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Abstract
Background: To evaluate the performances of multiparametric MRI-based convolu-
tional neural networks (CNNs) for the preoperative assessment of breast cancer
molecular subtypes.
Methods: A total of 136 patients with 136 pathologically confirmed invasive breast
cancers were randomly divided into training, validation, and testing sets in this retro-
spective study. The CNN models were established based on contrast-enhanced T1-
weighted imaging (T1C), Apparent diffusion coefficient (ADC), and T2-weighted
imaging (T2W) using the training and validation sets. The performances of CNN
models were evaluated on the testing set. The area under the receiver operating char-
acteristic curve (AUC), sensitivity, specificity, and accuracy were calculated to assess
the performance.
Results: For the separation of each subtype from other subtypes on the testing set, the
T1C-based models yielded AUCs from 0.762 to 0.920; the ADC-based models yielded
AUCs from 0.686 to 0.851; and the T2W-based models achieved AUCs from 0.639
to 0.697.
Conclusion: T1C-based models performed better than ADC-based models and T2W-
based models in assessing the breast cancer molecular subtypes. The discriminating
performances of our CNN models for triple negative and human epidermal growth
factor receptor 2-enriched subtypes were better than that of luminal A and luminal B
subtypes.
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INTRODUCTION

Breast cancer is considered the most common and highest-
mortality malignant tumor worldwide.1 Breast cancer, as a
highly heterogeneous disease in clinical practice, has four main
intrinsic molecular subtypes based on the expression status of
several molecular receptors: luminal A, luminal B, human epi-
dermal growth factor receptor 2 (HER2)-enriched, and triple
negative (TN).2 Luminal and HER2-enriched tumors are often
considered good candidates for endocrine therapy and targeted
antibody therapy, respectively.3,4 TN tumors have the worst
prognosis and responses to chemotherapy.5 The characteristics

of breast cancers that have substantial differences in phenotype,
treatment, prognosis, response, and outcome cannot be fully
reflected by traditional evaluations based on tumor grade, size,
and histology.6,7 The molecular subtypes of breast cancer are
routinely evaluated by immunohistochemical surrogates or
gene expression profiling from tissue biopsy.8,9 This approach
has some limitations because the limited number, size, and
location of the samples cannot capture the heterogeneity within
the whole tumor. Additionally, breast tumor biology may not
remain stable over time or during treatment.10 The heterogene-
ity within a single tumor may cause therapy resistance and
treatment failure.11–13
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Medical imaging describes a set of noninvasive and
alternative approaches for the preoperative evaluation of
breast cancer and the monitoring of biological changes dur-
ing treatment.14 In this context, magnetic resonance imaging
(MRI) is considered a powerful tool for the examination of
breast cancer, because it can be used to scan the whole
breast to obtain high-spatial-resolution images. Multipara-
metric MRI consists of T2-weighted, dynamic contrast
enhanced (DCE), diffusion-weighted, and other imaging
sequences. Although the DCE-MRI sequence is primarily
focused on, complementary sequences such as diffusion-
weighted imaging (DWI) can also provide additional func-
tional information via the detection of surrogate markers for
tissue microstructure and cell density by measuring the ran-
dom movement of water molecules.15 MRI coupled with
radiomics has yielded some initial encouraging results
regarding the prediction of molecular subtype,16 tumor
histology,17 recurrence risk,18 chemotherapy response,19 and
metastatic potential.20 Convolutional neural networks
(CNNs) have displayed excellent performance in the image
recognition field. Worldwide efforts have provided many
effective and mature CNNs, such as ResNet, VGG, AlexNet,
and InceptionV3. Different from radiomics, which extracts
handcrafted features to carry out a specific task; CNNs can
automatically and adaptively learn multilevel features from
medical images to perform end-to-end tasks without hand-
crafted feature engineering. Additionally, CNNs can scan all
image pixels with convolution kernels, which helps perceive
the global information within the image. Some studies have
indicated that MRI-based deep learning has the potential in
predicting molecular subtype in breast cancer.21,22 However,
the performances of multiparametric MRI-based CNNs in
the prediction of molecular subtypes of breast cancer still
need to be further explored.

