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Abstract: The number of wheat ears is an essential indicator for wheat production and yield estima-
tion, but accurately obtaining wheat ears requires expensive manual cost and labor time. Meanwhile,
the characteristics of wheat ears provide less information, and the color is consistent with the back-
ground, which can be challenging to obtain the number of wheat ears required. In this paper, the
performance of Faster regions with convolutional neural networks (Faster R-CNN) and RetinaNet to
predict the number of wheat ears for wheat at different growth stages under different conditions is
investigated. The results show that using the Global WHEAT dataset for recognition, the RetinaNet
method, and the Faster R-CNN method achieve an average accuracy of 0.82 and 0.72, with the
RetinaNet method obtaining the highest recognition accuracy. Secondly, using the collected image
data for recognition, the R2 of RetinaNet and Faster R-CNN after transfer learning is 0.9722 and
0.8702, respectively, indicating that the recognition accuracy of the RetinaNet method is higher on
different data sets. We also tested wheat ears at both the filling and maturity stages; our proposed
method has proven to be very robust (the R2 is above 90). This study provides technical support and
a reference for automatic wheat ear recognition and yield estimation.

Keywords: RetinaNet; deep learning; transfer learning; wheat ears; Global WHEAT

1. Introduction

Wheat is the largest grain crop in world trade [1,2]. Recently, with population growth
and social and economic development, the demand for wheat has increased. However,
due to extreme weather, pests, crop diseases, and yield, the wheat supply is unstable [3].
Therefore, maintaining a high and stable wheat yield is essential to improving people’s
living standards, maintaining social stability, and promoting the development of the
national economy [4]. The number of wheat ears is an important factor that directly affects
wheat yield [5–7]. Therefore, rapid and accurate identification and statistics of wheat ears
are fundamental for crop growth monitoring and yield estimation [8]. Traditional counting
methods rely on field surveys, sampling, and weighing. These methods are inefficient,
costly, and difficult to determine accurate yield estimation for large areas, severely limiting
their application for breeding, monitoring plant performance in crop management, or
predicting grain yield. No model has been able to perform consistently across different
wheat reproductive stages and identify the derived wheat spikes well. Additionally, some
spike counting methods are based on wheat spike data collected at maturity and other
traits, which are not suitable for early yield prediction [9]. In recent years, many studies
that apply deep learning techniques [10] to unmanned aerial systems [11,12] for wheat
spikelet detection under field conditions have received much attention.

In recent years, with the development of artificial intelligence [13], the target detection
models built using deep learning, e.g., Faster regions with convolutional neural networks
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(R-CNN), has far surpassed traditional target detection techniques in feature representa-
tion, reaching top performance in terms of detection accuracy and speed [14]. However,
deep learning techniques are limited by a large number of training datasets and training
equipment. Since the color, shape, and awn of wheat ears change with growth, the same
wheat varieties differ in performance in different growing regions. Thus, it is crucial to
study a deep learning model for regional wheat detection. The current Faster R-CNN
method achieves better detection accuracy in wheat ear detection [15], but its detection
speed cannot meet the integration requirements in the unmanned aerial vehicle (UAV)
system. Therefore, it is of great significance and application value to develop a wheat
detection model with high detection accuracy, migration ability and be integrated into the
UAV system.

The target detection models built using deep learning are mainly divided into two
categories: two-stage and one-stage. The most representative target detection algorithms for
two-stage detectors are Fast R-CNN [16], Faster R-CNN [14], and the most representative
target detection algorithms for one-stage detectors are YOLO (You Only Look Once) [17,18]
and RetinaNet [19]. Two-stage detectors are usually slower than one-stage detectors. In
two-stage detectors, the first step determines the regions (regions of proposals) that might
contain a target to be detected (location). The second step performs a detailed identification
of the target contained in each candidate region (classification) [14]. RetinaNet combines
the advantages of multiple target recognition methods, especially the“anchor” concept
introduced by Region Proposal Network (RPN) [14], and the use of feature pyramids
in Single Shot Multibox Detector (SSD) [20] and Feature Pyramid Networks (FPN) [21].
Retinanet has a wide range of applications, such as ship detection in remote sensing images
of different resolutions [22], identification of storm drains and manholes in urban areas [23],
fly identification [24], and rail surface crack detection [25].

The future development trend of the image-based automatic recognition method is to
obtain wheat ears and yield data in real-time over a large area. Using machine learning
techniques, the image-based recognition method exploits the color, texture, and shape of
the target image to encode and represent the image. Thus, image feature representation is
essential [26]. However, these features are different in different environmental conditions,
limiting the effectiveness of these features. For example, [27] exploited color consistency
coefficient, gray symbiosis matrix, and edge histogram to construct wheat ear feature
matrix. The authors of [28] used scale-invariant feature transform (SIFT), and Fisher vector
(FV) features to identify the wheat ears at the heading stage accurately. The authors of [9]
created a binary image through the local maximum value of the pixel and the variance of the
nearest neighbor pixel to calculate the number of wheat ears in the image. The experimental
results of these studies may suffer from degradation due to different recognition angles
of the wheat ears being photographed, the period of growth of the ears, and the field
environment in which the wheat ears were photographed. As a branch of machine learning,
current deep learning techniques can solve this problem for wheat recognition. Deep
Learning [29] exploits a perceptron containing multiple hidden layers, and it transforms
the features of samples from the original space to a new feature space based on the principle
of learning hierarchical data. In this process, the hierarchical feature representation was
automatically learned and obtained, and the accuracy of recognition improved [29]. The
main advantage of deep learning techniques is that the characteristics of the input data are
automatically learned, overcoming the bottleneck in many intelligent applications. Thus,
the use of deep learning techniques has become the frontier in the field of crop phenotypes.

