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Abstract: A wide variety of nanomaterials have emerged in recent years with advantageous properties
for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery,
imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components
which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their
theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or
evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic
therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary
interface between nanomaterials and aptamer science that has significant potential across biomedicine.
Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for
their future biomedical application.
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1. Introduction

Nucleic acid aptamers emerged in the 1990s as functional single-stranded DNA or
RNA molecules exhibiting binding properties, typically in the range of 20–80 nucleotides [1].
Aptamers are generated via a process called systematic evolution of ligands by exponential
enrichment (SELEX). They fold into unique three-dimensional structures to achieve specific
recognition of various targets including small chemical molecules, proteins, genes, metal
ions, whole cells or even tissues. (Figure 1) [2]. Thus, aptamers have been termed as “chem-
ical antibodies” which can offer advantages over protein-derived antibodies including
simple synthesis, flexible structure, ease of quality-controlled production, and feasible
access to small molecules or hidden domains within protein targets [3]. For therapeutic
applications, aptamers can serve as the direct molecules of therapeutic action or drug
carriers [4]. Although extensive proof of concept studies have shown promise for aptamer-
based treatments, there has been only one RNA aptamer named as pegaptanib (Macugen;
Pfizer/Eyetech, New York, NY, USA) approved for medical practice [5]. In comparison
with antibodies, the clinical translation of aptamers is less developed, for reasons includ-
ing inherent physicochemical limitations such as nuclease susceptibility, renal filtration
and challenges in the physiological environment [6]. Nevertheless, in recent years, rapid
advances especially in material science are providing new opportunities for aptamers in
biomedical application.
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Figure 1. Illustration of the aptamer selection process. Typically, four steps are involved in the SELEX
cycle. Step 1, the single-stranded DNA or RNA library is incubated with target molecules. Step 2,
the bound sequences are separated from unbound strands and recovered for further process. Step 3,
the target-binding sequences are amplified by PCR. RNA molecules need additional transcription
procedures for amplification purposes. Step 4, single-stranded DNA/RNA sequences are re-generated
from PCR products as a new library for the next round of selection. Through several iterative cycles,
aptamers can be identified by sequencing and characterization assays.

A variety of natural or synthetic nanomaterials have been developed for biomedical
application including DNA nanostructures [7], polymeric micelles [8], silica nanoparti-
cles [9], gold nanoparticles or carbon nanotubes [10,11]. They are commonly used to
develop favorable formulations for different therapeutic agents, particularly insoluble
compounds or biotherapeutics [12,13]. The properties of biocompatibility, biodegradability,
large loading capacity, and enhanced permeability and retention (EPR) effect, benefit such
materials-based formulations. This can lead to prolonged circulation time, increased cellu-
lar uptake, and enhanced therapeutic efficacy [14]. However, most drug delivery materials
lack specificity towards pathological targets, resulting in limited therapeutic effects and
systematic cytotoxicity [15]. Therefore, functionalizing drug carriers with targeting moieties
has become a focus of research. Aptamers have remarkable targeting specificities, so can
benefit traditional nanocarriers through targeted delivery, increased drug permeability,
reduced untargeted cytotoxicity, improved drug efficacy, and controllable drug capture and
release [15,16]. Due to the large surface area, or EPR effects, some delivery materials in turn
are able to enhance the functions of aptamers and protect them from nuclease degradation
and quick filtration [17]. Moreover, the ease of introducing modifications on aptamers or
nanomaterials, has further allowed researchers to design versatile drug delivery systems.
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Additive functions such as stimuli-responsive drug release and real-time imaging have
been achieved in some aptamers-based drug carriers (Figure 2) [18,19]. Such progress holds
promise for aptamer-functionalized materials for extensive therapeutic applications.

Figure 2. Applications of aptamer-functionalized drug delivery nanocarriers. Aptamer-incorporated
drug nanocarriers can be designed for (a) targeted drug delivery, (b) controllable drug release, and
(c) imaging-guided therapy. In (b), drugs captured by conformation-switchable aptamers or other
stimulus-responsive agents can be programmatically released in response to the environmental
stimuli. In (c), imaging signals can be designed to release with payloads or upon binding to target
cells, enabling guiding and tracking of therapeutics in vivo.

In this review, we frame the current development and applications of several aptamer-
conjugated nanomaterial therapeutic systems. Progress and challenges in clinical transla-
tion will also be discussed, leading to a view of their potential for practical applications.

2. Aptamer-Functionalized Biological Materials for Therapeutic Applications

The generalized concept of biological materials is biocompatible materials that originate
from natural living structures that perform, augment, or replace a natural function. Biological
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materials are commonly designed and engineered for medical and pharmaceutical purposes
from a precise nanotechnology perspective. Aptamers are capable of enriching the bioactivity
of biological materials due to their programmability and compatibility. To date, aptamers
have been incorporated into different biological materials including antibodies, RNAi reagents,
DNA origami, and microsomes, to enhance their activities and functions.

2.1. Biologics

Biologics are products that are derived from or contain living organisms. Such bio-
logical materials are important for advanced therapy of a variety of human diseases due
to their extensive therapeutic functions and relatively low side effects when compared to
chemicals. Proteins and nucleic acids are mainstream biologics. They present impressive
efficiency in treating diverse human diseases such as cancers [20], rheumatoid arthritis [21],
and diabetes [22]. However, more widespread application remains hindered by limited
cellular uptake or nonspecific targeting. Aptamers, as antibody-mimic materials, have been
regarded as a “key” to resolve those problems due to their remarkable targeting abilities.
Below we will review recent progress of using aptamers to empower different biologics.

2.1.1. Protein Drugs

Short peptides and antibodies have been developed for combatting various dis-
eases [23]. However, the use of protein drugs has been limited by constraints such as
lack of cell-specific targeting ability and limited tumor penetration [24,25]. Aptamers can
show cell-type specificity, efficient tumor penetration, and low immunogenicity, presenting
as strong candidates to amplify the advantages of protein drugs [3,26].

Aptamer-antibody composites show particular promise. Aptamers and antibodies are
able to mutually benefit each other to maximize their therapeutic efficiency. In the study
of Kyun Heo et al., authors developed an aptamer-antibody complex, named “oligobody”
for targeted cancer therapy [27]. They conjugated cotinine with t44-OME, an aptamer
against vascular endothelial growth factor (VEGF), and an anti-cotinine antibody. Results
showed that the aptamer-antibody complex could penetrate deeply into tumor tissue,
whereas the anti-VEGF antibody could not. On the contrary, the antibody part in the
complex significantly improved the pharmacokinetics of the aptamer and did not affect
its affinity. Similarly, Passariello M. et al. developed a novel bispecific aptamer-antibody
conjugation, by linking anti-epidermal growth factor receptor (EGFR) aptamer with an
anti-epidermal growth factor receptor 2 (ErbB2) compact antibody or with an immunomod-
ulatory (anti-PD-L1) antibody [28]. The aptamer-antibody conjugation enhanced the cancer
cell killing potency and redirected and activated the T cells against cancer cells. They
proved that aptamer-antibody conjugation not only increased cell-type specificity, but also
improved pharmacokinetic and pharmacodynamic properties of aptamers due to combined
advantages from antibody and aptamers [28]. Apart from antibodies, aptamers can also be
conjugated with short peptides to enhance their bioactivity and specificity. Rajabnejad et al.
generated an aptamer-peptide complex by conjugating an anti-nucleolin aptamer (AS1411)
and metilin to target cancer cells [29]. Metilin is a 26-amino-acid long peptide with known
anticancer properties by inducing cell lysis [30]. Although, many studies have reported
metilin inhibits cancer cell growth, it can also induce serious side effects including liver
injury and haemolysis [30]. By conjugating with 5’ end NH2-modified AS1411, Metilin-
AS1411 specifically targeted A549 (nucleolin positive) cell line, while was poorly delivered
into L929 (nucleolin negative) cell line. In addition, Metilin-AS1411 complex inhibited the
haemolysis activity of single metilin in human blood.