We hypothesized that the microstructural heterogeneity
of breast cancer among different molecular subtypes would
lead to different phenotypes on imaging that can be cap-
tured with multiparametric MRI-based CNNs. Therefore,
the purpose of our study was to evaluate the performances
of multiparametric MRI-based CNNs for the preoperative
assessment of breast cancer molecular subtypes.

METHODS

Patients

Our retrospective study was approved by the ethics commit-
tee of our hospital with a waiver of written informed con-
sent. A database search was performed for patients who
underwent multiparametric breast MRI examinations from
January 2015 to June 2019. The inclusion criteria for the
study were as follows: (1) histologically confirmed invasive
breast cancer and a histologic result of estrogen receptor
(ER), progesterone receptor (PR), HER2, and antigen identi-
fied by monoclonal antibody (Ki-67) expression; and (2)
preoperative multiparametric MRI examination. The

exclusion criteria were as follows: (1) preoperative chemo-
therapy, radiotherapy, or endocrine therapy; (2) lack of
complete clinical data; (3) preoperative invasive operation of
the breast; and (4) obvious imaging artifacts. After screen-
ing, a total of 136 lesions from 136 patients with invasive
breast cancers were included (only the largest breast lesion
with a corresponding pathological result was included in the
analysis for patients with multicentric lesions). According to
the classification goals, all patients in our study were ran-
domly divided into the training, validation, and testing sets
at a 6:2:2 ratio.

Magnetic resonance image acquisition

All examinations were performed using a 3.0 Tesla mag-
netic resonance scanner (Verio, Siemens Medical Sys-
tems) in the study, with a dedicated 4-channel breast
surface coil. All patients were examined in a prone posi-
tion during the MRI examination. The transverse turbo
spin-echo T2-weighted sequence was performed by adopt-
ing the following parameters: repetition time (TR)/echo
time (TE), 5300/83 ms; matrix size, 364 � 290; field of
view, 34 � 34 cm; slice thickness, 4.5 mm; slice gap,
1 mm; number of excitations (NEX), 1. The transverse
DWI sequences were performed at b values of 50 and
850 s/mm2 by adopting the following parameters: TR/TE,
7300/81 ms; matrix size, 192 � 126; field of view,
34 � 14 cm; slice thickness, 3.5 mm; slice gap, 0.5 mm;
NEX, 5. Apparent diffusion coefficient (ADC) maps were
calculated on the corresponding workstation by adopting
the least squares method with images of b values of
50 and 850 s/mm2. After T2W and DWI sequence, a
DCE-MRI transverse sequence was performed with six
dynamic acquisitions, one before and five after an elbow
vein bolus injection of gadolinium dimeglumine
(GE Healthcare) equal to 0.1 mmol/kg body weight, fol-
lowed by a 20-ml saline flush. The first postcontrast
dynamic image acquisition started at the 30th second
after contrast agent injection. The temporal resolution
was 60 s for each phase of the post-contrast dynamic
acquisitions. DCE-MRI sequence scan parameters were as
follows: TR/TE, 4.26/1.53 ms; flip angle, 6�; matrix,
448 � 372; field of view, 35 � 35 cm; slice thickness,
0.9 mm; slice gap, 0.18 mm; NEX, 1.

Histopathological analysis

Immunohistochemical (IHC) analysis included ER, PR, Ki-
67, and HER2. Molecular subtypes were classified as
luminal A, luminal B, HER2-enriched, and TN according to
a previous study.23 ER+ and/or PR+, HER2� and low-Ki-67
lesions were determined as luminal A. ER- and/or PR+,
HER2�, and high-Ki-67 lesions were determined as luminal
B�, whereas ER� and/or PR+, and HER2+ lesions were
determined as luminal B+; here, the luminal B� and luminal
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B+ were combined into a single type (luminal B) in the deep
learning analysis to ensure a certain dataset size. ER�, PR�,
and HER2+ lesions were determined as HER2-enriched.
ER�, PR�, and HER2� lesions were determined TN. Lesions
with equivocal HER2 status, were further evaluated using
fluorescence in situ hybridization. Lesions with measured
gene amplification were classified as HER2+.

