) and start to proliferate and differentiate into regulatory (Treg) and T helper cells, which
produce inflammatory factors. Unlike miR-155, miR-31 and miR-182 negatively regulate Foxp3 expression to suppress Treg cell differentiation. Foxo1 induces Foxp3
and Rorγ expression, but the interaction is halted by miR-182 and miR-20b. (C) The formation of fibrous tissue of the skin occurs over time as ECM components
increase excessively in the dermis and subcutaneous layers. The main factor of fibrosis, transforming growth factor-beta (TGF-β), mediates collagen fiber production,
fibroblast differentiation, and endothelial and epithelial-mesenchymal transformation (EndMT/EMT) by directly regulating pro-fibrotic factors (TAB1, Smad3) and
pro-fibrotic miRNAs such as mir-31, miR-21, and miR-155. MiRNAs such as miR-29a, miR-150, miR-9-5p, miR-126, and miR-92 act as anti-fibrotic miRNAs by
suppressing the expression of fibrotic factors in multiple signaling pathways. (D) Obesity increases the risk of secondary lymphedema due to excessive accumulation
of fat lobules that compress the lymphatic vessels, resulting in disruption of lymph flow. Adipokines and inflammatory factors induce the expression of miR-378,
miR-199a-3p, miR-221, miR-222, miR-146b, and miR-335 which facilitate insulin resistance and fat expansion. Several miRNAs act to combat adipogenesis, such
as miR-155 and miR-182. AP-1, activating protein-1; CCAAT-enhancer binding protein alpha, CEPB-α; chemokine C-C motif ligand-21, CCL21; cluster of
differentiation 4 cells, CD4 +; regulatory T cell, Treg; endothelial-mesenchymal transformation, EndMT; epithelial-mesenchymal transformation, EMT; forkhead box

(Continued)
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FIGURE 1 | (Continued)
O1, Foxo1; forkhead box P-3, Foxp3; high mobility group box-1 HMGB-1; interferon-gamma, IFN-γ; interleukin, IL; LTB4, leukotriene-B4; matrix
metalloproteinase-1, MMP1; nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB; NOD-like receptor protein-3, NLRP3; peroxisome
proliferator-activated receptor gamma, PPAR-γ; phosphatase and tensin homolog, PTEN; platelet-derived growth factor, PDGF; programmed death-ligand-1 PD-L1;
prospero-homeobox 1 Prox-1; RAR-related orphan receptor gamma, ROR-γ; suppressor of cytokine signaling-1 SOCS1; TGF-beta activated kinase 1, TAB1; T
helper cell, Th; TIMP metallopeptidase inhibitor 1, TIMP1; tumor necrosis factor-alpha, TNF-α; vascular endothelial growth factor receptor-3, VEGFR3; zinc finger
E-box binding homeobox-1, ZEB1.

signaling, a main factor in lymphatic vessel development and
inflammation-induced lymphangiogenesis (Ogata et al., 2016;
Kataru et al., 2019a). Although VEGF-C is critical in normal
lymphatic development, a recent study has reported that VEGF-
C promotes the pathogenesis of lymphedema by instigating
lymphatic leakage through VEGFR-2 (Gousopoulos et al., 2017).
A study by Ogata et al. demonstrated that initial and active
lymphangiogenesis is essential for development of chronic
lymphedema as evidenced by increased neolymphatic vessels that
remained dilated after three months of lymphatic obstructions in
a mouse model (Ogata et al., 2016). The expression of VEGF-C in
the edematous tissue was increased after four days of lymphatic
obstruction and inhibition of VEGFR-3 using VEGFR3-Fc
competitor protein suppressed the generation of small lymphatic
vessels and histological features of lymphedema, including
fibrosis and adipogenesis (Ogata et al., 2016). Moreover, VEGF-C
was found to be increased in the serum of breast cancer-related
lymphedema patients (Ghanta et al., 2015; Jensen et al., 2015)
and the edematous tail-lymphedema tissues of a mouse model
(Rutkowski et al., 2006). Jones et al. reported that miR-1236 could
negatively regulate VEGFR-3 expression as well as its associated
pathways including Akt and extracellular signal-regulated kinase
1/2 (ERK1/2) to alleviate migration and proliferation of human
LECs in vitro (Huggenberger et al., 2011; Jones et al., 2012). In
another study, miR-128-3p was found to interact directly with the
3′UTR of VEGF-C and VEGFR-3, suppressing the proliferation
of LECs, through Ca2+ and ERK1/2 signaling in a VEGF-C
concentration dependent manner (Zhou et al., 2018).VEGFR-3
was also reported to be regulated by miR-9, thereby promoting
the lymphangiogenesis through LEC proliferation within the
mesenteric lymphatic vessels of rats (Chakraborty et al., 2015).
miR-9 acts by directly targeting NFKB1 and activating VEGFR-
3 in LECs. In addition, miR-9 induced expression of pro-
lymphangiogenic factors such as zinc finger E-box binding 1
(ZEB1), N-cadherin and VE-cadherin (Chakraborty et al., 2015).