The current application of drones combined with deep learning technology has greatly
promoted the development of precision agriculture. In recent years, some meaningful
research [7–9,15,27,28,30–42] has emerged. These studies have used RGB (red, green, blue),
multispectral, hyperspectral, and thermal infrared data acquired by UAV and CNN to
evaluate the phenotypic characteristics of citrus crops [38], obtain key points of plants/plant
leaves [39], plant stress analysis and plant disease identification [40,41]. The research on
automatic recognition and counting wheat ears with deep learning technology has made
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great progress [8,15,37]. Hasan et al. [8] used R-CNN to identify and count wheat ears.
Madec et al. [15] used Faster R-CNN to identify wheat ears in RGB images with different
spatial resolutions. Sadeghi–Tehran et al. [37] proposed a visual recognition method based
on linear iterative clustering and deep CNN to automatically identify and count wheat
ears in the images obtained under natural field conditions. The research works [8,15,37]
achieved a lower detection speed than [30,42], and cannot be integrated into UAV systems
for real-time detection.

To our knowledge, there are no other systematic, quantitative assessments of how
training sample size and sample selection methods affect the results of wheat identification
models. This paper aims to: (1) Obtain a model with high recognition accuracy at different
growth stages; (2) evaluate the impact of training samples on Faster-RCNN and RetinaNet
in combination with transfer learning; (3) evaluate the detection speed of Faster-RCNN
and RetinaNet. To achieve these goals, there are many different types of wheat ears in
different growth environments considered in this paper, and a model suitable for regional
wheat identification is proposed. The idea of transfer learning is integrated into the
proposed model to explore its performance in different training samples, wheat fertility
training samples, and obtain the recognition performance of the model in wheat ear images.
Specifically, images of wheat ears in different fertility periods collected in the field are
used in combination with the wheat ears recognition image database (Global WHEAT).
Different deep learning models based on different data samples of wheat ears in different
fertility periods are trained by labeling wheat ears. The recognition accuracy and detection
speed of these models are then compared and analyzed. The model proposed in this paper
achieves high detection accuracy and migration capability, and it can be integrated into
UAV systems.

2. Materials and Methods
2.1. Data Acquisition and Processing
2.1.1. Global Wheat Data Acquisition

Global Wheat Head Detection (Global WHEAT) [43] obtains data from the wheat
ear recognition image database (data source: https://www.kaggle.com/c/global-wheat-
detection/data, accessed on 12 June 2020). The database was carefully produced by seven
countries, nine research institutes, and more than ten phenotyping experts in a year. This
database is composed of train.zip, test.zip, sample_ssubmission.csv, train.csv, and other
files. The information contained in each file is listed in Table 1.

Table 1. The information of the data files in the Global WHEAT database.

Files Information

train.csv the training data
sample_submission.csv a sample submission file in the correct format

train.zip training images
test.zip test images

The Global WHEAT data set contains a total of 3422 images, and each image has a size
of 1024 × 1024 pixels. The Ground Sampling Distance (GSD) of the GWHD dataset ranges
from 0.28 to 0.55 mm [43]. Part of the image data is shown in Figure 1.

https://www.kaggle.com/c/global-wheat-detection/data
https://www.kaggle.com/c/global-wheat-detection/data


Sensors 2021, 21, 4845 4 of 21
Sensors 2021, 21, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Part of the image data in the Global WHEAT database. 

2.1.2. Digital Image Data Acquisition 
The digital image of wheat in the filling stage and mature stage are obtained by a 

high-definition digital camera. In clear and windless conditions, the backlit hand-held 
Sony DSC-H9 digital camera was used for vertical shooting. The shooting height was ap-
proximately 1 m higher than the top of the wheat canopy, and the shooting area was ap-
proximately 0.75 M2 (5 rows of wheat with a spacing of 15 cm). Each digital image has 
3088 × 2056 pixels, and the horizontal and vertical resolution is 72 dpi. A total of 715 im-
ages are taken. Among these 715 images, 365 images present the wheat ears in the filling 
stage and 350 in the mature stage with an approximate ratio of 1:1. The digital images of 
wheat ears in the partial filling stage and mature stage are illustrated in Figure 2. 

Figure 1. Part of the image data in the Global WHEAT database.

2.1.2. Digital Image Data Acquisition

The digital image of wheat in the filling stage and mature stage are obtained by a
high-definition digital camera. In clear and windless conditions, the backlit hand-held
Sony DSC-H9 digital camera was used for vertical shooting. The shooting height was
approximately 1 m higher than the top of the wheat canopy, and the shooting area was
approximately 0.75 M2 (5 rows of wheat with a spacing of 15 cm). Each digital image has
3088 × 2056 pixels, and the horizontal and vertical resolution is 72 dpi. A total of 715
images are taken. Among these 715 images, 365 images present the wheat ears in the filling
stage and 350 in the mature stage with an approximate ratio of 1:1. The digital images of
wheat ears in the partial filling stage and mature stage are illustrated in Figure 2.