Regions of interest delineation

The transverse T2W, ADC, and contrast-enhanced T1-
weighted (T1 + C) images were used to develop the CNN
models. The first transverse postcontrast dynamic images
were used as T1 + C, as this phase of DCE-MRI (obtained
at the 90th second after contrast agent injection) best
shows the breast lesion boundary relative to adjacent tis-
sues and contains rich predicting information. The regions
of interest (ROIs) of breast lesions on the transverse
T1 + C, T2W, and ADC images were manually delineated
by a radiologist with 6 years of experience interpreting
breast MRI. Delineation of the lesion ROIs was performed
slice-by-slice for the whole tumor volume (Figure 1) using
open-source software (3Dslicer; https://www.slicer.org/).
The ROIs of all breast lesions were confirmed by a radiolo-
gist with 12 years of experience.

Data preprocessing

Data augmentation was applied to the image sets (Figure 1),
using affine transformations, including random rotation
from �10 to 10�, stretching from 0.9 to 1.1, and shifting
from �10 to 10 pixels. After the image transformations, one
subtype set was increased tenfold, and all other subtype sets
were augmented to balance the cases (each molecular sub-
type with the one subtype versus all other subtypes strategy).
According to the ROIs of each breast lesion, a block cen-
tered at the center of the tumor containing the whole tumor
was cropped from the images. All slices of the blocks were
reshaped to 224 � 224 by zero-padding.

Deep-Learning analysis

All experiments were conducted in Python (version 3.7.0;
Python Software Foundation) by using PyTorch (version:
1.4.0) on a workstation equipped with a GeForce GTX 3080
GPU. ResNet has good stability and performance in many
computer vision tasks.24 Therefore, the ResNet18 architec-
ture pre-trained with ImageNet (http://www.imagenet.org/)
was used to establish preoperative prediction models based
on the images of the three sequences (Figure 2). Several
modifications were applied to the pre-trained CNNs in this

F I G U R E 1 Delineation of regions of interest and image preprocessing included block extraction and data augmentation
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study. The number of neurons in the fully connected layer
was adjusted from 1000 to 2 to fit the classification task of
this study. All images of the three sequences were normal-
ized before they were fed into the networks by subtracting
the mean and dividing by the standard deviation. The
weights of the fully connected layers and the convolutional
layers were adjusted according to the images of the training
set, which were fed into the networks. The Adam algorithm
was adopted during the training process to minimize the
loss (cross-entropy) function, with a mini-batch size of
8. The initial learning rate for the Adam optimizer was set
to 0.001 and decayed by a factor of 10 each time when there
was no improvement in accuracy for 10 continuous epochs
in the validation set. Finally, the CNN model with the high-
est accuracy of the validation set was selected. The images of
the testing set were fed into the trained CNN model to out-
put the probability of every class, and the class with the
highest probability was chosen as the classification result.

Statistical analysis

All statistical analyses were performed using SPSS (IBM
SPSS, v.25.0) and Python. We assessed the predictive perfor-
mance of the CNN models for each molecular subtype with
a one subtype versus all other subtypes strategy on the test
set. The gold standard for the prediction of molecular sub-
types was the postoperative histopathology result. The area
under the receiver operating characteristic curve (AUC) and
its 95% confidence interval (CI), sensitivity, specificity,

positive predictive value (PPV), negative predictive value
(NPV), and accuracy were calculated. The optimal cutoff
value was determined by maximizing Youden’s index. Sig-
nificant differences between AUCs were compared by
DeLong’s test.25 Welch’s t-test or Student’s t-test was used
for continuous variables, and Pearson’s χ2 test was used for
categorical variables. A p-value <0.05 was considered statis-
tically significant.

