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Abstract
Wnt/β-catenin signaling is highly conserved throughout metazoans, is required
for numerous essential events in development, and serves as a stem cell niche
signal in many contexts. Misregulation of the pathway is linked to several
human pathologies, most notably cancer. Wnt stimulation results in stabilization
and nuclear import of β-catenin, which then acts as a transcriptional
co-activator. Transcription factors of the T-cell family (TCF) are the
best-characterized nuclear binding partners of β-catenin and mediators of Wnt
gene regulation. This review provides an update on what is known about the
transcriptional activation of Wnt target genes, highlighting recent work that
modifies the conventional model. Wnt/β-catenin signaling regulates genes in a
highly context-dependent manner, and the role of other signaling pathways and
TCF co-factors in this process will be discussed. Understanding Wnt gene
regulation has served to elucidate many biological roles of the pathway, and we
will use examples from stem cell biology, metabolism, and evolution to illustrate
some of the rich Wnt biology that has been uncovered.
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Introduction
The Wnt/β-catenin (Wnt/β-cat) pathway is conserved throughout 
metazoans and is essential for development and tissue homeostasis 
in adult organisms (reviewed in 1–3). Aberrant Wnt/β-cat signaling 
is linked to several diseases, e.g. many cancers4,5 as well as bone 
and metabolic disorders6. Intense investigation into the mecha-
nisms of this pathway has uncovered some of the basics of how 
Wnts influence gene expression. A better understanding of how 
this signaling cascade operates has also provided genetic tools to 
explore various aspects of Wnt biology (reviewed in 7,8). In addi-
tion, the identification of Wnt transcriptional targets has enhanced 
our knowledge of the biological importance of Wnt/β-cat signaling. 
In this short review, we will summarize recent findings on how the 
Wnt/β-cat pathway regulates transcription and provide examples 
of how identifying Wnt targets has broadened our knowledge of 
stem cell biology, the regulation of metabolism, and the evolution 
of physical traits.

The Wnt/β-cat pathway regulates the levels and subcellular  
localization of β-cat (Figure 1). In unstimulated cells, β-cat is  
constantly degraded by a “destruction complex” containing the 
molecular scaffolds Axin and adenomatous polyposis coli (APC), 
the protein kinases glycogen synthase kinase 3 (GSK3)α/β and 

casein kinase I (CKI), and the ubiquitin E3 ligase β-transducin 
repeat-containing E3 ubiquitin protein ligase (β-TrCP) (reviewed 
in 9). Upon Wnt binding to a receptor complex containing  
Frizzled (Fzd) and low-density lipoprotein receptor-related 
protein 5/6 (LRP5/6), the destruction complex is inactivated,  
allowing the stabilization and nuclear import of β-cat (reviewed in 
10). Nuclear β-cat is then recruited to chromatin by transcription 
factors (TFs), with members of the T-cell factor (TCF)/lymphoid 
enhancer-binding factor 1 (LEF1) family being the best charac-
terized11–15 (reviewed in 16 and 17). In many cases, TCFs act as  
transcriptional switches, repressing Wnt targets in the absence of 
signaling, in part by the recruitment of transducin-like enhancer 
of split (TLE)/Groucho (Gro) co-repressors, which are displaced  
by β-cat, which then recruits co-activators such as the histone  
acetyltransferases CREB-binding protein (CBP) and p300  
(reviewed in 18).

The pathway described above is highly conserved from sponges  
to humans1,3, but vertebrates have evolved a mechanism to regu-
late the sensitivity of cells to Wnt signaling. R-spondins (Rspos) 
are secreted proteins that potentiate Wnt/β-cat signaling (reviewed 
in 19). Rspos bind to two cell surface receptors, leucine-rich  
repeat-containing G-protein-coupled receptor (Lgr)4/5/6 and the 