In line with the induction of inflammation during lymph
stasis, macrophages also released a large amount of leukotriene
B4 (LTB4), an activator of leukocytes and a potent lipid
chemotactic factor for neutrophils (Tian et al., 2017; Jiang
et al., 2018). Tian et al. reported that LTB4 promotes
lymphedema development in post-surgical lymphedema (Tian
et al., 2017). At low concentrations (10nM), LTB4 demonstrated
pro-lymphangiogenic capacity but at higher concentrations
(400 ηM), LTB4 was found to inhibit Notch signaling in
LEC, an important pathway for lymphatic maintenance and
development (Murtomaki et al., 2014; Tian et al., 2017). Further
analysis showed that blockade of LTB4 signaling decreases
macrophages, CD4 + T cell and neutrophil infiltration into

the lymphedematous tissue. Additionally, LTB4 concentration
in serum is significantly elevated in lymphedema patients
(Tian et al., 2017). Due to encouraging findings, a new drug,
Ubenimex is designed and intended to benefit lymphedema
patients through inhibition of LTB4. The efficacy of Ubenimex
has been documented in an experimental model (Tian et al.,
2017; Cribb et al., 2021) and is currently the subject of a
clinical trial (NCT02700529) (Rockson et al., 2018). A study
by Wang et al. reported activation of LTB4 and its receptor,
B-leukotriene receptor-1 (BLT1) enhanced the expression
of inflammatory miRNA, miR-155 and miR-146b through
transcription factor, activating protein (AP-1) in leukotriene-
deficient mice (Wang et al., 2014). The two miRNAs further target
the suppressor of cytokine signaling-1 (SOCS-1) to induce its
degradation, and subsequently enhance macrophage activation
(Wang et al., 2014).

Besides VEGF-C,VEGFR-3, and LTB4, infiltration of
macrophages into the affected sites promotes the expression of
cytokines and inflammatory factors including interleukins (IL-4,
IL-6, IL-10), TNF-α, interferon-γ (IFN-γ), and transforming-
growth factor-beta (TGF-β) in lymphedema studies (Lin et al.,
2012; Miaskowski et al., 2013; Leung et al., 2014). TNF-α
and IFN-γ were reported to synergistically induce miR-155
expression in inflamed human dermal LECs and human dermal
fibroblasts. The induction resulted in the suppression of the
downstream adaptive immune factor, programmed death ligand-
1 (PD-L1) (Yee et al., 2017). In another study, miR-466 was
reported to bind to the 3′UTR of prospero-related homeobox-1
(PROX1) and inhibited proliferation of LECs in a corneal
burn alkali animal model (Seo et al., 2015). Prox-1 is a major
transcription factor of lymphatic development and mutations
of the PROX1 gene have been reported in lymphedema patients
(Ricci et al., 2020). Studies on the effects of PROX1 knockout
in mouse models induced lymphatic vasculature dysfunction
(Srinivasan and Oliver, 2011; Bui and Hong, 2020). Studies on
the role of miRNAs in lymphedema-related inflammation are
still lacking and some of the reported miRNAs have yet to be
validated in human samples, using different diseases and models.
A simplified mechanism of miRNA’s-roles in inflammation is
illustrated in Figure 1A.