Aptamers also can enhance the bioactivity of protein scaffolds for different applica-
tions. Anusha Pusuluri et al. developed an aptamer-peptide synergistic drug conjugate
to combine chemotherapy drugs at specific molar ratios to achieve a higher potency [31].
Researchers conjugated the anti-nucleolin aptamer to a drug-preloaded peptide, thereby
delivering the chemotherapy drugs doxorubicin (DOX) and camptothecin (CPT) at an
optimal ratio. Normally, combined chemotherapy drugs are administered at maximum
tolerated dose to avoid sub-optimal exposure to individual drug. However, this approach
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may also introduce many side effects and may diminish the therapeutic drugs. By us-
ing the aptamer-peptide synergistic drug conjugation, these limitations can be prevented.
This design achieved anti-tumor efficacy in vivo at an extreme low concentration of DOX
(500 µg/kg a dose) and CPT (350 µg/kg a dose), which are 20–30-fold lower than their
reported maximum tolerated dose. Inspired by the Large Latent Complex (LLC), Anna
Stejskalová et al. designed an aptamer-protein scaffold for cell-selective release of growth
factors [32]. They developed Traction-Force Activated payloads (TrAPs), consisting of a
growth factor aptamer in which one end was attached to an integrin binding peptide and
another end was chemically modified for nonspecific conjugation with cellular substrate
and scaffolds. Upon the traction forces induced by integrin expressing cells, the aptamer
structure was unfolded thereby releasing the bound growth factors.

2.1.2. Nucleic Acid Drugs

Nucleic acid drugs have been used for a long time to combat various diseases since
RNA interference (RNAi) was found in 1990 [33]. Nowadays, the toolbox of Nucleic acid
drugs has expanded extensively, including siRNA, antisense nucleotide, miRNA, mRNA
and aptamers [34,35]. A variety of delivery platforms have been developed to deliver
RNA nucleotide drugs. Of these, viral vectors are commonly used but are constrained by
immunogenicity, mutagenesis, and biohazards [36]. Non-viral vectors such as liposomes
are safer but liposome-mediated transfections are non-specific, leading to limited drug
efficacy [37,38]. Therefore, a more specific and biologically safer delivery approach for
nucleotide drugs is needed.

Aptamers as a carrier system for siRNA drugs have been extensively explored during
the last decade. Aptamers could be conjugated with siRNA therapeutic drugs in a covalent
and noncovalent ways. Aptamer-mediated delivery of siRNA was first introduced by two
independent groups in 2006 [39,40]. Since the siRNA and aptamers are all nucleic acids, the
aptamer-siRNA conjugates (AsiCs) could be obtained via straightforward covalent linkage
or complementary annealing. In addition to covalent conjugation, a ‘U-U-U’ linker was
introduced to connect the aptamer and siRNA for delivery of siRNA into aptamer-targeting
cells [41]. For non-covalent conjugation, a streptavidin connector was used to connect
two biotinylated aptamers and siRNA and this study showed RNAi activity in aptamer
targeting cells [39]. Zhou et al. proposed a universal “sticky bridge” to facilitate attachment
of siRNA onto chemically synthesized aptamers via complementary annealing [42]. Their
aptamer-siRNA chimera successfully inhibited HIV-1 replication and infectivity in cultured
T cells and primary blood mononuclear cells. For more detail, the conjugation strategy and
applications of aptamer-siRNA conjugates have been well reviewed by others [39,43,44].

More recently, Jeong et al. introduced a multivalent aptamer-siRNA conjugates for
delivery of DOX/siRNA into drug-resistant cancer cells [45]. Multivalent aptamer-siRNA
conjugates contained aptamers against mucin-1 and siRNA against bcl-2 genes. The
DOX was loaded into the conjugates by intercalation with nucleic acids. This multivalent
aptamer-siRNA conjugates provide a system for combining chemotherapeutics and siRNA
drugs to overcome the multidrug resistance in many cancer cells. Similar to aptamer-siRNA
conjugates, aptamer was also used to mediate the delivery of therapeutic aptamers. Li et al.
introduced a novel bifunctional aptamer for blood-brain barrier and tauopathy therapy [46].
In this study, they synthesized an aptamer containing one transferrin aptamer to facilitate
transcytosis across blood-brain barrier endothelial cells and one Tau protein aptamer to
inhibit Tau phosphorylation in the brain. Two aptamers with complementary overhang
formed a circular bifunctional aptamer through hybridization and T4 enzymatic ligase.
Such circular bifunctional Tau aptamers extended the serum stability and exposure to the
brain, as well as improved memory in mouse models.

2.2. DNA Nanostructures

DNA is the fundamental genetic material. The field has moved forward significantly
since the discovery of the crystal structure of double helix by James Watson and Francis
Crick in 1953 [47]. Generally, genomic DNA is topologically linear, while DNA can also ex-
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ist in various conformations. Cytosine-rich i-motif and guanine-rich quadruplex have been
discovered in telomeres as a cause of cancer development and tumor suppression [48–50].
Nonetheless, there are branched DNA as intermediates during DNA replication, recombi-
nation, and repair. The branched DNA structures, such as the Holliday junction, inspired
Nadrian Seeman to propose DNA as chemical materials for assembly of nanoscale molecu-
lar structures in 1982 [51,52]. The programmability and specificity of Watson-Crick base
pairing enable design and assembly at the nanometer scale [53]. There mainly are two
ways to assemble DNA nanostructures. One is using short synthetic DNA strands to form
“DNA tiles”, which mirror the principle of Lego bricks. The second fabrication process is
usually called DNA “Origami”, which is a Japanese word that means paper folding. DNA
origami is a bottom-up assemble process, which uses hundreds of short staple strands to
fold a single-stranded scaffold strand of a few thousand nucleotides into a well-defined
object [54–58] The biocompatibility and low immunogenicity of DNA make it ideal for
biological applications. Therefore, DNA nanotechnology holds significant potential for
the development of “smart” drug delivery systems due to its programmable structure to
facilitate drug loading and cellular delivery. The three-dimensional shape and size of DNA
nanostructure is highly controllable and can be maintained around 50 nm diameter as the
optimal size for cell entry [59–63].

Despite promising delivery capacity, DNA nanostructures still lack the targeting ability
to deliver drugs in a specific manner. Incorporation of aptamers onto DNA nanostruc-
tures can endow them with cell targeting ability for drug delivery. DNA nanostructures
and aptamers all originate from nucleic acid materials. Aptamers can be easily assem-
bled onto DNA nanostructures. For example, Tan’s group reported a DNA nanotrain,
where an aptamer was assembled on the DNA nanostructure through a complementary
sequence (Figure 3a) [64]. Other groups decorated the DNA tetrahedron with anti-cancer
aptamers via simple extension of aptamer sequence at end of each tetrahedron DNA strands
(Figure 3b) [65,66].

In clinical application, the side effect of chemotherapy drugs such as doxorubicin
(DOX) significantly harms the life quality of cancer patients. DOX has binding affinity to
DNA duplexes to form a stable complex, so encapsulation of DOX by DNA nanostructures
may provide a novel drug delivery system for chemotherapeutics Therefore, aptamer-
functionalized DNA nanostructures have been used to deliver the DOX in a precise manner,
reducing the side effects of the drug in non-tumor cells and tissues [67–69]. Apart from
DNA binding small molecules, RNA drugs can also be delivered by DNA nanostructures
to overcome degradation by serum nuclease. Lv et al. reported a self-assembled DNA
dendritic nanostructure for gene silencing. The outer layer of dendrimers has two over-
hangs to hybridize with sgc8c aptamers (specific to PTK-7-overexpressed CEM cells) and
siRNA, resulting in a better siRNA delivery system with stronger targeting ability and less
cytotoxicity compared with lipofectamine [70].
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Figure 3. Schematic representation of DNA nanostructure assembly. (a) DNA nanotrain with aptamers
assembled via complementary sequence. Modified with permission from reference [64]. Copyright 2013
PNAS. (b) Assembly of DNA tetrahedron through simple extension of strands. Modified with permission
from reference [65]. Copyright 2019 RSC publishing. (c) Aptamer guided and gated the delivery of
therapeutic drugs. Adapted from reference [66]. Copyright 2017 ACS publications.