Figure 1. Overview of vertebrate Wnt/β-catenin (Wnt/β-cat) signaling. Wnt binding to Frizzled (Fzd) and low-density lipoprotein receptor-
related protein 5/6 (Lrp5/6) co-receptors promotes the phosphorylation of Lrp5/6’s cytoplasmic tail. These interactions block the ability of 
the destruction complex to phosphorylate and ubiquitinate β-cat, preventing its degradation by the proteasome. Stabilized β-cat enters the 
nucleus, where it is recruited to Wnt-regulated enhancers by transcription factors (TFs) of the T-cell factor (TCF) family. R-spondin (Rspo) 
potentiates Wnt/β-cat signaling by increasing the number of Fzd receptors. Rspo forms a complex with Lgr4/5/6 and zinc and ring finger 3 
(Znrf3)/ring finger protein 43 (Rnf43), preventing the latter from ubiquitinating Fzd receptors. APC, adenomatous polyposis coli; CKI, casein 
kinase I; GSK3, glycogen synthase kinase 3; β-TrCP, β-transducin repeat-containing E3 ubiquitin protein ligase.
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E3 ubiquitin ligases zinc and ring finger 3 (Znrf3)/ring finger  
protein 43 (Rnf43)20,21. In the absence of Rspo, Znrf3/Rnf43  
ubiquitinate Fzd receptors, targeting them for degradation20. In  
this manner, Rspo signaling through Lgr and Znrf3/Rnf43  
sensitizes the ability of cells to respond to Wnt signals by increas-
ing the number of Fzd receptors (Figure 1).

In the nucleus, TCF/β-cat can act through enhancers that can be 
hundreds of kilobases away from the proximal promoters of  
Wnt targets (e.g 22–26). Enhancer-promoter communication can 
be explained by chromatin looping, and there was some prior  
evidence for this in Wnt gene regulation26–28. Jones and colleagues 
significantly extend these findings, demonstrating that Wnt- 
dependent looping occurs at multiple targets22. Cohesin complexes 
are strongly associated with chromatin loops (reviewed in 29). 
Consistent with this, chromatin immunoprecipitation sequencing 
(ChIP-seq) was used to show a signal-dependent recruitment of 
cohesin subunits to Wnt-regulated enhancers22. They also found  
that pathway activation does not greatly increase RNA polymer-
ase II (Pol II) occupancy at promoters of Wnt targets, but it does 
increase phosphorylation of the C-terminal domain of Pol II,  
indicating that Wnt/β-cat signaling stimulates transcriptional  
elongation22. This study provides the clearest description to date 
of some of the chromatin events that tie the binding of TCF and  
β-cat to enhancers with the initiation of transcription at Wnt target 
loci, and it will be interesting to see if they are typical for Wnt 
gene activation beyond the human embryonic stem cells used in 
this report.

Updates to the standard model of Wnt gene 
regulation
The traditional assumption is that the recruitment of β-cat to 
chromatin results in transcriptional activation of nearby promot-
ers (reviewed in 10,18). However, a recent study systematically  
addressing this point found that the vast majority of β-cat bind-
ing sites in the chromatin of Xenopus gastrulating embryos had no 
detectable effect on gene expression30. There was a strong overlap 
of the >10,000 β-cat ChiP-seq peaks identified in this report with 
TLE and p300 peaks from prior studies31,32, suggesting that many 
of these regions are functioning according to the standard model 
of Wnt-regulated enhancers. The authors propose a model of β-cat 
recruitment to regulatory DNA acting as a primer, with inputs from 
other signaling pathways required for activating transcription30,33. 
Interestingly, a priming role for β-cat has previously been pro-
posed to occur at Wnt targets at an earlier developmental stage in  
Xenopus, prior to the onset of zygotic transcription at midblastula 
transition34.

The work of Hoppler and colleagues highlights the challenges of 
using ChIP-seq to identify Wnt transcriptional targets. Another 
recent ChIP-seq/transcriptome analysis also found that only a 
small fraction of β-cat peaks were functional35. The same is true 
when TCF peaks are matched to Wnt-regulated genes23,36–39. But the 
study by Nakamura et al.30 is interesting because it also considers  
p300 occupancy, which has a better track record of predicting 
functional enhancers40,41. That being said, even the most sophisti-
cated models using multiple chromatin markers are still not per-
fect in locating functional enhancers42. These studies highlight the  

complex nature of gene regulation and that clearly the recruit-
ment of β-cat to chromatin is not sufficient for the activation of  
transcription.