According to the number of images, three groups of digital images of wheat in the
filling and mature stages are set as the training data set, and the number of images in each
group is 50, 100, and 150, respectively. The denotations of the three situations are listed
in Table 2, where Filling Stage Model (FSM) and Mature Stage Model (MSM) represent a
wheat data set at the grain filling stage and mature stage.

According to the number of wheat ears in each image, the test data set is divided into
three groups, and the number of images in each group is 30. The detailed information
of the training data set and the test data set is listed in Tables 2 and 3. Testing the same
number of images ensures that each model has the same evaluation benchmark, and the
test set is 180 images in total. The ratio of 90 images for each fertility period is 1:1, which
guarantees the reliability of the results.
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Figure 2. Digital images of wheat in key growth stages. (a) Partial Filling stage; (b) Mature stage.

Table 2. Training database.

Growth Period Database Number of Images Per Group Number of Wheat Ears Per Piece

Filling stage
FSM50 50 6409

FSM100 100 12,733
FSM150 150 19,275

Mature stage
MSM50 50 6684

MSM100 100 13,404
MSM150 150 20,132

Table 3. Testing database.

Growth Period Number of Wheat
Ears in Each Image

Number of Images Per
Group

Number of Wheat
Ears Per Piece

Total Number of
Wheat Ears Per Piece

Filling stage
less than 50 30 1125

681450–100 30 2458
more than 100 30 3231

Mature stage
less than 50 30 1128

669950–100 30 2116
more than 100 30 3455

2.1.3. Data Processing

(1) Image marking

To obtain better recognition results, many deep learning models require annotated
training data sets. Although image-based high-throughput crop phenotyping systems
already exist, such as Field Scanalyzer [44], which generates a large amount of image data
every day, the annotated images with ground truth values are not available among the
obtained crop image data. Therefore, the obtained images must be labeled to generate a
training data set.

LABELIMG [45] is a free and open-source graphic image annotation tool
(https://github.com/tzutalin/labelImg, accessed on 13 June 2020) that grants simultane-
ous access to different users and is available to all institutions. The LABELIMG tool outputs
an annotation file with an interactive drawing of a bounding box containing all the pixels
of the wheat ears. After the digital image is obtained, theannotation tool of LABELIMG can
be used to draw bounding boxes around each identified wheat ear in the images. Specific

https://github.com/tzutalin/labelImg


Sensors 2021, 21, 4845 6 of 21

information for each image is shown in Figure 3; Figure 3a exhibits the position of wheat
ears in the image; Figure 3b illustrates the name of the target, and Figure 3c indicates the
shape of the image. The bounding boxes contain all the pixels of the wheat ears, however,
sometimes the bounding box can be too large and includes background lawns. If possible,
the boxes also contain a small portion of the wheat stem. When the identification results
from one of the developed models were compared, it was found that a few wheat ears were
forgotten by the operator during the interactive labeling process. Therefore, the images
were reprocessed with greater care.
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Each labeled image has an additional text file containing the coordinates of the anno-
tated bounding boxes. In this file, the boxes are stored as a 4-tuple (xmin, ymin, xmax, ymax),
where (xmin, ymin) and (xmax, ymax) denote the top left corner and the lower right corner of
the box, respectively.

(2) Denoising and enhancement

During the shooting process, the wheat image is easily affected by the changes in
natural light, growth environment, shaking of the shooting equipment, and the unstable
focus of the lens. Meanwhile, the obtained image may contain some noise caused by
random signals in the process of transmission [34]. Therefore, the method of data denoising
is exploited to remove the noise points in the obtained image and reduce the influence of
noise on the recognition results. Firstly, the median filtering method with a kernel of 5 is
used to remove the noise in the wheat image. The specific denoising process exploits the
Python language to call the medianBlur function provided by the OpenCV library, and the
parameter ksize is set to 5 [34].

In the training process, the training samples cannot always reflect all the information
for each real target. Thus, the image data is enhanced by different transformations to
improve the training data and generalization ability. The diversity allows the model to be
applied to various situations and has more robustness. Additionally, most deep learning
algorithms require a large amount of training data to obtain accurate recognition results.
Although this work obtained approximately 3000 images, there were not enough to train
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and validate the model, emphasizing the need for data enhancement. In order to address
this issue, programs have been written in Python language to shrink, enlarge, and flip
the original image [34]. In order to simulate the change of light, the HSV (hue, saturation,
and value) [46], color space, and various conversions are exploited, such as linear change
of hue, linear change of saturation, and linear change of brightness. PIL (Python Image
Library) [47] is a third-party image processing library provided by the python (https://
python-pillow.org/, accessed on 10 September 2020) language. This library is featured with
extensive file format support, efficient internal representation, and strong image processing
capabilities. It provides a solid foundation for general image processing tools. The function
FLIP_LEFT_RIGHT can flip an image horizontally. Specifically, a Python program is
written to call the transpose function provided by the PIL library, and the parameter of
FLIP_LEFT_RIGHT is used. Based on this, each HSV channel’s value is changed linearly
and randomly; the rand function provided by the Numpy library randomly returns a value
between 0 and 1 for multiplication. The image denoising and data enhancement effects are
illustrated in Figure 4.
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2.2. Method