Apart from targeting efficacy, aptamers also help to gate the release of drugs encap-
sulated in the DNA nanostructure. With the help of aptamers, the strand-displacement
principle can be used to expose the internal cavity of three-dimensional DNA origami and
release the drugs [71]. The aptamer-gated DNA origami was firstly designed by George
Church and was then applied for encapsulation and targeted delivery of thrombin to tumor
blood vessels. The DNA origami nanorobot was functionalized with a nucleolin aptamer de-
livered thrombin to blood vessels in targeted tumors (Figure 3c) [72]. The DNA nanorobots
were functionalized with nucleolin targeting Aptamer on the surface and conjugated with
blood coagulation protease thrombin within its inner cavity. Anti-nucleolin aptamers on
the nanorobot not only guided the targeted delivery, but also serve as a molecular trigger
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to unlock the nanostructure and expose the thrombin in cancer blood vessels. This is a
precise drug delivery platform and presents promising cancer therapeutics in mouse mod-
els. Additionally, immune responses induced after origami treatment are low. Similarly, a
DNA dendritic nanostructure composed of three aptamers was designed for targeted and
controlled delivery of anti-tumor drug epirubicin to cancer cells [73]. Anti-cancer aptamers
Mucin 1 (MUC1) and AS1411 were conjugated onto the surface of the DNA dendrimers to
assist the targeted delivery. Meanwhile, ATP aptamers within the DNA dendritic nanos-
tructure facilitate the disassembly of dendrimers in ATP-enriched lysosomes, leading to
the release of carried drugs. In addition, our group developed an aptamer-gated DNA
nanobox, which could sense the malaria diagnostic protein Plasmodium falciparum lactate
dehydrogenase (PfLDH) to control the box opening [74]. This aptamer-gated platform
was characterized by transmission electron microscope and holds a potential for targeted
drug delivery. Additionally, DNA nanostructures can also collaborate with other biological
materials. For example, DNA nanostructures are also used as backbone materials for
hydrogel assembly [75,76]. By incorporating with aptamers, a dynamic and bio-responsive
hydrogel can be developed based on aptamer-target interaction [77,78]. An aptamer strand,
capturing the specific target, was used to initiate the crosslinking of DNA hydrogel and
gate the release of captured drugs. DNA strands complementary to the aptamer could
trigger the release of potential therapeutic drugs including thrombin and adenosine [79].

2.3. Other Biological Materials

The CRISPR/Cas9 system is now well established for laboratory genome editing due to
its high specificity and other advantages. Further development of CRISPR systems will require
delivery to specific cells and active sites. By a post insertion approach, Zhen et al. developed an
aptamer-functionalized-liposome-CRISPR/Cas9 against Polo-like kinase 1 in prostate tumor
cells [80]. Similarly, Liang et al. selected an osteosarcoma cells specific aptamer and conjugated
it with PEG-PEI-Cholesterol (PPC) lipopolymer containing plasmids coding for CRISPR/Cas9
and VEGFA gRNA sequences [81]. They showed gene editing and tumor suppression in a
cell-specific manner. In addition, researchers in these two reports demonstrated the efficacy of
aptamer functionalized CRISPR/Cas9 in animal models.

Although many synthetic delivery platforms are promising, potential toxicity and
immunogenicity and low specificity halted the translation from bench to bedside. Exo-
somes are naturally present nanoparticles in the human and animal body, so the high
biocompatibility and low immunogenicity make exosomes as an ideal candidate for drug
delivery. Exosomes are nanoscale membrane vesicles (30–100 nm in diameter), which
were initially described as micro-vesicles secreted from neoplastic cells [82,83]. The nat-
ural nanoparticles had long been viewed as waste from cells until Lötvall et al. showed
that some exosomes transfer mRNA and microRNA to make proteins and regulate gene
expression [84]. In 2017, an American research group used exosomes to delivery siRNAs
against mutated Kras in pancreatic cancer, which was a major challenge for conventional
RNAi delivery systems, such as liposomes [85]. They also pointed out that “don’t eat
me” signal, CD47, on the surface of exosomes enhances retention of exosome through
protection from phagocytosis [85]. Meanwhile, aptamers were also used to develop a
targeted exosome delivery system. Zou et al. developed a diacyllipid-aptamer conjugation
to functionalize the exosome for cancer treatment [86]. They conjugated the diacyllipid with
aptamer sgc8 (specific to CCRF-CEM cells) through a PEG linker, then diacyllipid-aptamer
conjugation was decorated onto the exosomes collected from immature dendritic cells.
By combining the target capacity of aptamer and advantages of natural exosome vesicles,
sgc8-aptamer-functionalized exosomes specifically delivered DOX to cancer cells. Similarly,
Fazileh et al. developed an aptamer-functionalized exosome by covalent conjugation of
carboxylic functionalized-Aptamer onto amine groups on exosome membranes [87]. LJM-
3064 aptamer, recognizing myelin and inducing remyelination, was employed as targeting
ligands and therapeutic drugs to functionalize the exosomes from mesenchymal stem cells.
As a result, LJM-3064 aptamer-exosome conjugates promoted proliferation of OLN93 cells,
suppressed inflammatory responses and reduced severity of multiple sclerosis in C57BL/6
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mice model. However, applications of exosome drug delivery have been hindered by low
yield and expensive preparation. Wan et al. proposed a more rapid and economic approach
for possible clinical implementation. Researchers anchored cholesterol-poly-conjugated
AS1411 aptamers onto living mouse dendritic cells membrane, followed by passing through
micron-constrictions to generate exosome-mimic nanovesicles. They demonstrated that the
aptamer-enhanced exosome-mimic nanovesicles effectively delivered paclitaxel to tumor
cells both in vitro and in vivo [88].

3. Aptamer-Functionalized Non-Biological Materials for Therapeutic Applications

Aside from biological materials, the rapid development in biotechnology also has led
to great advances in a variety of physical or chemical nano-sized materials for biomedical
applications. Nowadays, the emergence of sophisticated synthetic techniques and character-
ization methodologies enables researchers to design and manufacture many non-biological
materials with customized sizes, shapes, and dispersions. Their inherent features such as
large surface area, ease of modification, high loading capacity, and enhanced permeability
and retention (EPR) effect, consistently attract interest from researchers to explore their
therapeutic potentials in drug delivery and therapeutic imaging [16,89,90]. Furthermore,
some materials exhibit unique physiochemical properties such as surface plasma resonance
(SPR) or magnetism [91,92]. To further enrich their therapeutic potential, the incorporation
of targeting ligands such nanomaterials has been extensively investigated. Aptamers,
due to their outstanding molecular recognition abilities, exhibit increasing popularity as
targeting moieties on many non-biological materials, such as micelles, hydrogels, gold
nanoparticles, silica nanoparticles, or liposomes. Below we review the recent advances in
aptamer-functionalized nanomaterials and their potential applications in therapy.

3.1. Polymeric Nanomaterials
3.1.1. Micelles

Micelles are polymeric materials that self-assemble as nanospheres by amphiphilic
block copolymers via a thermodynamic process at a critical micelle concentration (CMC) [93].
They represent one effective delivery system especially for poorly water-soluble agents due
to their hydrophobic reservoir cores. As nanocarriers, micelles hold advantages include
strong biodegradability and biocompatibility, high drug payload, and prolonged circulation
and retention time. To date, several promising micelle-based nanostructures including
Paclitaxel-Micelles (NCT00912639, Phase IV) and Docetaxel-Micelles (NCT03585673, Phase
II) have proceeded to clinical trials. To advance their applications, particularly in cancer
therapy, researchers are modifying micelles with active targeting ligands such as aptamers.

The conjugation of aptamers with micelles was initiated by Mizuo Maeda’s group in
2007 [94]. Since then, a variety of aptamer-micelle conjugates have been developed. For
therapeutic use, aptamers are typically incorporated at the surface of micelles for targeted
drug delivery. Different chemical methods, such as base-pairing hybridization [95], 1-
Ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)-mediated conjugation [96], and click
chemistry have been used to attach aptamers on micelle structures [97]. Using self-assembly,
aptamers are usually densely packed on micelle nanostructures, creating multivalent effects
which led to enhanced molecular recognition.

In micelle-based nanostructures, aptamers mostly act as probes for cancer-associated
markers such as prostate-specific membrane antigen (PSMA) [98], MUC1 [99], EGFR [100],
human epidermal growth factor receptor 2 (HER2) [101], protein tyrosine kinase 7(PTK7) [29],
and nucleolin [96]. In the study of Xu et al., aptamer-coated unimolecular micelles were
assembled as spheres with diameter of 69 nm [98] (Figure 4a). Aptamers were selected
against a prostate cancer biomarker, PSMA. In the aid of this nucleic acid probe, DOX-
loaded micelles were able to specifically target PSMA-positive CWR22Rv1 cancer cells and
demonstrated stronger anti-cancer cytotoxicity than aptamer-free treatments. Meanwhile,
several cancer cell lines such as MDA-MB-231 cells [102] and Ramos cells [103] have
also been found as direct targets for aptamers incorporated to micelles. Wu et al. in
2009 constructed a micelle nanostructure functionalized with aptamers specific to Ramos
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cells [103]. DNA aptamer TDO5 was synthesized with lipid tails which assembled into
micelles at low CMC levels. The complex demonstrated enhanced binding and dynamic
specificity to target cells in the mimic blood system, leading to efficient drug delivery to
tumor sites.