RESULTS

Clinicopathological characteristics

The clinicopathological information of each patient is pro-
vided in Table 1. Of the 136 biopsy-proven breast cancers,
35 were histologically confirmed as luminal A, 52 as
luminal B, 26 as HER2-enriched, and 23 as TN. The median
ages of the patients were 52, 48, 51, and 52 years for the
luminal A, luminal B, HER2-enriched, and TN groups,
respectively. There was no significant difference in age,
tumor size, family history, histologic type or menopausal
status among the patients, except for ER status, PR status,
HER2 status, and Ki-67.

Discriminating luminal A from other subtypes

The accuracy, sensitivity, specificity, and AUC in dis-
criminating luminal A from the other subtypes are

F I G U R E 2 The conceptual architecture of the multiparametric MRI-based convolutional neural networks for the preoperative assessment of breast
cancer molecular subtypes
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summarized in Table 2 and Figure 3. The T1 + C model
yielded an AUC of 0.817 (95% CI, 0.734, 0.900), a sensi-
tivity of 0.673, a specificity of 0.886, a PPV of 0.875, an
NPV of 0.696, and an accuracy of 0.771. The ADC model
achieved an AUC of 0.759 (95% CI, 0.658, 0.859), a sensi-
tivity of 0.596, a specificity of 0.795, a PPV of 0.775, an
NPV of 0.625, and an accuracy of 0.698. The T2W model
demonstrated an AUC of 0.639 (95% CI, 0.526, 0.748), a
sensitivity of 0.634, a specificity of 0.591, a PPV of 0.647,
an NPV of 0.578, and an accuracy of 0.615. The T1 + C
model and the ADC model performed better than the
T2W model (p = 0.011 and p = 0.126), and the T1 + C
model performed slightly better than the ADC model
(p = 0.402).

Discriminating luminal B from other subtypes

The accuracy, sensitivity, specificity, and AUC in discrim-
inating luminal B from the other subtypes are summa-
rized in Table 2 and Figure 4. The T1 + C model yielded
an AUC of 0.762 (95% CI, 0.648, 0.876), a sensitivity of
0.690, a specificity of 0.795, a PPV of 0.714, an NPV of

0.775, and an accuracy of 0.750. The ADC model achieved
an AUC of 0.686 (95% CI, 0.557, 0.816), a sensitivity of
0.655, a specificity of 0.641, a PPV of 0.576, an NPV of
0.714, and an accuracy of 0.647. The T2W model demon-
strated an AUC of 0.683 (95% CI, 0.554, 0.811), a sensitiv-
ity of 0.655, a specificity of 0.667, a PPV of 0.594, an NPV
of 0.772, and an accuracy of 0.661. The T1 + C model
performed slightly better than the ADC model
(p = 0.348) and the T2W model (p = 0.373), and the
ADC model had almost equivalent performance to the
T2W model (p = 0.969).

Discriminating HER2-enriched from other
subtypes

The accuracy, sensitivity, specificity, and AUC in dis-
criminating HER2-enriched from the other subtypes were
summarized in Table 2 and Figure 5. The T1 + C model
yielded an AUC of 0.885 (95% CI, 0.817, 0.953), a sensi-
tivity of 0.800, a specificity of 0.895, a PPV of 0.889, an
NPV of 0.811, and an accuracy of 0.847. The ADC model
achieved an AUC of 0.757 (95% CI, 0.652, 0.862), a

T A B L E 1 Clinicopathological characteristics of the patients

All (N = 136) Luminal A (N = 35) Luminal B (N = 52) HER2-enriched (N = 26) TN (N = 23) p value

Age-median (IQR) 51 (45–57) 52 (47–56) 48 (43–55) 51 (46–58) 52 (47–62) 0.116

Tumor size 0.997

≤2.0 cm 99 (72.8) 25 (71.4) 38 (73.1) 19 (73.1) 17 (73.9)

2.1–4.0 cm 37 (27.2) 10 (28.6) 14 (26.9) 7 (26.9) 6 (26.1)

Histologic type 0.697

IDC 131 (96.3) 33 (94.3) 50 (96.2) 26 (100) 22 (95.7)