The application of deep learning techniques has greatly contributed to the develop-
ment of precision agriculture. Faster R-CNN has been widely applied and used in maize
tassels detection [35] and wheat ears recognition [15]. RetinaNet combines the advantages of
multiple target recognition methods, especially the “anchor” concept introduced by Region
Proposal Network (RPN) [14], and the use of feature pyramids in Single Shot Multibox
Detector (SSD) [20] and Feature Pyramid Networks (FPN) [21]. Retinanet has a wide range
of applications, such as ship detection in remote sensing images of different resolutions [22],
identification of storm drains and manholes in urban areas [23], fly identification [24], and
rail surface crack detection [25]. The experiment described in this paper was conducted on
a computer equipped with Intel® Xen(R) W-2145 CPU and NVIDIA GeForceRTX 2080Ti.

https://python-pillow.org/
https://python-pillow.org/
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The Keras library based on the Tensorflow environment in Windows was employed. Addi-
tionally, the Python language was employed to realize the automatic recognition of wheat
ears based on Faster R-CNN and RetinaNet and verify the recognition accuracy.

2.2.1. Faster R-CNN

As a typical two-stage target recognition algorithm, Faster regions with convolutional
neural networks (Faster R-CNN) [14] has been widely applied to many fields since it was
proposed. Faster R-CNN is an improved version of Fast-RCNN [16], which uses RPN
network (Region Proposal Network) instead of Selective Search to generate candidate
boxes. Additionally, the anchor concept is introduced and can be used in future target
recognition models.

As shown in Figure 5, Faster R-CNN consists of four parts:

(1) Convolution layer.
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As a CNN network for target recognition, the convolution layer in Faster R-CNN
uses ResNet50 as the feature extraction network. The network in this layer extracts the
feature map of the image, which is passed to the subsequent RPN layer and the fully
connected layer;

(2) RPN layer.

This layer is used to generate target candidate regions, eliminating the time consumed
by the process of Selective Search (pre-SS) [48] that generates candidate frames. Faster
R-CNN uses an RPN network that shares part of the weight with the recognizer to generate
candidate frames for the image directly, and then perform classification and position
regression based on the candidate frames obtained by RPN;

(3) Region of Interest (ROI) pooling layer [14].

This layer uses the feature map and suggestion box information output by the RPN
layer to map to feature maps of the same size;

(4) Recognition.

The feature map of the candidate target area is used to calculate the category of the
candidate target area, and the coordinate frame position of the target is regressed again to
obtain the final precise position of the target [49]. The score threshold of 0.5 was used to
determine whether the bounding box contains wheat ears. In order to limit the overlap
between bounding boxes containing the same wheat ear, the Intersection-over-Union (IOU)
threshold was set to 0.5 so that only one bounding box was selected [28].
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2.2.2. RetinaNet

Retinanet combines the advantages of multiple target recognition methods, especially
the “anchor” concept introduced by RPN and the use of feature pyramids in Single Shot
Multibox Detector (SSD) [20] and Feature Pyramid Networks (FPN) [21]. The structure
of RetinaNet is composed of three parts: a convolutional neural network for feature
extraction and two sub-networks for classification and box regression [19]. The structure
is shown in Figure 6, where Figure 6a represents the backbone network, i.e., ResNet50;
Figure 6b illustrates that FPN is used as a decoder to generate a multi-scale convolutional
feature pyramid, and Figure 6c shows that two subnets are used for classification and
bounding box regression. Based on feature mapping, two sub-networks of classification
and box regression are constructed through simple convolution operations. Specifically,
the classification sub-network performs object classification, and the box regression sub-
network is used to return the position of the bounding box. The advantage of FPN is
that the hierarchical structure of the deep convolutional network can be used to represent
multi-scale objects to help the recognizer create a better prediction of the position.
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This paper uses ResNet50 to extract image features [50]. Compared with the two-stage
recognition method, the low accuracy of the one-stage target recognition is mainly caused
by the extreme imbalance between the foreground and the background during the training
process of the dense recognizer, which creates a large number of negative samples during
the training process [19]. The focus loss is used to solve the problem of extreme imbalance
of categories; it is implemented by modifying the standard cross-entropy, reducing the loss
assigned to well-classified examples [19]. Under the supervision of focus loss, the retina
can achieve significant improvements on the universal object recognition benchmark. It
is expressed as Equation (1) and has been used to improve detection accuracy [19]. The
definition of an a-balanced variant of the focus loss is:

FL(pt) = −αt(1− pt)
y log(pt) (1)

where αt and γ are hypermeters. αt ∈ [0, 1] is the weighting factor to address class
imbalance; parameter γ smoothly adjusts the rate at which easy examples are down-
weighted [19]. For a convenient notation, pt is defined as follows.

pt =

{
p i f y = 1

1− p otherwise
(2)

where p ∈ [0, 1] is the probability estimated by the model, and y = 1 specifies the
ground truth.
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2.2.3. Recognition Accuracy Evaluation Index