Figure 4. Schematic illustration of aptamer-functionalized micelles. They have been used to, (a)
specifically deliver DOX to WR22Rν1 tumor-bearing mice for anti-prostate cancer therapy and (b)
mediate pH/NIR-responsive breast cancer-specific imaging and therapy. (a) is modified with permis-
sion from reference [98]. Copyright 2013 Elsevier. (b) is adapted from reference [102]. Copyright 2014
Wiley Online Library.

In addition to the selective recognition of targets, other benefits offered by aptamers
for micelle-based nanocarriers include increased cellular uptake and reduced systematic
toxicity. Li et al. in 2015 developed a micelle nanostructure that was composed of AS1411
aptamers, amphiphilic polymer Pluronic F127, and copolymers β-CD-PELA, for targeted
drug delivery of DOX to human breast tumors [104]. Data revealed that aptamers AS1411
facilitated the targeted recognition of nucleolin-positive MCF-7 cells and increased the
cellular uptake of DOX via nucleolin-mediated endocytosis. Meanwhile, DOX exhibited
stronger anti-cancer efficacy but lower cardiotoxicity in mice bearing MCF-7 tumors than
free drugs. Overall, the conjugation of AS1411 aptamers greatly strengthened the micelles-
based system as drug nanocarriers.

Through combining multiple functional elements such as imaging agents or responsive
stimuli, aptamers-micelles nanoconjugates achieved more versatile applications. For exam-
ple, in the work carried out by Tian et al. in 2014, a multifunctional aptamer-micelle drug
nanocarrier was constructed via integrating a pH-activatable fluorescent probe (BDP-668)
and a near-infrared photosensitizer (R16FP) [102] (Figure 4b). Aptamers were functional-
ized to recognize target cancer cells, MDA-MB-231. The payload of R16FP was capable of
mediating lysosomal destruction of target cells via generating reactive oxygen species (ROS)
upon NIR irradiation. Meanwhile, the introduction of BDP-668 enabled the visualization of
lysosomal pH change, thereby allowing to monitor the therapeutic progress in a real-time
manner. This approach therefore might benefit cancer therapy through coupling precise
drug delivery to imaging-guided therapy.

New examples are also found in peptide amphiphile micelles (PAMs)-associated
research. PAMs are of particular interest as drug vehicles since they are designed to
contain an intrinsic therapeutic peptide moiety, allowing a higher payload than other
systems. Smith et al. attempted to conjugate aptamers to PAMs to construct targeted drug
delivery systems for specific cancer therapy applications. Aptamers bound to human B-cell
leukemia cells (C10.36) were attached to PAMs with anti-tail amphiphile via base pairing
hybridization [95]. The system was proven to remain stable over 4 h in biofluids and exhibit
specific cell targeting ability, leading to enhanced uptake by human B-cell leukemia cells.
In addition, an extended study was reported from Samuel I. Stupp’s group, in which they
coupled PDGF-BB-specific DNA aptamers to peptide amphiphile nanofibers (PANs) [17].



Cells 2022, 11, 159 11 of 33

PAN is a material constructed by similar components of PAM, but assembles into an
elongated nanofiber-like structure, which allows it to display high density of biological
moieties on the surface. In Prof. Stupp’s research, PANs significantly empowered the
PDGF-BB aptamers by enhancing their binding affinity and nuclease-resistant stability,
leading to enhanced inhibition efficacy on PDGF-BB-induced proliferation of fibroblasts.

3.1.2. Hydrogels

Hydrogels are made up of hydrophilic, cross-linked networks of polymers, al-lowing
tissue-like elasticity and diffusivity of bioactive molecules. Studies have de-signed hy-
drogels to respond to various stimuli, including pH [105], temperature [106], light expo-
sure [107], magnetic fields [108], and ionic strength [109]. Incorporation of aptamers into
hydrogels have greatly expanded the range of applications of hydrogels in their use in
biotechnology and biomedicine. Aptamers offer hydrogels many advantages. Aside from
targeted delivery, other advantages include enhanced control of gel-sol transition, volume
change, and molecule capture and release from hydrogel systems [110]. The following
section reviews the applications of aptamer-integrated hydrogels for therapy.

As drug carrier systems, hydrogels exhibit excellent characteristics such as high
biocompatibility, low toxicity, and good swelling performance. One key challenge has been
the ability to control the release and capture of drugs due to the material’s high permeability.
Aptamers provide a strategy to overcome this limitation through the oligo-driven gel-sol
transition (Figure 5).

Figure 5. Schematic representation of the gel-sol transition of aptamer-decorated hydrogels. For target
capture, aptamers in hydrogels would be de-hybridized from complementary strands to capture
targets. For target release, aptamer-captured targets are released via a competitive hybridization from
complementary oligonucleotides of aptamers or aptamer holders.

In one of the earliest studies, Yang et al., developed a hydrogel cross-linked by
adenosine-specific aptamers [77]. Upon adenosine binding, the gel-sol transition could be
monitored using gold nanoparticles. This method could be adapted for use in the selective
release of therapeutic agents. Following this, Wang et al. demonstrated that conjugation of
aptamers within hydrogel systems could mediate the specific capture and release of single
proteins, and even cells by utilizing cDNA hybridization schemes [111–114]. In notable
work from the Wang group, an aptamer-functionalized hydrogel was able to achieve sus-
tained release of B chain platelet-derived growth factor (PDGF-BB) by tuning analyte-ligand
binding affinity [112]. Furthermore, the group used this system to develop a capture and
release aptamer-mediated hydrogel for cancer cells [113,114]. In another notable study,
drug delivery system by pulsating patterned release was proven possible. By adding
partially complementary DNA strands, Soontorn-Worajit et al., designed a controllable
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aptamer-mediated PDGF-BB release system within hydrogels [115]. Their results showed
sustained release of PDGF-BB for 6 days.

Many other examples of aptamer-mediated hydrogel capture and release systems are
available. Wei et al., showed that their thrombin aptamer could capture targets in the gel
state, then strand displacement led to the sol state and release of thrombin [116]. Liu et al.,
were able to design a step-release aptamer-functionalized hydrogel through sequential
photoreaction [110]. Furthermore, Zhang et al. showed that the capture and controlled
release of multiple proteins by aptamer-hydrogels was possible. The researchers used
photoclick chemistry of complementary DNA strands to the aptamers [117]. Through this
controlled DNA hybridization, they could successfully apply this system into human serum
for “excellent cytocompatibility”. Sub-nanomolar levels of aptamer-functionalized hydrogels
(termed nanogels) have also shown promise as drug release systems. Kang and colleagues
designed a near-infrared (NIR) light-responsive aptamer drug release system for DOX [118].
Heating up the aptamer-nanogel with NIR rays led to dissociation of the aptamer-nanogel
network. This resulted in the release of the entrapped DOX within cancer cells.

More interesting examples include using aptamers-hydrogel systems to promote the
attachment and growth of endothelial cells [119]. Future efforts might focus on exploring
their possibilities for tissue remodeling and regeneration.

3.1.3. Polymeric Nanoparticles

Polymeric nanoparticles are solid colloidal systems, which are gaining popularity be-
cause of their potential as drug delivery vehicles. They are mainly formed by synthetic hy-
drophilic polymers that include but are not limited to polyglycolide, polylactide (polylactic
acid) (PLA) [120], polycaprolactone (PCL) [121], poly (lactic-co-glycolic acid) (PLGA) [122],
polyethylene glycol (PEG) [123], and cationic polymers like polyethyleneimine (PEI) [124].
With different preparation processes, the structures of resultant polymeric nanoparticles
vary from nanospheres to nanocapsules, allowing to load therapeutics throughout or inside
the nanocarriers. The payloads in polymeric nano-particles can be released passively by
erosion and diffusion, or actively in response to external triggers such as pH and heat [125].