Input from multiple signaling pathways on Wnt-regulated enhanc-
ers is one way to integrate information to precisely control gene 
expression, but cross-talk with other pathways can also occur 
outside the nucleus. Hippo signaling is a prominent example of 
cross-regulation with the Wnt/β-cat pathway that has received 
recent attention. Hippo signaling is an important regulator of cell 
proliferation and survival in animals (reviewed in 43,44). A kinase 
cascade results in activation of the protein kinase large tumor  
suppressor kinase (LATS)1/2, which phosphorylates and inhibits 
the cytosolic proteins yes-associated protein (YAP) and tafazzin 
(TAZ). In the absence of LATS1/2 activity, YAP and TAZ trans-
locate to the nucleus and serve as co-regulators for TEAD family 
TFs43,44. Initial reports found that YAP/TAZ inhibited Wnt/β-cat 
signaling45–47. In contrast to these reports, Piccolo and co-workers 
found that TAZ was targeted for degradation by the β-cat destruc-
tion complex48. Wnt stimulation resulted in nuclear accumulation of 
both β-cat and TAZ, and a significant portion of the Wnt-induced 
transcriptional regulation was TAZ dependent in mammalian cell 
culture48. Additional characterization revealed that YAP and TAZ 
were components of the destruction complex, which are dislodged 
upon Wnt stimulation49. These authors provided evidence that Wnt-
dependent YAP/TAZ release prevents β-TrCP association with the 
destruction complex, thus preventing β-cat degradation. Thus, YAP 
and TAZ can be viewed as integral components of the Wnt/β-cat 
signaling pathway in addition to their role in Hippo signaling49.

Subsequent reports on the intersections between Hippo and 
Wnt/β-cat signaling support a complex and context-dependent  
relationship between the pathways. For example, LATS2 has  
been shown to directly inhibit β-cat’s interaction with other  
co-activators50. YAP-dependent inhibition of Wnt/β-cat signaling 
has been reported in Lgr5+ intestinal stem cells51 and an antago-
nistic relationship between the Hippo and Wnt pathways was 
also observed in hepatocellular carcinomas52. However, coopera-
tion between the pathways consistent with the Piccolo model has 
been described during chronic inflammation-induced metaplasia 
in corneal epithelium53. In addition, Wnt3a activates both TCF and 
TEAD reporters in skeletal muscle cells54. Adding to the mecha-
nistic insight linking YAP and β-cat, SET domain-containing  
lysine methyltransferase 7 (SETD7) is present in the destruc-
tion complex and methylates YAP, which is required for its abil-
ity to promote the nuclear accumulation of β-cat55. Hippo and  
Wnt/β-cat signaling are connected through multiple mechanisms, 
and understanding the cell-specific cues that favor one interaction 
over another will be an important goal for future studies.

The TCF transcriptional switch in vertebrates
Invertebrates such as Drosophila and Caenorhabditis elegans have 
one TCF gene, which plays a dual role on Wnt targets, inhibiting 
expression in the absence of signaling and mediating transcrip-
tional activation when bound by β-cat (reviewed in 18). Verte-
brates possess four or five TCF genes, with individual TCFs being  
more specialized, e.g. TCF3/TCF7L1 functions exclusively as a 
repressor56–59. In zebrafish, TCF3a and TCF3b repress Sry-related 
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HMG box (Sox)4a expression to inhibit spinal cord neurogenesis in 
a Wnt/β-cat signaling-independent manner60. Recently, Merrill and 
co-workers reported a dramatic genetic interaction between TCF3 
alleles in mice that also supports a major role for β-cat-independent  
repression61. TCF3 null mutants die during gastrulation59, while 
TCF3 mutants lacking the β-cat binding domain (∆NTCF3) die 
during late embryogenesis62. Surprisingly, TCF3null/∆NTCF3 het-
erozygotes survive into adulthood with no obvious defects61. This 
result demonstrates that TCF3 has an essential role in development 
that is independent of binding to β-cat.

How do some Wnt target genes undergo a transcriptional switch 
from repression by TCF3 to β-cat-dependent transcriptional activa-
tion by other TCFs? One model is that Wnt/β-cat signaling activates 
homeodomain-interacting protein kinase 2 (HIPK2), a kinase which 
phosphorylates TCF3, removing it from chromatin63,64. In mouse 
embryonic stem cells, several papers have reported a downregu-
lation of TCF3 in backgrounds where Wnt/β-cat is elevated61,65,66. 
Interestingly, the three reports differ on whether this effect acts at 
the level of transcription and/or post-transcriptionally. Under condi-
tions in which mouse embryonic stem cells differentiate into endo-
derm, TCF3 downregulation coincided with elevated expression of 
the endodermal marker Forkhead Box A2 (FoxA2) and a loss of 

TCF3 on FoxA2 regulatory chromatin66. Indeed, mouse embryonic 
stem cells lacking TCF3 have elevated FoxA2 expression and can 
differentiate into endoderm (albeit more slowly than normal) in the 
absence of Wnt stimulation66. While this indicates that derepres-
sion of Wnt targets is a major driver for endoderm differentiation, 
another endoderm marker, Sox17, is directly activated by TCF4/
TCF7L2 and β-cat67. In sum, it appears as if derepression as well as 
β-cat activation of Wnt targets contribute to endoderm differentia-
tion in vertebrates.