Other 5 (3.7) 2 (5.7) 2 (3.8) 0 (0) 1 (4.3)

Menopausal 0.860

Premenopausal 74 (54.4) 18 (51.4) 27 (51.9) 15 (57.7) 14 (60.9)

Post-menopausal 62 (45.6) 17 (48.6) 25 (48.1) 11 (42.3) 9 (39.1)

Family history 0.935

No 132 (97.1) 34 (97.1) 51 (98.1) 25 (96.2) 22 (95.7)

Yes 4 (2.9) 1 (2.9) 1 (1.9) 1 (3.8) 1 (4.3)

ER status <0.001

Positive 82 (60.3) 35 (100.0) 47 (90.4) 0 (0.0) 0 (0.0)

Negative 54 (39.7) 0 (0.0) 5 (9.6) 26 (100.0) 23 (100.0)

PR status <0.001

Positive 75 (55.1) 32 (91.4) 43 (82.7) 0 (0.0) 0 (0.0)

Negative 61 (44.9) 3 (8.6) 9 (17.3) 26 (100.0) 23 (100.0)

HER2 status <0.001

Positive 54 (39.7) 0 (0.0) 28 (53.8) 26 (100.0) 0 (0.0)

Negative 82 (60.2) 35 (100.0) 24 (46.2) 0 (0.0) 23 (100.0)

Ki-67 <0.001

High 92 (67.6) 0 (0.0) 46 (88.5) 24 (92.3) 22 (95.7)

Low 44 (32.4) 35 (100.0) 6 (11.5) 2 (7.7) 1 (4.3)

Abbreviations: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IDC, infiltrating ductal cancer; IQR, interquartile range; Ki-67, antigen identified by
monoclonal antibody; PR, progesterone receptor; TN, triple negative.
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sensitivity of 0.760, a specificity of 0.792, a PPV of 0.792,
an NPV of 0.760, and an accuracy of 0.776. The T2W
model demonstrated an AUC of 0.663 (95% CI, 0.547,
0.778), a sensitivity of 0.660, a specificity of 0.708, a PPV
of 0.702, an NPV of 0.667, and an accuracy of 0.684. The
T1 + C model performed better than the ADC model
(p = 0.035) and the T2W model (p = 0.001), and the
ADC model had a slightly better performance to the T2W
model (p = 0.260).

Discriminating TN from other subtypes

The accuracy, sensitivity, specificity, and AUC in discrimi-
nating TN from the other subtypes are summarized in
Table 2 and Figure 6. The T1 + C model yielded an AUC of
0.920 (95% CI, 0.863, 0.977), a sensitivity of 0.800, a speci-
ficity of 0.930, a PPV of 0.936, an NPV of 0.784, and an
accuracy of 0.857. The ADC model achieved an AUC of
0.851 (95% CI, 0.770, 0.932), a sensitivity of 0.800, a speci-
ficity of 0.884, a PPV of 0.898, an NPV of 0.775, and an
accuracy of 0.838. The T2W model demonstrated an AUC
of 0.697 (95% CI, 0.588, 0.806), a sensitivity of 0.709, a spec-
ificity of 0.767, a PPV of 0.796, an NPV of 0.673, and an
accuracy of 0.735. The T1 + C model and the ADC model
performed better than the T2W model (p = 0.001 and
p = 0.027), and the T1 + C model performed slightly better
than the ADC model (p = 0.139).

DISCUSSION

In this study, we performed comprehensive deep learning
analyses to assess the efficiencies of three commonly used
breast cancer-examination series on molecular subtypes. To
alleviate the problems of limited molecular subtype data for
CNN training, we trained CNN models to predict molecular
subtypes using transfer learning. Because many image fea-
tures are composed of universal elements, a CNN initialized
with transfer weights can easily outperform a CNN trained
from randomly initialized weights.26 We performed multiple
comparisons of the prediction effects among the T1C, ADC,
and T2W sequences, and found that in the prediction of the
four subtypes, the T1C-based models always outperformed
the ADC and T2W-based models in terms of AUC and
accuracy. In addition, our results indicate that the ability of
MRI-based CNNs to predict molecular subtypes may also