Due to the flexibility in chemical modification, aptamers have been attempted to
functionalize polymeric nanoparticles for targeted cancer therapy. A generalized illustration
of aptamer-decorated polymeric nanoparticles is shown in Figure 6a. As anchors at the
surface, aptamers were found to be incorporated into different polymeric mate-rials, such
as PLGA [126–128], PEI [129], PLA [130], poly(l-lysine) (PLL) [129], and poly(butylene
adipate-co-terephthalate) (PBAT) [131]. Hence, drug nanocarriers benefit from enhanced
cellular uptake, improved therapeutic efficacy, and reduced non-targeted cytotoxicity. In
the work done by Chen et al, anti-PSMA aptamers were grafted on docetaxel (DTX)-loaded
PLGA-b-PEG via EDC/NHS-mediated coupling chemistry [132]. In comparison with non-
targeted nanocarriers, aptamer-functionalized systems, DTX-apt-NPs, showed enhanced
anti-cancer effects and cellular uptake in LNCaP cells. The marked intracellular uptake was
found to be associated with clathrin-dependent endocytosis. For targeted imaging-guided
therapeutic applications, Aravind et al. constructed a versatile polymeric nanoparticle
containing PLGA nano-particles, anti-nucleolin aptamers, chemotherapeutics paclitaxel
(PTX), magnetic fluid, and fluorescent dye Nile Red (NR) [133]. Results demonstrated
that cellular uptake of this nanoparticle could be well monitored via NR-derived optical
imaging, facilitating a controllable and specific drug release in cancer therapy. High
payload of nucleic acid drugs is another potential advantage of the polymeric nanoparticle
system. PEI, as a cationic material, is well known to efficiently deliver nucleic acid drugs
due to its positive charge. In Subramanian et al’s study, cationic PEI functionalized by
anti-epithelial cell adhesion molecule (EpCAM) aptamers was designed to capture EpCAM
siRNA drugs. The resulting system was proven to selectively downregulate EpCAM gene
levels and inhibited the cell proliferation of two EpCAM+ cancer cell lines, namely MCF-7
and WERI-Rb1 cells, holding potentials for EpCAM+ cancer therapy [134].
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Figure 6. Schematic illustration of aptamer-functionalized polymeric nanoparticles and branched
polymers. (a) Polymeric nanoparticles. (b) Branched polymeric nanostructures.

3.1.4. Branched Polymeric Nanostructures

Branched polymeric drug carriers such as dendrimers and hyperbranched polymers
(HBP) have also attracted extensive attention due to their unique tree-like architecture.
Dendrimers are composed of terminal units and dendritic units, whereas HBP consists of
three structural domains including dendritic domain, linear domain, and terminal domain.
They are, respectively, synthesized by divergent and polymerization approaches to generate
nanostructures with unique structures, defined sizes, and diverse functional moieties at the
surface, favoring further modification with aptamers.

As reported, aptamers have been incorporated into different branched polymers such as
polyamidoamine (PAMAM) [135], hyperbranched poly(2-((2-(acryloyloxy)ethyl)disulfanyl)ethyl
4-cyano-4-(((propylthio)carbonothioyl)-thio)-pentanoate-co-poly(ethylene glycol) methacrylate)
(HPAEG) [136], and Poly(PEGMA-co-TBMC-co-EDGMA-coCy5MA) (HBP-1) [137], for selective
drug delivery. Figure 6b presents a typical design of ap-tamers-incorporated branched polymeric
nanostructures. Among reported branched polymers, PAMAM is a cationic dendrimer used as
nanocarriers particularly for nucleic acid drugs, which shows less biological toxicity, compared
with PEI-based polymeric materials. In the work done by Xin Wu et al, RNA aptamer A10,
specific to PSMA, was coupled to PAMAM by a polymeric spacer, PEG [135]. The constructed
cargo finally achieved to deliver two microRNA drugs, miR-15a and miR-16-1, to targeting cells
(LNCaP) for a specific anticancer therapy. Targeting genes of two microRNAs include BCL2,
CCND1, and WNT3A were significantly suppressed with this specific treatment. In terms of
HBP, they were found to be functionalized by aptamers against targets such as CCRF-CEM
cells or 70 kilodalton heat shock proteins (HSP70s) [138,139]. In a poly-meric nanomedicine
developed by Zhao et al., aptamers against HSP70s were covalently bound to Cy5-labelled HBP
materials. When compared to free drugs, DOX loaded in the polymeric nanocomplex exhibited
selective uptake and stronger regression for the breast solid tumors [140]. Meanwhile, because
of the fluorescent Cy5 in the HBP, the behavior of the nanomedicine could be monitored, making
the therapeutic process more controllable and evaluable.

Polymer hybrids have emerged as a new direction for developing polymeric nanocar-
riers. Hybridization can occur within typical polymers or between typical polymers and
branched polymers, providing hybridized materials with additive advantages. Aptamer
technology has extended possibilities for polymeric hybrids in drug delivery. For example,
in a recent study conducted by Yang et al., poly (ethylene glycol) acrylate (PEGA) was
conjugated to a photo-responsive branched polymer HBP, favoring the nanostructure with
enhanced hydrophilicity, improved permeability, and prolonged circulation time. In addi-
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tion, through incorporating dibenzocyclooctyne-modified sgc8 aptamers, this polymeric
hybrid loaded with DOX achieved highly selective and controllable cytotoxicity against
targeting CCRF-CEM cells [139]. Taken together, with more concept-to-proof studies,
polymeric nanocarriers are promising to advance for clinical applications.

3.2. Inorganic Nanomaterials
3.2.1. Gold Nanomaterials

Gold nanostructures have emerged as important biomedical tools due to advances
in gold synthetic technology and their unique physiochemical properties [141]. Flexibility
in synthesis allows customized gold materials with desirable sizes, shapes, and stabilities.
Favorable characteristics in optics, electricity, magnetism, and biochemistry allow gold
nanostructures to be attractive tools for bioimaging, drug delivery, radiation and photother-
mal therapy [142–145]. The ease of modification at the surface can endow gold materials
with more therapeutic potential. In recent years, momentum is building to functionalize
gold particles with aptamer ligands.

Aptamers offer notable advantages for therapeutics based on gold nanostructures,
including enhanced drug efficacy and controllable drug release. Moreover, multifunctional
aptamer-gold nanocomplexes can simultaneously achieve drug delivery, targeted therapy,
and imaging. To date, dozens of aptamers-empowered gold nanoconjugates have been
developed, mainly applied for anti-cancer therapy.

As targeting probes, aptamers can benefit gold nanocarrier-based treatments through
enhanced targeting specificity, thereby leading to higher efficiency in bioimaging and
photothermal therapy. Wu et al. in 2012 created Ag-Au nanostructures that incorporate
the S2.2 aptamer, an aptamer selected against the cell surface cancer biomarker MUC1,
which is highly expressed in MCF-7 cells of primary and metastatic breast cancers [146].
The nanostructures were able to target MCF-7 cells with high affinity and specificity.
Meanwhile, because of the intrinsic surface-enhanced Ramon scattering (SERS) property,
the aptamer-guided Ag-Au nanomaterial exhibited bioimaging potentials and showed
excellent photothermal therapeutic potency against tumor cells in a specific manner.

In addition, aptamers with structure switching properties can control the release of
loaded drugs, facilitating specific and controllable therapy based on gold nanostructures.
For example, Wang et al. 2012 developed a targeted photodynamic therapy (PDT) and
photothermal therapy (PTT) reagent by linking the photosensitizer molecule chlorin e6
(Ce6) to the surface of gold nanorods (AuNRs) via an aptamer switch probe (ASP) [147].
ASP changes conformation in the presence of the target cancer cells, driving Ce6 away from
the gold surface that induces singlet oxygen for PDT upon light irradiation. Additionally,
the absorption of radiation by the AuNRs enables further cell destruction via PTT. This
multimodal PTT/PDT property of the AuNR-ASP-Ce6 conjugate results in a synergistic
therapeutic effect.

Meanwhile, due to the intrinsic PTT effects of gold materials, synergistic anti-cancer
therapy can be easily achieved in aptamer-gold nanomedicines by encapsulating a com-
bined therapeutic agent. Yang et al. in 2015 synthesized a nanocomposite comprising of
aptamer–gold nanoparticle-hybridized graphene oxide (Apt-AuNP-GO). This Apt-AuNP–
GO nanocomposite was demonstrated for the targeted therapeutic response to tumor cells
by NIR light-activatable photothermal therapy [148]. During NIR light-activatable PTT,
heat shock proteins (HSPs) expression was modulated leading to a therapeutic response
in cultured human breast cancer cells. Additionally, a combination therapy comprising
of Apt-AuNP–GO NIR light-activatable photothermal therapy and an HSP70 inhibitor
showed synergistic tumoricidal effects against cultured breast cancer cells.