TCFs and Wnt target location
All TCFs contain a HMG domain that can bind DNA in a sequence-
specific manner (reviewed in 16). However, there is considerable 
degeneracy in the consensus binding site68, to the degree that HMG-
DNA recognition cannot be sufficient to drive TCF distribution on 
chromatin (reviewed in 1). This makes identifying Wnt targets 
solely through computational searches problematic (Table 1). One 
way that some TCFs increase their DNA binding specificity is via a 
second domain, termed the C-clamp, located adjacent to the HMG 
domain and which binds GC-rich motifs called helper sites69. The 
C-clamp is a novel Zn-binding domain70 and C-clamp-helper site 
recognition is widely employed in Wnt target gene regulation in 
Drosophila and C. elegans70–73. In vertebrates, C-clamps are found 

Table 1. Approaches to identify Wnt target genes directly activated by the pathway. We define “direct Wnt targets” as 
genes whose regulatory DNA can be physically associated with T-cell factors (TCFs) or other transcription factors (TFs) 
and whose expression is modulated by the recruitment of β-catenin to regulatory chromatin by these TFs. The approaches 
outlined below each have their advantages and disadvantages, and a combination of them is required to establish with 
confidence that a gene is a Wnt target gene in a particular context.

Approach Advantages Disadvantages

Computational searches for TCF binding sites 
Position-weight matrices constructed based on 
validated lists of TCF binding sites can be used 
to screen cis-regulatory DNA for additional sites 
(e.g. 109). The efficiency of this approach can be 
improved by adding multiple sequences bound by 
TFs (e.g. helper sites in invertebrates; see 69).  
The functional relevance of binding sites can be 
verified with reporter assays.

• Quickly identifies potentially 
regulated genes 
• The identification of binding 
sites also establishes 
candidates for mutagenesis 
to rigorously test their 
functionality

• Most effective when the search 
space is restricted to short 
stretches of DNA (<20 kb) rather 
than the whole genome 
• Not all consensus TCF sites will 
be functional 
• TCFs and other TFs have 
degenerate binding sites that could 
be functional, which could be 
missed if the calling criteria are too 
stringent

Transcriptome analyses of Wnt-regulated genes 
Microarrays or RNA sequencing can be used to 
identify genes whose expression changes in Wnt-on 
and Wnt-off conditions in cell culture (e.g. 74) or 
embryos (e.g. 30)

• Identifies the full array of 
genes regulated by Wnt 
pathway activation 
• Many genetic and 
biochemical reagents are 
available to manipulate the 
Wnt pathway

• Does not distinguish between 
direct and indirect targets of Wnt 
signaling 
• In vivo analyses in animal tissues 
are limited by the specificity of 
the genetic drivers used for the 
manipulations

Chromatin immunoprecipitation sequencing 
(ChIP-seq) analyses of TCF or β-catenin genomic 
occupancy 
ChIP-seq with TCFs and β-catenin with or 
without Wnt activation can identify candidate 
Wnt-regulated enhancers. This approach can be 
combined with ChIP-seq for other TFs (e.g. 76) or 
with transcriptome analyses to assign genes to 
regulatory DNA sequences (e.g. 30).

• Biochemically establishes 
the presence of Wnt effectors 
at cis-regulatory elements 
• Provides evidence of 
direct regulation by the Wnt 
pathway

• Many TCF/β-catenin binding sites 
have no detectable function 
• Quality of the antibody used plays 
a major role 
• While this approach can identify 
putative Wnt-dependent cis-regulatory 
elements, identifying which gene 
the element regulates can be 
difficult, especially for long-range 
enhancers
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in some isoforms of TCF1/TCF7L and TCF4/TCF7L2, where their 
presence extends the target selection of these TCF isoforms74,75.