T A B L E 2 The performance characteristics of multiparametric
MRI-based convolutional neural networks for the assessment of breast
cancer molecular subtypes in the testing set

ACC SEN SPE PPV NPV AUC (95% CI)

Luminal A

T1 + C 0.771 0.673 0.886 0.875 0.696 0.817 (0.734–0.900)

ADC 0.698 0.596 0.795 0.775 0.625 0.759 (0.658–0.859)

T2WI 0.615 0.634 0.591 0.647 0.578 0.639 (0.526–0.748)

Luminal B

T1 + C 0.750 0.690 0.795 0.714 0.775 0.762 (0.648–0.876)

ADC 0.647 0.655 0.641 0.576 0.714 0.686 (0.557–0.816)

T2WI 0.661 0.655 0.667 0.594 0.722 0.683 (0.554–0.811)

HER-2

T1 + C 0.847 0.800 0.895 0.889 0.811 0.885 (0.817–0.953)

ADC 0.776 0.760 0.792 0.792 0.760 0.757 (0.652–0.862)

T2WI 0.684 0.660 0.708 0.702 0.667 0.663 (0.547–0.778)

TN

T1 + C 0.857 0.800 0.930 0.936 0.784 0.920 (0.863–0.977)

ADC 0.838 0.800 0.884 0.898 0.775 0.851 (0.770–0.932)

T2WI 0.735 0.709 0.767 0.796 0.673 0.697 (0.588–0.806)

Abbreviations: T1 + C, first axial post contrast dynamic images; T2WI, T2-weighted
images; ADC, apparent diffusion coefficient; ACC, accuracy; AUC, area under the
receiver operating characteristic curve; CI, confidence interval; HER2, human
epidermal growth factor receptor 2; NPV, negative predictive value; PPV, positive
predictive value; SEN, sensitivity; SPE, specificity; TN, triple negative.

F I G U R E 3 Receiver operating characteristic curve analysis of the
contrast-enhanced T1-weighted imaging model (orange line), apparent
diffusion coefficient model (green line), and T2-weighted imaging model
(blue line) in predicting luminal A breast cancer in the testing set

F I G UR E 4 Receiver operating characteristic curve analysis of the
contrast-enhanced T1-weighted imaging model (orange line), apparent
diffusion coefficient model (green line), and T2-weighted imaging model
(blue line) in predicting luminal B breast cancer in the testing set
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depend on the biological characteristics and imaging fea-
tures of different molecular subtypes.

With the T1C models, the best results in terms of AUCs
were achieved in the separation of TN and HER2-enriched
type from all other types (AUCs, 0.920 and 0.885). Tumors
angiogenesis is one of the important factors affecting con-
trast medium uptake and internal enhancement patterns.
Highly vascularized breast tumors tend to show strong con-
trast enhancement in the first post contrast dynamic phase.
HER2 overexpression can increase cell survival, cell prolifer-
ation, and invasiveness, as well as neoangiogenesis by
improving vascular endothelial growth factor production.27

The rich angiogenesis of the HER2-enriched subtype leads
to rapid early contrast uptake, which can be detected by
T1C.

28 The TN type tends to show a round/oval mass shape
and rim enhancement, caused by high angiogenesis in the

periphery of the breast tumor.29,30 Therefore, compared with
ADC and T2W imaging, T1C imaging can better predict
TN- and HER2-enriched breast cancers. The range of AUCs
(0.762–0.920) using the T1C model obtained in our study
was generally consistent with that of previous studies report-
ing AUC values of 0.650–0.910 in the prediction of breast
cancer subtypes using contrast-enhanced MRI.21,22,31 Differ-
ences might be attributed to heterogeneity in scanners,
patients, classification tasks, and deep learning architectures
among the different studies.