Moreover, imaging-guided therapy has also been achieved recently in versatile aptamer-
functionalized gold nanoconjugates. He et al. in 2019 fabricated A549 cell-targeting
aptamer-labelled Raman tag-bridged gold nanoparticle (Au@Cu3(BT3)) NPs for synergistic
chemo-photothermal therapy of tumors [149]. Raman signal agent, 4-MBA, was incor-
porated into the gold NPs. Aptamers and the chemotherapeutic DOX were modified on
the surface of NPs for functionalization. After reaching the target cancer cells (A549) by
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the guide of aptamers, the release of the chemotherapeutic payload and hyperthermia
generated from the Au NP core demonstrated synergistic effects in destroying cancer
cells. Meanwhile, the Au NPs could also serve as SERS substrate to enhance the Raman
signal of 4-MBA for cell imaging purposes, indicating the feasibility of traceable anti-cancer
applications (Figure 7).

Figure 7. Schematic representation of aptamer-decorated gold nanostructures. They have been
used to track A549-specifc tumors via gold-enhanced SERS imaging and kill tumor cells through
NIR-triggered chemo-hyperthermia. It’s modified with permission from ref. [149]. Copyright 2019
RSC publishing.

3.2.2. Magnetic Nanoparticles

Magnetic nanoparticles are versatile biomedical tools that have broad applications
in the clinic. Due to their intrinsic super-paramagnetism, magnetic nanoparticles have
been applied for magnetic resonance imaging (MRI), drug delivery, hyperthermia cancer
therapy, and the separation of specific cells [150–153]. Due to the remarkable molecular
recognition and binding abilities, aptamers have been incorporated in many magnetic
systems to achieve more specific molecular capture, delivery, and collection purposes.

In aptamer-functionalized magnetic composites, aptamers mostly serve as anchoring
groups to specifically guide the nano-system to targeting tumor biomarkers or living
cells, favoring the efficient delivery of different anti-cancer therapeutics. A few cases
also use aptamers as handles to capture therapeutic agents for anti-bacteria applications.
For example, in a study carried out by Dai et al., 2013, a magnetic core-plasmonic shell
nanoparticle was constructed and functionalized by multidrug-resistant-bacteria (MDRB)
antibodies [154]. Aptamer S8-7 was displayed on this nanocarrier to hold methylene blue
for photodynamic killing and fluorescence imaging purposes. A combined photothermal
destruction of targeting bacteria was also achieved by the coated gold. This system therefore
holds potentials for multifunctional therapy of MDRB in clinical practice.

Given the majority of decorated aptamers act as targeting probes on magnetic drug
vehicles, several representative examples of which will be highlighted in the following section.

As expected, the modification of aptamers enables magnetic nanocarriers to achieve
targeted drug delivery and specific MR imaging. Yu et al. in 2011 conjugated PSMA-specific
aptamers to thermally cross-linked superparamagnetic iron oxide nanoparticles to form a
prostate cancer-specific nanotheranostic agent [155] (Figure 8a). Authors demonstrated that
their prostate cancer-specific nanotheranostic agent was capable of simultaneous detection
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of target prostate tumors by MRI, delivery of the anti-cancer drug DOX to the targeted
tumor sites and monitoring of the subsequent therapeutic responses of the tumors. In
addition, Pilapong et al., 2014 conjugated an aptamer targeting EpCAM, to a polyvalent
carboxymethyl cellulose modified magnetic nanoparticle (CMC-MNP) [156]. These EpCAM
aptamer conjugated CMC-MNPs (Ep-MNPs) were demonstrated in the imaging application
of in vitro MRI and targeted drug delivery to cells via Ep-MNP DOX loading.

Figure 8. Schematic illustration of aptamer-functionalized magnetic nanomaterials. They have been
used to (a) monitor the specific MRI-guided anti-prostate cancer therapy via DOX and (b) perform
synergistic anti-cancer therapy mediated by DOX and hyperthermia in the guidance of MR imaging.
(a) is adapted from reference [155]. Copyright 2011 Wiley Online Library. (b) is modified with
permission of reference [157]. Copyright 2019 Elsevier.

Aside from that, aptamers with remarkable tumor-targeting capability are able to
enhance the PTT efficiency of magnetic nanoparticles in cancer therapy. The encapsulation
of other non-magnetic payloads could further strengthen these composite nanomedicines
by synergistic therapeutic effects. For example, Aravind et al. in 2013 achieved targeted
chemotherapy, sustained drug release and optical imaging using aptamer loaded magnetic
fluid and paclitaxel loaded fluorescently labeled poly (D, L-lactide-co-glycolide) nanoparti-
cles (Apt-MF-NR-PLGA NPs) [133]. The aptamer was used to conjugate nucleolin, a protein
with elevated expression associated to worse cancer prognosis. Apart from the targeted
delivery of paclitaxel via the nucleolin-specific aptamer, the magnetic polymer vehicles
could also induce hyperthermia or magnetically guide the particles to tumor regions. In
a recent study conducted by Zhao et al. in 2019., authors created aptamer-functionalized
Fe3O4@carbon@DOX NPs (Apt-Fe3O4@C@DOX) and demonstrated their application in
the synergetic chemophotothermal therapy (CPTT) [157] (Figure 8b). The sgc8 aptamer
was used to functionalize the NPs to target the lung cancer model cell line A549. The
Apt-Fe3O4@C@DOX NPs displayed both high photothermal conversion efficiency during
PTT and pH/heat-induced DOX release. In vitro cytotoxicity assays indicated that the
combined chemo-PTT approach shows greater toxicity toward lung adenocarcinoma cells
(A549) than PTT or chemotherapy alone. Additionally, Apt-Fe3O4@C@DOX NPs presented
decreasing contrast enhancement of MRI signals, meaning they have potential applications
as contrast agents for MR imaging of tumor tissues.
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3.2.3. Quantum Dots

Quantum dots (QDs) are nanometer-sized semiconductor particles and present core-
shell structures, which are composed of group II/VI elements such as CdSe and CdTe
or group III/V elements such as InP and InAs [158,159]. They have gained extensive
attention in recent years as fluorescent probes and energy mediators [160,161]. The inherent
physicochemical properties endow QDs with impressive functions as robust fluorescent
imaging agents and photosensitizer enhancers. Versatile QDs have been established by
conjugating aptamer strands to achieve targeted therapeutic effects.

To date, aptamers-QDs conjugates have been mainly designed for cancer therapy and
optical imaging. Aptamers normally attach to QDs via covalent bonds, and they could well
maintain their targeting capabilities due to the minimal steric interference from excessively
nano-sized QDs molecules. The first trial of immobilizing aptamers to QDs was found in
the study of Zhang et al. in 2004 [162]. This group attempted to construct a QDs-based
sensor and drug carrier for PSMA-overexpressed tumors via attaching PSMA-specific RNA
aptamers. As suggested by recent studies, the incorporation of aptamers could benefit
traditional QDs nanocarriers from increased imaging specificity, enhanced drug efficacy,
reduced undesirable cytotoxicity and controllable release of loading agents. For instance,
Savla et al., ever designed a DOX-loaded aptamers-QDs nanoconjugate for ovarian cancer
therapy [163]. Aptamers were selectively against MUC1, a protein that’s overexpressed in
a specific ovarian carcinoma cell line. Imaging data demonstrated that this nanomedicine
preferentially accumulated in ovarian tumor and exerted stronger cytotoxicity than free
drugs to target cells. In addition, in the study of Zheng et al., ATP-specific aptamers
attached to graphene QDs (GQDs), were used to control the release of DOX and turn on
the fluorescent signals quenched by GQDs in mesoporous silica nanoparticles, leading to
real-time monitoring of drug release and efficient drug transport [164] (Figure 9a).

Figure 9. Schematic diagram of aptamer-empowered QDs nanomaterials. (a) ATP-triggered DOX re-
lease and FRET-guided targeted anti-cancer therapy. It’s modified with permission of reference [164].
Copyright 2015 ACS publishing. (b) UV-mediated FRET imaging and ROS-driven targeted photody-
namic therapy of cervical cancer. It’s modified with permission of reference [165]. Copyright 2016
RSC publishing.