The accuracy of wheat ear recognition is evaluated by precision and recall [51,52]. Pre-
cision measures the accuracy of the algorithm, recall measures the integrity of recognition,
and F1-score is used to balance precision and recall. The classifier with a high F-score is now
shown to have good recall and accuracy. The three indicators can be calculated as follows:

Precision =
TP

FP + TP
(3)

Recall =
TP

FN + TP
(4)

F1− score = 2× Precision× Recall
Precision + Recall

× 100% (5)

If the predicted bounding box overlaps with the marked ear bounding box and exceeds
the IOU threshold (set to 0.5 in this paper), then the predicted bounding box represents
the wheat ear sample; otherwise, it is the background sample. TP indicates the number of
correctly classified wheat ear samples, and FN indicates the number of wrongly classified
wheat ear samples. FP indicates the number of background samples that are wrongly
classified, and TN indicates the number of background samples that are correctly classified.

Average Precision (AP) balances the precision and recall values, reflecting the model’s
performance [53]. Considering the accuracy as the ordinate and the recall as the abscissa, a
Precision and Recall (PR) curve can be obtained; the area under the curve is AP.

AP =
∫ 1

0
P(R) (6)

Additionally, indicators such as the mean absolute error (MAE), the root mean squared
error (MSE), the relative RMSE (rRMSE), bias (BIAS), and coefficient of determination (R2)
are used to evaluate the result of wheat ear recognition. MAE and rRMSE represent the
accuracy of recognition, and MSE represents the robustness of the recognition model. The
lower the scores of RMSE, rRMSE, and MAE, the better the performance of the model.
These indicators can be calculated as follows:

RMSE =

√
1
N

n

∑
k=1

(Truthk − Predictedk)
2 (7)

rRMSE =

√√√√ 1
N

n

∑
k=1

(
Truthk − Predictedk

Truthk
)

2
(8)

BIAS =
1
N

n

∑
k=1

(Truthk − Predictedk) (9)

MAE =
1
N

n

∑
k=1
|Truthk − Predictedk| (10)

R2 = 1−

n
∑

k=1
(Truthk − Predictedk)

2

n
∑

k=1
(Truthk − Truthk)

2
(11)

In Equations (7)–(10), N represents the number of test images for the model, the actual
number of wheat ears, the number of identified wheat ears of the k-th image, and the
average actual number of wheat ears, respectively.
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3. Results
3.1. Analysis of the Recognition Results Obtained by Different Methods on the Global WHEAT Dataset

In order to evaluate the performance of the method used to identify wheat ears in
this paper, two target recognition algorithms, Faster R-CNN and RetinaNet, as shown in
Figures 5 and 6, are used. These three models are trained on the same data set (Global
WHEAT data set), and the mean average precision (mAP) results of the test data set are
shown in Figure 7. Since the wheat ear is the only identification target, mAP is equal to
average precision (AP).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 22 
 

 

Figures 5 and 6, are used. These three models are trained on the same data set (Global 
WHEAT data set), and the mean average precision (mAP) results of the test data set are 
shown in Figure 7. Since the wheat ear is the only identification target, mAP is equal to 
average precision (AP). 

 
Figure 7. The AP value of Faster R-CNN and RetinaNet for identifying wheat ears. 

A total of 90,000 iterations were executed to train the model, where 10,000 iterations 
were executed to calculate the AP value of the Faster R-CNN and RetinaNet (IOU set to 
0.5). Each model uses the VOC data set for pre-training and initialization. The AP value 
and loss of Faster R-CNN and RetinaNet for identifying wheat ears are shown in Figure 
7. As the number of iterations increases, the accuracy of the model gradually increases. 
When the number of iterations reaches 40,000, the accuracy of the model reaches its max-
imum. The Faster R-CNN model achieves high accuracy from the beginning, and the AP 
value does not increase significantly as the number of iterations increases. The AP value 
of the RetinaNet increases significantly between 30,000 to 40,000 iterations and then be-
comes stable to the maximum. This result is related to the two-part detection of Faster R-
CNN. In Faster R-CNN, the first step generates region proposals that may contain a target 
to be localized, and the second step performs a fine distinction between the specific targets 
contained in each candidate region. Therefore, high accuracy is achieved at the beginning 
of the iterative process. By contrast, RetinaNet performs one-stage detection, and it di-
rectly generates the position and category information of the target that derived from the 
object. This method is prone to category classification errors and inaccurate target location 
information at the beginning. Through continuous iterative training, the focal loss mech-
anism of RetinaNet continuously and rapidly reduces the loss value, and a stable detection 
result can be obtained after 35,000 iterations. Additionally, it can be seen from Figure 7 
that the AP value of the RetinaNet is higher than that of the Faster R-CNN, indicating that 
the RetinaNet achieves the best AP; this is because RetinaNet extracts multi-scale semantic 
features, which greatly improve the AP value. The RetinaNet model has a strong ad-
vantage in wheat ear classification and box regression using derivatives. 