miRNAs AND IMMUNE-LYMPHATIC
DYSREGULATION

Accumulation of lymph fluid promotes infiltration of immune
cells to the affected limbs. One of the major hallmarks of
lymphedema is the increase of CD4+ T-cells and regulatory T
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cells (Tregs) in lymphedematous tissue of lymphedema patients
and mouse models (García Nores et al., 2018). It was reported
that infiltration of CD4+ T cells (Th1, Th2, Th17) was increased
after the axillary lymph node excision and Tregs proliferation
was prominent at the distal tissue of the lymphatic injury (Ogata
et al., 2016; García Nores et al., 2018). Depletion of CD4+ T cells
using CD4+ specific antibodies reduced tail volume and tissue
area covered by the lymphatic vessels after four weeks of surgery.
Moreover, the treatment increased the amount of PEGylated NIR
dye reaching the lymphatic area, indicating increased lymphatic
vascular networks (Proulx et al., 2013; Gousopoulos et al., 2016).
Tregs are characterized by the expression of forkhead box P3
(Foxp3) that controls Treg development and function. Notably,
Foxp3+ and CD45+ cells were elevated in skin biopsies of
lymphedema patients and adoptive Tregs were found to reduce
tail edema in mice after surgery (Gousopoulos et al., 2016).

To our knowledge, regulation of miRNAs in immune cell
signaling in lymphedema has never been reported. However,
findings from several studies might be relevant to the pathological
condition of lymphedema (Figure 1B). For instance, Foxp3
was found to positively regulate miR-155 and the deletion of
miR-155 resulted in the depletion of Tregs in the thymus and
periphery of mice (O’Connell et al., 2010; Lu et al., 2015).
miR-155 was reported to target SOCS1, a negative regulator
of IL-2. Foxp3 drives the elevation of miR-155 thus reduced
SOCS1 protein expression, heightened the sensitivity of Treg
cells to IL-2, and led to an increase of Tregs numbers (Lu
et al., 2009, 2015). In an infection-induced lymphedema study,
SOCS1 was identified to be regulated by VEGF-C/VEGFR-3
and its expression inhibited the Toll-like receptor (TLR)-NF-
κB signaling, an important pathway that prevents uncontrolled
inflammation during bacterial infection (Zhang et al., 2014).

A transcription factor of Th17, RAR-related orphan receptor-
gamma (Rorγ) has been reported to interact with FOXP3 to
induce Treg cell differentiation during exposure to IL-6 and IL-
21. In contrast, Foxp3 is released from Rorγ in the presence
of the anti-inflammatory factors, inducing the differentiation of
Th17 cells (Zhou et al., 2008). miR-20b was identified to target
RORC and decrease Th17 cell differentiation in experimental
autoimmune encephalomyelitis (Pan et al., 2015). Although
the results of this study were reported in an autoimmune
disease model, the Rorγ protein is encoded by RORC, a gene
that was highly correlated with lymph node organogenesis
(Massoud et al., 2016), filariasis, (Rajasekaram et al., 2017)
and secondary lymphedema (Newman et al., 2012; Michelini
et al., 2020). A LEC marker, forkhead box O1 (Foxo1), was
demonstrated to interact with Rorγ, resulting in the regulation
of Th17 cell pathogenicity and IL-17A production. miR-873 was
reported to target FOXO1 and facilitate Th17 cell differentiation
in systemic lupus erythematosus patients (Liu et al., 2017).
Foxo1 plays an essential role in Foxp3 expression in Tregs
through a Foxo1/miR-182 dependent pathway. Foxo1 mediates
the downregulation of miR-182 and increases the proportion
of Foxp3 cells in the peripheral lymph nodes and spleen of
mice with acute autoimmune encephalomyelitis (Wan et al.,
2016). The contribution of Foxo1 and miR-182 to immune-
related disease reflect their reciprocal interaction in lymphatic

vascular development (Chen et al., 2016; Niimi et al., 2020),
suggesting that these two factors may play a role in lymphatic-
related diseases. Additionally, an ex vivo study on human Tregs
found that miR-31 binds to the 3′UTR of FOXP3 and negatively
regulates Foxp3 expression. The transfection of anti-miR-31 into
Treg cells increased Foxp3 expression by 14-fold (Rouas et al.,
2009). Interestingly, miR-31 is also a negative regulator of normal
lymphatic development by acting on LEC signature genes such as
PROX1 and FOXC2 (Pedrioli et al., 2010). Collectively, it would
be of great interest to further validate these miRNA findings in
lymphedema, as some miRNAs (i.e., miR-31 and miR-182) may
play an overlapping role in immune response regulation and
lymphatic development.