Even in Drosophila, where there is one TCF gene containing a  
C-clamp, there is evidence that it associates with chromatin in 
conjunction with other TFs76. Consistent with this, genome-
wide surveys of TCF or β-cat binding in vertebrates reveal the  
presence of several TF binding site motifs besides the TCF site 
consensus1,30,39,77,78. Other TFs have been reported to co-localize  
with TCFs36,38,39,79,80, and in the cases of Cdx279, Sp5/881, and TEAD 
TFs82, a co-dependency with TCFs or β-cat for chromatin asso-
ciation has been reported. In addition, TCF binding to chroma-
tin is highly cell type specific36 and is dynamic over time in the  
same cell type38,39. The data support a picture where different  
Wnt-regulated enhancers have different binding site grammars, 
which likely is a major mechanism by which Wnt/β-cat signaling 
regulates transcription programs in a cell-specific manner.

Are TCFs the major transcriptional mediators of Wnt/β-cat  
signaling in vertebrate systems? There are several TFs besides TCFs 
that can bind β-cat and regulate reporters in a β-cat-dependent 
manner (reviewed in 1,10,16), but information on their physiologi-
cal relevance is limited. Identifying the β-cat binding domains on 
these TFs would provide valuable tools for investigating these  
interactions. For example, it is well known that deletion of the N-
terminus of TCFs (∆NTCFs) results in potent dominant negatives16. 
Expression of a ∆NTCF4 in colorectal carcinoma cells resulted in 
a reduction of >95% of the β-cat ChIP-seq peaks83. One interpreta-
tion of these dramatic results is that TCFs are the predominant β-cat 
recruiters in these cells, at least under the experimental conditions 
used. These data do not rule out cooperation between TCFs and 
other TFs in β-cat recruitment and highlight the importance of gen-
erating TF mutants with specific defects in β-cat binding.

Wnt target genes inform about stem cell biology
Wnt signaling is considered crucial for tissue maintenance by reg-
ulating stem cells in many tissues, and examining the expression 
of Wnt targets has been a successful strategy for identifying Wnt-
regulated stem cell populations2. Lineage-tracing approaches using 
knock-in alleles of Cre recombinase into the genomic loci of Wnt 
targets allows fate mapping of the progeny of Wnt-active stem cells. 
The first major success of this approach was the identification of 
stem cells in the small intestinal crypts. Lgr5 was initially identi-
fied as a Wnt target in colon cancer cell lines84. Subsequent in vivo 
analysis showed that its expression in the intestinal epithelium was 
limited to crypt base stem cells, and the ability of Lgr5+ cells to give 
rise to epithelial cell types was confirmed through lineage tracing85. 
A gradient of Wnt signaling has been demonstrated to be essential 
for the maintenance of Lgr5+ intestinal stem cells, bolstering the 
idea of Lgr5 as a Wnt target86. Lgr5 has since been shown to mark 
stem cell populations in the hair follicle87, ovarian epithelium88, and 
numerous other tissues89. It is unclear whether it is a Wnt target in 
all cases.

A more widely expressed Wnt target is Axin2, whose expression 
domains resemble Wnt expression patterns90. Axin2 was first used 
for fate mapping in the mammary gland91 and has recently been 
used to investigate the origin of liver cells. The polyploid nature 

of hepatocytes has long raised the question of whether they arise  
from cell division or by differentiation from a stem cell progeni-
tor. The liver is divided into hexagonal lobules, each containing a 
central vein in the middle. A population of mostly diploid Axin2-
expressing cells surrounds the central vein92. Lineage tracing by 
fluorescently labeling Axin2+ cells showed that they give rise to 
progeny that can be found throughout the lobule. Centrally located 
cells remain labeled, suggesting self-renewal93. These results estab-
lish Axin2+ cells as progenitors of polyploid hepatocytes.

In contrast to the stem cells of the intestine and liver, stem cells 
of the nail epithelium are seemingly agnostic to Wnt/β-cat sig-
naling but require the pathway for differentiation. Keratin-14 
(K14)-expressing cells located in the nail matrix were identified 
as nail stem cells (NSCs) through lineage tracing94. A conditional  
knockout of β-cat in K14+ cells impaired nail growth, with the 
entire nail epithelium showing elevated levels of NSC markers.  
Surprisingly, overexpressing a stabilized β-cat in K14+ cells did not 
impact nail growth94. In addition to its being a continuously grow-
ing tissue in adults, the nail epithelium has been studied for its role 
in digit tip regeneration. A population of Wntless (Wls)-express-
ing cells—Wls is an acyltransferase required for the secretion of 
Wnt proteins95—flanks the NSCs and is essential for digit tip regen-
eration. Digit tip regeneration does not happen after amputations  
that remove this population, but this defect can be rescued by 
the expression of β-cat in K14+ cells. In this context, the Wnt/β-
cat pathway appears to be a permissive signal that is essential for  
differentiation but has no influence on NSCs. Consistent with  
this, NSCs do not express high levels of Axin294.