Though the Global WHEAT data set contains many types of wheat ear data, there are 
many wheat varieties globally, and even the same wheat varieties show great differences 
due to different growth environments. To better evaluate the performance of the Faster R-
CNN and RetinaNet models trained on the Global WHEAT data set, the wheat images 
collected in the field during the grain filling phase and the mature stage were used as the 
test set. Using the number of wheat ears identified by different models and obtained by 
manual methods to calculate the RMSE, rRMSE, MAE, Bias, and R2, the results are shown 
in Figure 8. 
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A total of 90,000 iterations were executed to train the model, where 10,000 iterations
were executed to calculate the AP value of the Faster R-CNN and RetinaNet (IOU set
to 0.5). Each model uses the VOC data set for pre-training and initialization. The AP
value and loss of Faster R-CNN and RetinaNet for identifying wheat ears are shown in
Figure 7. As the number of iterations increases, the accuracy of the model gradually
increases. When the number of iterations reaches 40,000, the accuracy of the model reaches
its maximum. The Faster R-CNN model achieves high accuracy from the beginning, and
the AP value does not increase significantly as the number of iterations increases. The
AP value of the RetinaNet increases significantly between 30,000 to 40,000 iterations and
then becomes stable to the maximum. This result is related to the two-part detection of
Faster R-CNN. In Faster R-CNN, the first step generates region proposals that may contain
a target to be localized, and the second step performs a fine distinction between the specific
targets contained in each candidate region. Therefore, high accuracy is achieved at the
beginning of the iterative process. By contrast, RetinaNet performs one-stage detection,
and it directly generates the position and category information of the target that derived
from the object. This method is prone to category classification errors and inaccurate
target location information at the beginning. Through continuous iterative training, the
focal loss mechanism of RetinaNet continuously and rapidly reduces the loss value, and a
stable detection result can be obtained after 35,000 iterations. Additionally, it can be seen
from Figure 7 that the AP value of the RetinaNet is higher than that of the Faster R-CNN,
indicating that the RetinaNet achieves the best AP; this is because RetinaNet extracts
multi-scale semantic features, which greatly improve the AP value. The RetinaNet model
has a strong advantage in wheat ear classification and box regression using derivatives.

Though the Global WHEAT data set contains many types of wheat ear data, there are
many wheat varieties globally, and even the same wheat varieties show great differences
due to different growth environments. To better evaluate the performance of the Faster
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R-CNN and RetinaNet models trained on the Global WHEAT data set, the wheat images
collected in the field during the grain filling phase and the mature stage were used as
the test set. Using the number of wheat ears identified by different models and obtained
by manual methods to calculate the RMSE, rRMSE, MAE, Bias, and R2, the results are
shown in Figure 8.
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The results in Figure 8 show that R2 of the Faster R-CNN and RetinaNet models on
the test data set with images collected in the filling stage are 0.792 and 0.907, respectively.
The R2 of the RetinaNet is 14.5% higher than that of the Faster R-CNN, indicating that
the RetinaNet model achieves the highest recognition accuracy for wheat ears in the
filling stage. As for recognizing the wheat ear in the mature stage, the Faster R-CNN
model achieves the R2 of 0.844, and the RetinaNet model achieves the R2 of 0.514. The
number under each image represents the number of identified wheat ears, showing that
the predicted value differs from the true value by more than 10 wheat ears. Figures 8 and 9
indicate that Faster R-CNN and RetinaNet models trained on the Global WHEAT dataset
do not transfer well to the field for wheat ears identification. According to [43], most of
the images fromthe Global WHEAT dataset are acquired before the appearance of head
senescence. It also demonstrates the limitations of the Global WHEAT dataset. Therefore, it
is important to obtain a model that can migrate to the field and perform with high accuracy
for wheat ears of different fertility stages.
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3.2. Results and Analysis of Wheat Ear Recognition Based on Transfer Learning
3.2.1. Recognition Results and Analysis of Different Numbers of Training Samples after
Transfer Learning

In order to study the influence of training samples on the model’s performance in
the process of transfer learning, the Faster R-CNN and RetinaNet models trained on the
Global WHEAT dataset were used as the initial models for transfer learning. Each model
was trained 90,000 times. The samples in the test set were used to verify the accuracy of
these models, and the results are shown in Figure 10. In this figure, FFSM indicates that the
Faster R-CNN model is trained on wheat images collected in the filling stage, and FMSM
indicates that the Faster R-CNN model is trained on wheat images collected in the mature
stage. Similarly, RFSM and RMSM represent the training of the RetinaNet model on wheat
images collected in the filling stage and the mature stage, respectively. Meanwhile, 50, 100,
and 150, respectively, represent the number of training sample images.
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For different numbers of training samples, manual counting and recognition results
have a strong positive correlation. The comprehensive analysis of Figures 8 and 10 indicates
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that the recognition capabilities of Faster R-CNN and RetinaNet models have greatly
improved by transfer learning, and the accuracy of the RetinaNet for recognizing the
wheat ear in the filling stage and the mature stage is 97.77% and 98.65%, respectively.
Meanwhile, the highest accuracy of the Faster R-CNN model for recognizing the wheat
ear in the filling stage and the mature stage is 94.09% and 84.40%, respectively. Therefore,
the use of the transfer learning method to place the wheat ear images collected in the field
for model training can improve the recognition performance of the model. According
to the overall analysis results shown in Figure 10, after 50 training samples were used
for training, the recognition performance of RetinaNet and Faster R-CNN models greatly
improved compared with the initial model. However, as the number of training samples
increased, the recognition accuracy o the two models slowly improved, especially the
accuracy of the Faster R-CNN model for recognizing that the wheat in the filling stage
was slowly decreasing.