miRNAs AND THE FORMATION OF
FIBROTIC TISSUES

One of the hallmarks of secondary lymphedema is fibrosis,
which is characterized by the deposition of extracellular
matrix (ECM) proteins in the dermis and subcutaneous
tissue, leading to hardening, inflexibility, and non-pitting
edema with a peau d’orange look on the skin. Increased
amounts of collagen fibers in the edematous skin were
found in lymphedema patients (Gardenier et al., 2016) and
animal models (Zampell et al., 2012b). Key processes involved
in tissue fibrosis are TGF-β signaling, synthesis of ECM
molecules, and fibroblast differentiation. TGF-β signaling
plays a pivotal role in accelerating fibrosis by regulating
profibrotic factors such as collagen, laminin, fibronectin, and
elastin (Figure 1C).

miR-29 has been reported to be a negative regulator of skin
fibrosis by targeting profibrotic proteins; TGF-β, platelet-derived
growth factor (PDGF), and IL-4 (Maurer et al., 2010). Negative
regulation of miR-29 and miR-206 reduced the expression of
type I, type VI, and type XXIX collagen in scleroderma (Li
et al., 2012; Peng et al., 2012). Apart from collagen, miR-29
was found to inhibit the synthesis of elastin and fibrillin by
regulating TGF-β, and other profibrotic pathways, including
Wnt/beta catenin, NF-kB, and mitotic-activated protein kinase
(MAPK) (Peng et al., 2012). Further, the interaction of miR-29a
with TGF-β activated kinase binding protein-1 (TAB1) inhibited
the expression of tissue inhibitor of metalloproteinases-1 (TIMP-
1), and increased the action of matrix metalloproteinase (MMP-
1), an enzyme that breaks down the ECM (Ciechomska et al.,
2015; O’Reilly, 2016).

Contrastingly, miR-92a, which was highly expressed in the
serum and skin fibroblast of scleroderma patients, was found
to contribute to MMP-1 downregulation (Sing et al., 2012).
Downregulation of miR-150 induced phosphorylation of Smad3
and activation of TGF-β signaling, subsequently increasing
the transcription of collagen in skin fibrosis. These findings
are in line with elevated miR-150 levels in the serum of
scleroderma patients correlating with thicker skin (Honda
et al., 2013). Although the role of miRNAs in fibrosis in
lymphedema has yet to be elucidated, TGF-β plays significant
role in lymphedema (Oka et al., 2008; Vittet et al., 2012). Lin
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et al. reported significant upregulation of TGF-β expression
in skin punch biopsies compared to paired normal tissue
of lymphedema patients. The elevated expression of TGF-
β was also reflected in the serum of lymphedema patients
and pathway analysis revealed involvement of TGF-β in
chronic lymphedema hallmarks namely fibrosis, dermal and
epidermal cellular growth (Lin et al., 2012). An in vivo study
demonstrated that Smad-mediated activation of TGF-β1 from
infiltrating macrophages leads to the transition of fibroblasts
to myofibroblasts. This process occurs during the acute to
subacute phase of lymphedema (Sano et al., 2020). The crosstalk
between miRNAs and TGF-β in endothelial-mesenchymal
transformation (endMT) and EMT have been by reported
in some studies. For instance, miR-31 positively regulates
expression of mesenchymal markers during TGF-β-endMT in
mouse MS-1 pancreatic microvascular endothelial cells (Katsura
et al., 2016). miR-126 has been demonstrated to inhibit
endMT through phosphoinositide-3-kinases PI3K/Akt/Smad4
signaling by directly targeting PI3K-receptor 2 (PI3KR2) in
endothelial progenitor cells. Moreover, deficiency of miR-126
leads to the induction of endMT by TGF-β in TGF-β1-treated
endothelial progenitor cells (Zhang et al., 2013). Interestingly,
the different roles of miR-31 and miR-126 in regulating
TGF-β in endMT reflect their properties as anti- and pro-
lymphangiogenic factors in developmental lymphangiogenesis
(Md Yusof et al., 2020).