Although the ADC-based CNNs achieved lower AUCs
than the T1C-based CNNs, we obtained good results in the
separation between TN and all other types (AUC 0.851). TN
breast cancer is partially characterized by tumor necrosis,
squamous metaplasia or spindle cells, a high nuclear-
cytoplasmic ratio, and a high total mitotic count30,32; it can
also demonstrate an aggressive characteristic. DWI can pro-
vide quantitative and qualitative information reflecting cel-
lular changes of TN breast cancers. Areas of necrotic tissue
and destruction of cell membrane integrity in tumor lesions
may be associated with increased intratumoral water diffu-
sion. This may explain the higher ADC in TN breast cancers
when the ADC of the entire breast lesion is measured.33,34 A
previous study showed that radiomic signatures from DWI
with ADC mapping allow the separation between TN and
all other types with a diagnostic accuracy of 0.736.35 How-
ever, the sample size of the study was very small, and the
results may be unstable. Another previous study reported an
AUC of 0.804 in the separation of TN from other cancers
using DWI-based radiomics.36 Our study achieved slightly
better results than these previous studies.

The results of our study showed that there are still two
difficult points in predicting molecular subtypes of breast
cancer using MRI-based CNNs. The first is the T2W-based
CNN performed only moderately in predicting the four
molecular subtypes (AUC, 0.639–0.697). Iso-/hypointense
T2-signals are considered a feature of breast cancer, which
may reflect fibrosis.37 In contrast, TN breast cancers may
show high signal intensity on T2W images, which may be
associated with tumor necrosis.30,38 However, the differences
on the T2W images of the four molecular subtypes does not
seem to be easily captured by CNN. This may be explainable
because the signal differences on the T2W images are small
and the image resolution is relatively limited. The second
difficult point is that MRI-based CNNs have limited predic-
tive performance for luminal A and luminal B types. Lumi-
nal A is considered the most frequent subtype of breast
cancers39 and it can be treated with endocrine therapy;
therefore, determining luminal A is clinically important and
relevant. Luminal B tumors are resistant to hormone ther-
apy and have a molecular phenotype distinct from that of
luminal A tumors. Luminal tumors demonstrate fibrosis
and perilesional spiculations.40 Intratumoral T2-signal iso-/
hypointensity may also be associated with fibrosis and is
often observed in luminal lesions.37 Luminal breast cancers
usually show less strong enhancement than other subtypes.41

Although their performance in predicting luminal A and

F I G U R E 5 Receiver operating characteristic curve analysis of the
contrast-enhanced T1-weighted imaging model (orange line), apparent
diffusion coefficient model (green line), and T2-weighted imaging model
(blue line) in predicting HER2-enriched breast cancer in the testing set

F I G U R E 6 Receiver operating characteristic curve analysis of the
contrast-enhanced T1-weighted imaging model (orange line), apparent
diffusion coefficient model (green line), and T2-weighted imaging model
(blue line) in predicting triple-negative breast cancer in the testing set
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luminal B tumors was not particularly outstanding, our
T1C-based CNNs (AUC, 0.762–0.817) still reached a level
similar to deep learning and radiomics models in some pre-
vious studies (AUC, 0.759–0.860).22,42,43

There are some limitations in this study. First, selection
bias may be present in this retrospective study, because the
patients were not consecutive cases and the number of
patients was small. Enlarging the sample size will help to
achieve more stable results. Second, molecular subtypes were
not confirmed by formal genetic testing, but by IHC surro-
gates; however, molecular subtypes in clinical practice are
often based on IHC surrogates. Third, the proportions of
the four molecular subtypes were unbalanced. Although data
augmentation was applied to balance data, such imbalance
in the original data might have influenced the development
of the CNN model.

In conclusion, we established multiple MRI-based CNNs
to assess four breast cancer molecular subtypes. Our initial
results showed that T1C performed better than ADC and
T2W in assessing the breast cancer molecular subtypes. The
discriminating performances of our CNN models for TN
and HER2-enriched breast cancer were better than that of
luminal A and luminal B breast cancer. Our study indicates
that different MRI sequences may contain different kinds of
distinguishing information for the assessment of breast can-
cer molecular subtypes and that selecting a suitable MRI
sequence is helpful to achieve better results for a specific
assessment task.
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