3.2.2. Recognition Results and Analysis of Transfer Learning in Different Growth Stages

The deep learning model consumes a lot of time and equipment (such as GPU) for
model training. Therefore, a recognition model with high identification accuracy for
wheat ears at different fertility stages is essential for crop yield estimation and a better
understanding of the wheat ears and canopy. This paper is based on transfer learning to
study the recognition performance of the Faster R-CNN and RetinaNet models in different
growth stages of wheat ears. For the filling state and the mature state, the R2 of the Faster
R-CNN and RetinaNet models are calculated and the results are shown in Figure 11.
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R-model0 and F-model0 in Figure 11 are two initial models trained on the Global
WHEAT dataset. It can be seen from Figure 11 that the Faster R-CNN and RetinaNet
models trained on images of wheat ears in a specific growth stage obtain good results
for identifying wheat ears in the same growth stage. For identifying wheat ears in other
growth stages, the recognition performance of the two models decreases; this is mainly
due to the change in the color and awns of wheat ears, which result in changes to wheat
features extracted by Faster R-CNN and RetinaNet and the corresponding decline in the
performance of wheat ear recognition.
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Meanwhile, it was found that the RMSM150 model achieves high recognition accuracy
for identifying wheat ears at different growth stages (R2 = 0.9434 for filling stage and
R2 = 0.9865 for mature stage), indicating that the wheat ears in the mature stage exhibit
better characteristics for recognition. Thus, the RetinaNet model achieves more robustness
in recognition performance. Although RFSM achieves a higher accuracy for recognizing
wheat ears, it does not perform as stable as the FFSM model on the test data set with
wheat ears in different growth stages. In order to have the RetinaNet model achieve higher
recognition accuracy for wheat ears in different growth stages, the combination of images
collected for wheat ears in different growth stages can be used in the future.

3.3. The Recognition Results and Analysis of RetinaNet

A comprehensive analysis of the experiments presented above indicates that the
recognition accuracy of the RetinaNet model is better than that of the Faster R-CNN model.
However, these experiments only focus on the wheat ears in a single growth stage and
do not consider the wheat ears of multiple growth stages. Therefore, the images of wheat
ears in different growth stages can be used as the training data set to study recognition
performance of RetinaNet and Faster R-CNN models. Firstly, 150 images of wheat ears in
the filling stage and 150 images of wheat ears in the mature stage were used for training.
The 300 images contain 39,407 wheat ears in total. The images of the same wheat variety
and similar shooting environment are used as test samples. As listed in Table 3, there are
180 images in total, including 13,513 wheat ears.

As for the number of wheat ears in 180 images, the relationship between the true value
and the recognition value obtained by RetinaNet and Faster R-CNN models is illustrated
in Figure 12. For RetinaNet, the slope of the linear equation between the true value and
the identification value is 0.9206. The intercept of the linear equation is 3.3608, and it
is approximate to 1, indicating that the use of the RetinaNet to identify wheat ears can
obtain a result in good agreement with the ground truth value (only 3.36 wheat ear errors,
R2 = 0.9722). Thus, the model can be used for wheat ear identification. Compared with
the RetinaNet model, the slope of the linear equation between the recognition value and
the true value of the Faster R-CNN model is 0.7106, and the intercept is 16.7735, with
R2 = 0.8702. It can be concluded from the above results that the RetinaNet method is more
suitable to identify wheat ears.

It can be seen from Table 4 that the F1-score of RetinaNet improved by 8.92% compared
with Faster R-CNN. In addition, based on the same Keras framework and operating
environment, the running time of different recognition methods was measured and used
to calculate the time needed to recognize the wheat ears in 180 images and calculate the
average time needed to recognize wheat ears in a single image. The results indicate that
the average time of the Faster-RCNN and RetinaNet is 9.19 and 6.51 s, respectively. The
RetinaNet method proposed in this paper can meet the requirements of high recognition
accuracy and recognition speed.

Table 4. Using different methods for wheat ear recognition.

Methods F1-Score (%) Times (s)

Faster R-CNN 82.25 9.19
RetinaNet 91.17 6.51
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4. Discussion

Earlier studies [27,28] on wheat recognition are limited by the wheat dataset, which
causes the studied wheat recognition models not to be well-migrated for application to
other regions. Transfer learning [54] transfers the characteristic information of the target in
the source domain to the target recognition, which can greatly solve the problem of lack
of data in the target domain. The deep learning method needs a large amount of data
to train a model and achieve excellent performance, but data in the field for wheat ear
recognition is difficult to obtain and costly to label. To our knowledge, there are no other
systematic, quantitative assessments of how training sample size and sample selection
methods affect the results of wheat identification models. This paper combines deep
learning and transfer learning to study a wheat crop detection model with high accuracy
and capable of migration. This technique can be extended to any crop identification.

The method proposed in this paper for recognizing wheat ears based on RetinaNet is
compared with the method based on Faster R-CNN proposed by Madec et al. [15]. The
RetinaNet method achieves the best recognition performance (AP exceeds 82%) by using
the Global WHEAT database [43] as the training set; this shows that the RetinaNet method
can be applied to most countries in the world, and appliesto the identification of wheat
ears under different wheat distribution densities, different wheat varieties, and different
growth environments.