TGF-β signaling also induced the expression of miR-
21, which in turn, targets Smad7 to reduce its expression
and enhance the profibrotic effect of TGF-β. miR-21 was
identified to be involved in EMT, by targeting tensin homolog
(PTEN), an inhibitor of EMT (Romano and Schepis, 2012).
Additionally, miR-21 increased fibroblast differentiation by
downregulating the fibroblast differentiation inhibitor, Sprouty1
through the ERK pathway (Kumarswamy et al., 2011). In a
recent study on skin fibrosis, overexpression of miR-9-5p in
TGF-β activated human dermal fibroblasts abrogated TGF-
β signaling through modulation and silencing of TGFβR2
(Miguel et al., 2016). miR-9-5p targets peroxisome proliferator
activated-receptor gamma (PPARG) to downregulate ECM
factors (α-smooth muscle, vimentin and collagen 1A) and
induce apoptosis in hypertrophic scar fibroblasts (Chai et al.,
2020). Besides being highly expressed during inflammation,
miR-155 is elevated in fibrotic tissue and the lack of miR-155
expression abolishes fibrosis (Artlett et al., 2017). Induction
of miR-155 through IL-1β and the inflammasome node
like receptor protein-3 (NLRP3) signaling pathway, promotes
collagen production (Artlett et al., 2017). Overall, the reported
findings highlight the significant regulatory factors associated
with fibrogenesis such as TGF-β, miR-29, miR-31, and miR-
126. It is noteworthy that a new drug, Remlarsen (MRG-201),
currently in Phase II clinical trials, is designed to mimic the
activity of miR-29 to decrease the expression of collagen and
the formation of keloid in subjects with a history of keloid scars
(Gallant-Behm et al., 2019). Additionally, a newly developed
inhibitor of miR-92a (MRG-110), is intended to accelerate
wound healing by inhibiting the activation of myofibroblasts
(Gallant-Behm et al., 2018). Perhaps, these drugs may provide

beneficial effects by halting fibrogenesis in lymphedema patients
too.

miRNAs AND OBESITY-RELATED
LYMPHEDEMA

Previous studies demonstrated a reciprocal relationship between
obesity and post-operative lymphedema. It was reported that
subcutaneous fat deposition and fat thickness increased after
surgical excision of dermal lymphatic vessels (Aschen et al.,
2012; Escobedo et al., 2016). The risk of secondary lymphedema
increases in obesity due to the abnormal accumulation of fat
lobules at the affected area and compression of lymphatic
capillaries, leading to eventual disruption of fluid and lipid
transport through the lymphatic system (García Nores et al.,
2016; Azhar et al., 2020). On the other hand, injured lymphatic
vessels from surgery can drive adipose deposition, which
promotes proliferation of local adipose tissue and subsequently
leads to low grade inflammation. Adipocyte proliferation is
modulated by the upregulation of adipose differentiation genes,
PPARG and CCAAT enhancer-binding protein alpha (CEPBA)
(Aschen et al., 2012). Overexpression of transfected miR-155
decreased expression levels of adipogenic markers including
PPAR-γ, CEPB-α, and adiponectin in 3T3-L1 adipocytes.
Interestingly, further pathway analysis revealed that miR-155
overexpression resulted in increased inflammatory cytokine and
chemokine expression (Liu et al., 2011; Karkeni et al., 2016).
Overexpression of miR-182 in 3T3-L1 cells and human visceral
adipocytes greatly inhibited adipocyte differentiation by directly
targeting CEPB-α, suggesting miR-182 is a negative regulator of
adipogenesis (Dong et al., 2020).

Pathological adipose remodeling also induced the
dysregulation of adipokine production (leptin and adiponectin)
by increasing the release of inflammatory factors, including
TNF-α, IL-6, IL-8, and monocyte chemoattractant protein
(MCP-1). Increased levels of IL-6 (Cuzzone et al., 2014; Sato
et al., 2016) and leptin (Sato et al., 2016; Zaleska and Olszewski,
2017) were observed in the serum of obese-lymphedema patients,
probably reflecting the expansion of adipose tissue. Treatment
of human LECs with high concentrations of leptin resulted in
disorganization and morphological changes in lymphatic ducts
and inhibited tube formation (Sato et al., 2016). Elevated miR-
199a-3p expression was observed in mature human adipocytes
compared to preadipocyte deposits from obese patients (Gu et al.,
2016). The expression of miR-199a-3p was significantly induced
by leptin, IL-6, and TNF-α. Interestingly, TNF-α, IL-6, and leptin
induced the expression of miR-378 to promote lipogenesis in
human adipocytes and led to insulin resistance (Gerin et al.,
2010; Xu et al., 2014). An anti-miR-378 (MGN-5804) has been
developed to regulate insulin resistance in metabolic disease
(Carrer et al., 2012). The preliminary findings revealed that
knock-out miR-378 mice were protected against diet-induced
obesity and exhibit a reduction in adipocyte size (Carrer et al.,
2012). Treatment of human adipocytes with leptin, resistin,
IL-6, and TNF-α upregulated miR-335, which is encoded by
the second intron of mesoderm-specific transcript (MEST), a
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gene involved in fat expansion (Zhu et al., 2014). Additionally,
upregulation of IL-6 and TNF-α increased miR-146b expression
in human mature adipocytes as a response toward obesity-related
inflammation (Shi et al., 2014). Other miRNAs that target TNFA
are miR-221 and miR-222, which were upregulated in muscle
and liver tissue of obese rats (Chartoumpekis et al., 2012; Lustig
et al., 2014). Levels of miR-221 in adipose tissue were positively
correlated with higher body mass index, glucose and insulin
concentration in the serum of obese patients (Meerson et al.,
2013). Moreover, miR-221 may contribute to the development
of insulin resistance, by affecting PPAR signaling pathways and
directly downregulating ETS1 and ADIPOR1. Meanwhile, miR-
222 expression was significantly higher in plasma of obese
patients and dropped in response to insulin administration.
Thus, miR-222 may play a significant role in adipogenesis and
insulin resistance (Vickers et al., 2011; Ortega et al., 2014).
Taken together, these findings deepen the understanding that
lymphedema is associated with abnormal metabolic mechanisms
such as insulin resistance and overexpression of adipokines
(Figure 1D). The elucidation of miRNA roles in obesity-related
lymphedema may provide novel treatment targets.