Aside from aptamers-derived advantages, QDs also provide several prominent ben-
efits to aptamers-QDs treatments due to their intrinsic unique properties. One benefit is
to empower photosensitizers in cancer therapy. Due to the FRET feature, QDs are able
to mediate energy transfer to different photosensitizers and enrich their photodynamic
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therapeutic effects. In one research conducted by Singh et al., a nanoconjugate was con-
structed by coupling three modules, including ZnSe/ZnS QDs, MUC1 aptamers, and
photosensitizer (protoporphyrin IX, PPIX) [165] (Figure 9b). Upon the specific binding
to MUC1 peptides, the FRET between QDs and PPIX mediated QDs to activate PPIX for
ROS generation for killing cancer cells. Meanwhile, the FRET between PPIX and CFTM 633
amine dye (CF dye) triggered the fluorescent signals of CF to visualize the therapy process,
implying the potential of using this system for specific programmable photodynamic cancer
therapy. Another potential benefit from QDs in aptamer-functionalized nanomedicines is
the synergistic anti-cancer effects. There are studies finding that some QDs exhibit inherent
photothermal therapeutic effects upon exposure to NIR laser at 808 nm. This property has
been used to design advanced anti-cancer treatments. For example, Cao et al., synthesized
an aptamer-functionalized GQDs agent that was conjugated with PEGylated porphyrin
derivatives (P) [166]. P, as a photosensitizer, was able to mediate photodynamic therapy. More-
over, GQDs exhibited abilities to ablate cancer cells under 808 nm laser via PTT effects. The
integration of both therapeutics enabled a synergistic anti-cancer therapy for specific tumors.

Recent progress relating to aptamer-QD nanoconjugates has been significant for black
phosphorus based QDs (BPQDs). In comparison with traditional QDs, BPQDs hold advan-
tages such as outstanding photocatalysis activities in PDT, and broad photo-absorption
from UV to NIR in PTT [167]. However, their anti-cancer therapeutic applications were
hindered by low specificity and instability in the physiological environment [168]. To
address his, Lan et al. attempted to functionalized BPQDs with hepatocellular carcinoma
(HCC)-specific aptamers, TLS11a, along with a mesoporous silica framework (BMSF) [169].
Results revealed that the nano-catalytic system was able to perform an active targeting of
HCC for programmable killing of cancer cells.

3.3. Silica Nanoparticles

Silica nanoparticles are mainstream ceramic materials, among which mesoporous
silica nanoparticles (MSNs) are attracting increasing interest as drug carriers [170,171]. The
development of synthetic technology allows us to design MSNs with large pore volumes,
mesostructured sizes, great distribution area at surface, and high density of silanol groups,
favoring their drug delivery applications particularly in high payload and the ease of
conjugating functional groups [172–175]. Aptamers, as one type of specific targeting ligand,
offer MSNs lots of benefits as drug carriers.

For therapeutic purposes, aptamer-MSNs conjugates mainly functionalize as drug
nanocarriers, drug release modulators or in vivo drug trackers. Modification of aptamers
benefits MSN-based nanocarriers through enhanced targeting precision. In the study of
Gao et al., thrombin-binding aptamers (TBA) were tethered to the lipid-coated MSNs to
construct a TBA-lipid-MSN nanocarrier of the chemotherapeutic drug, docetaxel (Dtxl),
for anti-cancer therapy [135,176]. This bioconjugate was proven to strengthen anti-cancer
effects of Dtxl via targeted drug delivery and release mediated by TBA in thrombin-
overexpressing cancer cells holding potential as a potent specific suppressor of thrombin-
positive tumors.

Controllable drug release is another benefit offered by aptamers to MSNs-based drug
vehicles. In some studies, aptamers on MSNs were designed as efficient nanogates for
delivered drugs due to their switchable structures upon binding to target cells or dedicated
triggers [164,177]. For instance, He et al. in 2012 designed an ATP-responsive aptamers-
decorated MSNs device [177] (Figure 10a). In this system, ATP-specific aptamers were
initially hybridized with two single stranded DNA (ssDNA1 and ssDNA2), which were
then grafted onto MSNs via click chemistry strategy, leading to the blockage of MSNs pores
and no release of loading agents. While in the presence of ATP, aptamers were attracted by
their targets and later detached from pores, resulting in the disruption of ssDNA1-ssDNA2-
aptamer complex and release of guest molecules in MSNs. This concept could also be
applied for designing other target-responsive MSNs systems via using aptamers as caps.
Besides, other nanokeepers like light-sensitive graphene oxide [178], glutathione-responsive
AgNPs [179,180], glutathione-responsive MnO2 [181], redox-responsive cytochrome C [182],
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or pH-sensitive hydrochloride dopamine [183], have also achieved expected effects for
manipulating drug release in aptamer-MSN hybrids. Li et al. in 2017 constructed MSNs
nanocarriers that were functionalized with EpCAM aptamers to deliver DM1 for targeted
therapy of colorectal cancer [183]. EpCAM is an overexpressed surface biomarker in human
colon adenocarcinomas. Decorated aptamers functionalized to guide the MSNs system to
target cells and reduce systematic toxicity. Hydrochloride dopamine (PDA), a pH-sensitive
agent, was coated on MSNs and acted as gatekeepers of DM1 in response to the pH stimulus
in the tumor microenvironment. The resultant drug delivery device was found to exhibit
enhanced cytotoxicity specific to an EpCAM-positive colon cancer cell line, SW480, and
mitigated toxicity to normal cells.

Meanwhile, the flexibility of modifying aptamers or silica surface allows integration
of more functional groups onto aptamers-MSN bioconjugates. Since real-time monitoring
is an important concept of a smart drug delivery system, imaging technology has also
been included in designing versatile aptamers-MSN nanocarriers. The signal materials
coupled to the functional vehicle are diverse, including but not limited to NIR dyes, ra-
dionuclide chelation agents (eg. DOTA) [184], two-photon dyes [181], MRI contrast agents,
or aggregation induced emission (AIE) compounds [185]. They are usually conjugated to
aptamers or the surface of silicas or are encapsulated into the shell of MSNs. Upon the
binding to specific triggers, signals can be well stimulated and monitored, which render
the whole system with cell recognition or drug release tracking properties. In the study of
Tang et al., authors synthesized versatile MSNs that were modified with positron emission
tomography dye (DOTA-sil) and near-infrared dye (NIR-sil) for dual imaging of lymph
node metastases [141]. Nucleolin-specific aptamers, AS1411, were incorporated to guide
the system to targeted sites for real-time monitoring of the metastatic progress of tumors.
This concept might facilitate the instant detection or intervention in cancer therapy. Be-
sides that, Pasha et al. in 2018 designed an anti-EpCAM aptamer-functionalized MSNs
system to encapsulate a dual functional compound, platinum-based “aggregation induced
emission (AIE)” molecule (BMPP-Pt) [185] (Figure 10b). The component of BMPP-Pt is
bis(diphenylphosphino)methane phenylpyridine platinum (II) chloride, holds potentials for
theranostic applications in cancers by inducing cell apoptosis and emitting dose-dependent
fluorescent signals. As benefited by the novel delivery system, BMPP-Pt was able to effi-
ciently internalize and kill cancer cells, as well as perform intracellular fluorescent imaging,
potentially extending its applications for cancer therapy. There is clear potential, but for
clinical translation, challenges remain such as rapid filtration from kidney due to small
sizes of both aptamers and MSNs, which will need to be overcome.

Figure 10. Illustration of aptamer-decorated silica nanomaterials. They have been used to, (a) control
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the release of Ru(bipy)32+ by de-hybridizing from complementary oligos in a ATP-responsive manner,
and (b) guide BMPP-Pt to specifically image and suppress Huh7 cancer cells. (a) is modified with
permission of reference [178]. Copyright 2012 ACS publishing. (b) is adapted from reference [186].
Copyright 2018 RSC publishing.

3.4. Carbon Materials

One-dimensional nanostructures, in particular carbon nanotubes (CNTs), have seen
increasing interest as not only sensitive biosensors, but also as drug delivery vehicles. CNTs
are highly sensitive to the extra charges from adsorbed molecules on its surface, easily
modified, and have a large surface area for drug loading, with high in vivo stability [186].
When coupled with an aptamer’s high affinity to bind directly to its target, the field of
aptamer-CNT therapeutics has seen effective and rapid progress [187–191]. Thus, this
review section will cover many of the current works in CNT–aptamer conjugates that have
shown to enhance the efficiency of therapeutic delivery (Figure 11a).

Figure 11. Schematic illustration of aptamer-functionalized carbon and liposome nanomaterials. (a,b)
are aptamer-decorated versatile carbon and liposome nanomaterials, respectively.

In 2015, Mohammadi et al. showed that using single-walled carbon nanotubes
(SWNT)-linked RNA aptamers could significantly enhance the treatment efficacy of cancer
therapeutics [187]. To target EpCAM-positive solid tumors, the group synthesized an
RNA aptamer against EpCAM which was attached to a SWNT conjugated to piperazine–
polyethylenimine derivative. Ultimately, the aptamer-SWNT complex was able to be
delivered into EpCAM positive tumor cells and induce apoptosis through silencing of
BCL9I by piperazine–polyethylenimine.