Meanwhile, the RetinaNet and Faster R-CNN models trained on the Global WHEAT
data set are applied to the field-collected wheat data based on transfer learning. Compared
with the Faster R-CNN method, the recognition performance of the RetinaNet is greatly
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improved, and the RetinaNet performs the best for recognizing wheat ears in different
growth stages; this also indicates that the RetinaNet model has stronger transfer learning
ability and better wheat ear recognition performance. These abilities are due to how
RetinaNet exploits FPN to extract low-level high-resolution and high-level low-resolution
semantics and then uses horizontal connections to combine the corresponding feature maps
with reconstructed layers, helping the recognizer better predict the position. Therefore,
RetinaNet is more sensitive to the target and achieves excellent recognition performance
with transfer learning. Meanwhile, ResNet50 acts as a feature extraction network for
both RetinaNet and Faster R-CNN. By adopting a feature pyramid with multi-size feature
extraction and output, RetinaNet has an advantage in small target detection such as wheat
ears, whereas Faster R-CNN only exploits the last layer of features of the underlying
network. Therefore, compared with Faster R-CNN, RetinaNet performs better and is more
suitable for wheat ear detection. Since ResNet50 is used as a feature extraction network
for RetinaNet, the feature extraction network can also be optimized further to improve the
accuracy of wheat recognition in the future.

Additionally, the recognition effect of RetinaNet and Faster R-CNN methods for
wheat ears in different growth stages is analyzed. The analysis results show that the R2

of recognizing wheat ears in the filling stage by RetinaNet and Faster R-CNN methods
are 0.978 and 0.844, respectively. Meanwhile, the R2 of recognizing the wheat ears in the
mature stage by RetinaNet and Faster R-CNN methods are 0.986 and 0.941, respectively.
It can be seen that RetinaNet achieves the best recognition effect in the mature stage; this
is mainly because the characteristics of wheat change with the growth stage. When the
wheat grows to maturity, the shape and awns of wheat ears tend to be stable, and the
contrast between the wheat ears and leaf background is enhanced, causing difficulty in
identifying wheat ears; this is consistent with the conclusions of Hasan et al. [8], Madec
et al. [15], and Zhu et al. [28]. Simultaneously, using the RetinaNet method, the accuracy
for recognizing wheat ears in the filling stage is only 0.8% lower than that in the mature
stage, which also indicates that RetinaNet has a better recognition effect. However, the
causes of performance differences between the RetinaNet method and Faster R-CNN for
recognizing wheat ears in different growth stages are currently unknown, which will be
explored in our future work.

The recognition performance of RetinaNet and Faster R-CNN models trained with
different fertility data was analyzed. It can be found in Figure 11 that the accuracy of
RetinaNet and Faster R-CNN increased with the number of training data samples. It can
also be found that RFSM50, RFSM100, and RFSM150 obtain good recognition results for
wheat in the filling stage, but the recognition results for wheat ears in the maturity stage
are degraded. The first reason for this is that the color, shape, and awn of the wheat ears
change significantly as the wheat grows, and the RetinaNet model trained only with the
data of the filling stage fails to detect the mature wheat ears well. It demonstrates the
relevance of training samples to the performance of the model, consistent with the current
studies [55,56]. Furthermore, it is found that the RMSM50, RMSM100, and RMSM150
models trained only with the data of wheat maturity stage perform the best in detecting
wheat ears in the maturity stage; they also achieve better recognition accuracy for the wheat
ears in the filling stage. Thus, adding the training of wheat ears at maturity can cause the
RetinaNet model to obtain higher recognition performance for both filling and maturity
stages. This finding can help transfer the RetinaNet method to wheat ears recognition in
other growth regions and different growth stages of wheat and can be useful for studying
ear detection models for small samples.

Additionally, the recognition speed of the RetinaNet and Faster R-CNN methods
is analyzed in this paper. Under the same framework and operating environment, the
average time consumption of the two methods is 9.19 and 6.51 s, respectively. It can be
seen that the recognition speed of the RetinaNet method is relatively fast, which is mainly
due to the time-consuming extraction of candidate frames in the second stage of the Faster
R-CNN network.
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The comprehensive analysis of the recognition effect and recognition speed of the two
methods indicates that the RetinaNet method is more suitable for wheat ear recognition.

5. Conclusions

This paper studies the application of deep learning technology to wheat ear recognition
and chooses a better recognition model for recognizing what ears are in different growth
stages and the number of wheat ears in a single image. Additionally, the Global WHEAT
data set containing images of wheat from different growing environments and varieties
are used to generalize training data to create a more robust model. Moreover, the model is
integrated with transfer learning to study the transfer ability and recognition performance
of the Faster R-CNN and RetinaNet. The comprehensive analysis of the experimental
results indicates that the proposed RetinaNet achieves both high recognition performance
and recognition speed, which can better meet the requirements of real applications. In
our future work we aim to investigate wheat ear recognition on images obtained by
unmanned aerial vehicles, which provides a new approach for wheat ear recognition and
yield estimation. In order to help researchers reproduce the proposed method, the program
file used in our study is provided (https://github.com/lijignbo1024/Program.git, accessed
on 8 June 2021).
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