CONCLUSION AND FUTURE
PERSPECTIVES

This review has highlighted several miRNAs that are involved
in processes that contribute to secondary lymphedema. Most
of the studies on miRNAs were conducted in autoimmune
and inflammation-related diseases, suggesting that molecular
investigation of secondary lymphedema is still lacking. Given
that secondary lymphedema involves multiple events and has
different stages, extensive studies are warranted to refine the
characterization of miRNAs in lymphedema patients or animal
models to provide new insights into the mechanisms underlying
lymphedema and subsequently facilitate the development of
molecular-based therapies for this condition.

To date, there are no FDA-approved drugs specifically
designed to target lymphangiogenesis or lymphedema. The
search for molecular-based therapies for lymphedema is still
ongoing. There are limited studies on therapeutic interventions
for lymphedema, highlighting the need for a different group of
targets and miRNAs that could be of potential benefit in this
area. Most of the reported studies on miRNA-based therapies
are mainly for diseases such as cancer, hepatitis, and skin lesion
(Hanna et al., 2019; Chakraborty et al., 2021). The development of
potential drugs for lymphedema that target lymphatic vasculature
may involve delicate work given that lymphangiogenesis actively
occurs in metastatic cancers (Christiansen and Detmar, 2011; Md
Yusof et al., 2020). Although interfering with lymphangiogenesis
may reduce tumor size, it may also lead to the accumulation of

lymph fluid in the affected area, hence necessitating new therapies
to balance both issues carefully. We hypothesize that miR-126
could be exploited as a new approach for lymphedema therapy
due to its function in lymphatic maturation and processes that
contribute to lymphedema. Of importance, miR-126 has been
shown to act as a tumor-suppressor miRNA in various cancers
(Dong et al., 2016). Likewise, miR-31, a negative regulator of
lymphatic vessels and an oncogenic miRNA (Yu et al., 2018),
could also be a therapeutic target. Theoretically, inhibition
of miR-31 should induce lymphagiogenesis and disrupt the
expansion of tumor growth (Pedrioli et al., 2010; Yu et al., 2018).
Taken together, these miRNA candidates may serve as potential
dual-effect agents worth validating in lymphedema studies.

Undoubtedly, the field of miRNAs and biomarkers is
promising but dealing with a multitude of effects of a miRNA
remains a challenge in miRNA-based therapy. Emerging miRNA
studies in different disease models suggests that while the
dysregulation of miRNAs may be disease–specific, the effects of
miRNA modulation may lead to undesirable off-target effects on
normal cells or tissues (Rupaimoole and Slack, 2017; Chakraborty
et al., 2021). Moreover, some miRNA delivery vehicles such as
viral-based vector (adeno-associated virus) and polymer-based
(polyethylamines, PEI) were reported to cause a strong immune
response (Geisler and Fechner, 2016) and cytotoxicity to normal
cells (Bai et al., 2019; Segal and Slack, 2020). It is well-documented
that dysregulation of the immune system occurs in lymphedema
patients (García Nores et al., 2018; Kataru et al., 2019a) and
immune-related adverse effects may be fatal in the affected
individuals. Therefore, more effective delivery systems need to be
explored to improve the target-specificity and localized delivery
of miRNA-based therapies in lymphedema patients.
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