Wnt target genes in metabolic regulation
The Warburg effect or aerobic glycolysis is seen in cancer cells, 
which preferentially metabolize glucose through lactic acid fermen-
tation instead of the TCA cycle, even in the presence of oxygen96. A 
colon cancer cell line with elevated Wnt/β-cat signaling expressing 
a ∆NTCF4 isoform containing a C-clamp showed reduced prolif-
eration and a metabolic shift towards oxidative respiration. Con-
sistent with this, genes controlling the cell cycle and metabolism 
were downregulated by this dominant negative TCF474,97. Interest-
ingly, ∆NTCFs lacking a C-clamp did not affect proliferation but 
still caused the metabolic shift97. Pyruvate dehydrogenase kinase 
1 (PDK1), which blocks oxidative respiration, was found to be 
the key Wnt target promoting aerobic glycolysis in these cancer 
cells97. PDK1 and the lactate transporter monocarboxylate trans-
port protein (MCT)-1 are direct targets of the Wnt pathway in this 
context97,98 and lactate dehydrogenase, another enzyme driving the 
Warburg effect, was indirectly activated by the Wnt target c-Myc97,99. 
Interestingly, fluorescence lifetime microscopy (FLIM), which can 
provide an indicator of the relative rates of glycolysis and oxidative 
phosphorylation in live tissue, found that aerobic glycolysis also 
occurs in Wnt-dependent Lgr5+ intestinal stem cells97,100.

Wnt target genes and animal evolution
In contrast to transcriptional profiling, Wnt targets that are  
important in animal evolution have been identified through link-
age studies. The three-spined stickleback has become a premier  
system for studying the evolution of physical traits, since the  
marine species has repeatedly lost its body armor and ventral spines 
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after colonizing freshwater lakes101–103. Characterization of marine/
freshwater hybrids identified the Ectodysplasin (Eda) locus as a 
major gene responsible for the loss of lateral armor plates in the 
freshwater species104. Further refinement identified a single point 
mutation in an enhancer just downstream of Eda105. This enhancer 
is a target of Wnt/β-cat signaling, and the freshwater allele has 
reduced activation105. While this 3.2 kb enhancer contains several 
putative TCF binding sites, they are not close to the polymorphism 
(K. M. Cadigan, unpublished data), and it is not clear whether Eda 
is a direct target of the pathway. A similar story exists for the evolu-
tion of wing spots in Drosophila guttifera, where the yellow gene 
is activated by Wnt/β-cat signaling in the pupal wing, though the 
activation appears to be indirect106.

Another link between Wnt/β-cat and evolution comes from a 
genome-wide association study (GWAS) which identified a poly-
morphism near the KITLG locus that is responsible for blond 
hair in humans107. KITLG encodes a ligand for the KIT receptor, 
known to control pigmentation in mammals108. Interestingly, the 
polymorphism resides in a predicted TCF binding site, with the 
blond allele showing reduced activation by Wnt/β-cat signaling109. 
This study directly links the regulation of a direct Wnt target to 
an important physical trait. This is reminiscent of a polymorphism 
335 kb upstream of the c-myc locus, also in a functional TCF site, 
where the higher-affinity allele is linked to increased risk in color-
ectal and other cancers26,110. Both examples illustrate how a detailed  
understanding of Wnt gene regulation can facilitate the molecular 
understanding of polymorphisms in the human population.

Future directions
An increasing number of molecular approaches can now be 
employed to identify Wnt transcriptional targets in cells or tissues. 
Continued definition of Wnt transcriptional programs will further 
the understanding of how the Wnt/β-cat signaling pathway achieves 

its varied roles in development, stem cell maintenance, and meta-
bolic regulation as well as in disease states and molecular evolu-
tion. It is clear that the activation of Wnt targets is highly context 
dependent, and the emerging picture is that a combination of TCFs 
and a diverse assortment of other TFs work together in different 
cells at different times. Unraveling the molecular mechanisms 
behind context specificity in Wnt responses will not only address a 
central question of gene regulation but also enhance our knowledge 
of the diversity of Wnt biology.
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