Interestingly, SWNTs themselves have been shown to have antibacterial activity. The
cobalt metal residues on SWNTs degraded bacterial cell walls causing cell death, leading to
a suggestion that conjugation with aptamers may lead to “nano darts” against bacterial
aggregation [188].

Another novel use of aptamer linked SWNTs is in photodynamic therapy (PDT). A
complex of DNA aptamer, SWNTs and photosensitizer were designed for controllable
single oxygen generation (SOG) [189]. In the absence of target α-thrombin, the close
proximity of the photosensitizer to the SWNT surface causes quenching of SOG. In the
presence of its target, the DNA aptamer detaches from the SWNT to bind to α-thrombin,
resulting in SOG for PDT applications. Furthermore, the drug daunorubicin was linked
with a leukemia-targeting aptamer-SWNT to enhance drug delivery into T-cells in a pH-
dependent manner [192].

In a more recent study, aptamer-linked SWNTs were used to enable NIR laser-controlled
cancer cell targeting and therapy. SWNTs were linked to sgc8-specific aptamers that were
controlled using complementary DNA strands [190]. NIR laser exposure triggered DNA
strands to dehybridize, exposing the aptamers so they can specifically recognize target
sgc8, thereby guiding the delivery of DOX-loaded SWNTs.
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Multi-walled carbon nanotubes (MWNTs) consist of multiple cylindrical layers of
graphene. Although they are not as well-defined as SWNTs due to their structural com-
plexity, they have been shown to provide several advantages over SWNTs. Some of these
advantages are higher stability, and ease of modification [193]. In one of the first studies, in
2010 Bossche et al., constructed an aptamer linked MWNT that could easily translocate into
the cytosol of different cell types [186]. Importantly this transportation method was found
to be independent of receptor-mediated uptake, due in large part to the natural ability of
CNTs to cross cellular membranes.

There have also been significant advances in the field of three-dimensional carbon
nanotubes (3DN-CNTs). A notable study by Gedi et al. reported the sensitive detection and
imaging of ovarian cancer markers by aptamer-antibody pairing on 3DN-CNTs [191]. The
3DN-CNT was constructed on a chip surface and the aptamer-antibody pairing resulted in
significantly higher surface loading density. They were able to achieve higher sensitivity
and broader detection range compared to other fluorescent assays based on graphene oxide
or traditional enzyme-linked immunosorbent assays [191].

3.5. Liposomes

Liposomes were first established in 1965 [194], and later developed as preferable
drug delivery systems. They are typically structured as a spherical sac of phospholipids
enclosing an aqueous core, which allows drugs to be encapsulated, either in the aqueous
core, in the phospholipid bilayer, or at the interface layer. As drug carriers, liposomes
apparently render biomedicines with significant advantages include strong biocompatibility
and biodegradability, high drug loading efficiency, flexibility in fabrication, and ease of
intracellular uptake. Such merits have brought many liposome-based delivery systems
to clinical trials or even practical applications [195,196]. Emerging attempts are being
made to develop aptamer-embedded liposomes, which would provide more potential for
therapeutic applications.

Intergradation between aptamers and liposomes can be achieved by either non-
covalent or covalent coupling [197]. Non-covalent attachment, particularly electrostatic in-
teraction, is usually used to incorporate negatively charged aptamers to cat-ionic liposomes.
However, covalent attachment is typically preferred to generate ap-tamers-liposomes con-
jugates, even in cases with cationic liposomes. Often, covalent bonds carry advantages
as they are relatively stronger and rarely affected by environment factors such as pH,
temperature, or ionic strength. Studies have shown that aptamers can be either encap-
sulated into the aqueous core or attached at the surface of liposomes. Aptamers in the
former case can serve as therapeutics. Liposomes benefit such treatments to achieve longer
retention time, stronger biostability and enhanced cellular uptake. Aptamer drugs such as
R12-2 (inhibit HIV virus infection) has been delivered in this way and exhibited superior
efficacy than their free forms [198]. Aptamers can be encapsulated into cationic liposomes
with their targeting drugs to enhance the drug-loading efficiency via optimizing charge
and drug/aptamer ratio [199]. Aptamers are typically functionalized at the surface of
liposomes (Figure 11b). In such scenario, most aptamers attach biomarkers, receptors, or
cells/tissues involved in human cancers. Several common targets for aptamers are PTK7,
E-selectin, CD44 antigen, PSMA, nucleolin, transferrin receptor (TfR), and EGFR [197].
Specific recognition significantly increases the intracellular uptake and cytotoxicity of
liposome-based treatments, relative to their non-targeted counterparts. Recent develop-
ments in aptamer-modified liposomes have focused on rendering them with versatile
functions. Specific delivery, real-time imaging, and programmable drug release were also
achieved in latest aptamer-liposome systems through incorporating imaging agents such as
quantum dots [200], or photothermal materials such as AuNSs [201]. To advance liposome
delivery technology, researchers are modifying liposomes with polymeric materials such
as PEGs [202]. Besides that, multiple-dose administration was suggested to maximize the
cellular uptake of nanomedicines delivered by aptamer-based liposome systems [197].
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3.6. Other Non-Biological Nanomaterials

Aptamers have also been found to functionalize nanomaterials such as metal-organic
frameworks [203], upconversion nanoparticles [204], and acoustic droplets [205]. Metal-
Organic frameworks (MOFs) are a class of porous coordination polymers that are con-
structed from metal containing nodes and organic nodes. The feature with tunable structure
and function makes it feasible to integrate aptamers for high-performance applications
in targeted biosensing and cancer therapy. MOFs could serve either as imaging probes
or drug carriers due to their excellent optical, catalytical, and electrochemical properties.
When functionalized with aptamers, MOFs were endowed with improved sensing or
therapeutic efficiency. For example, in the study of Yuewu Zhao et al., nucleolin-specific
AS1411 aptamers were utilized to modify ferric oxide-loaded MOFs, resulting in significant
enrichment of MOFs at tumor sites to achieve improved therapeutic effects derived from
PDT and chemo-dynamic therapy (CDT) [206]. Meanwhile, Hongmin Meng et al’s study
demonstrated that the combination of G4-aptamer with Zr-MOFs led to specific recognition
and efficient killing of cancer cells by the aptamer-attached photosensitizer, TMPyP4 [207].

Upconversion nanoparticles (UCNPs) are organic fluorophores and have attracted
extensive attention since their recognition in the mid-1960s [208]. Properties of UCNPs
such as small physical dimensions and biocompatibility enable facile coupling to ap-tamers.
In recent years, aptamer-embedded UCNPs have been developed for various biomedical
applications ranging from targeted bioimaging to cancer therapy. The re-search from
Weijia Hou et al. reported a versatile aptamer-functionalized UCNP nano-system for
cancer therapy [209]. The cancer cell-targeting sgc8 aptamer with photosensitizer, Ce6,
was conjugated to UCNPs, which specifically guided the drug system to cancer cells.
Upon activation by the NIR light, the cytotoxic skills from Ce6 were enhanced by the
energy-transducer, UCNPs, leading to severe disruption of cancer cells.

In addition, researchers also attempted to attach aptamers to acoustic droplets. Acous-
tic droplets consist of perfluorocarbon that transit into gas bubbles when they become
superheated by the ultrasound insonation, which could induce vascular occlusion and ultra-
sound ablation for cancer therapy [210]. To improve their targeting capabilities, fabrication
of aptamers-incorporated acoustic droplets has been seen in Wang et al’s research. Herein,
one DOX-loaded acoustic droplets-based nanocarrier was constructed. Sgc8 aptamers were
conjugated on the surface and guided the system to target CCRF-CEM cells, leading to
specific ultrasound imaging and therapy of CCRF-CEM-derived cancer [211].

4. Conclusions and Future Perspectives

In summary, recent advances in biotechnology and nanotechnology show significant
potential of aptamers as nucleic acid carriers for biological drugs, or functional moieties
in a variety of materials for advanced therapy or imaging applications. Such nucleic acid
tools can augment therapeutic materials enabling guided delivery, ease of cellular uptake,
gated drug release, and enhanced drug efficacy. Meanwhile, aptamer-based nanomaterials
have also benefited from the rapid development of material science. Novel synthetic and
characterization techniques allow the design of materials with optimized biological or
physiochemical properties for a specific application. Table 1 lists some representative
advantages and disadvantages of the therapeutic approaches reviewed in this paper.
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Table 1. Advantages and disadvantages of aptamer-based therapeutics developed with different strategies.

Aptamer-Based Therapeutics Functionalized
Nanomaterials Advantages Disadvantages

Aptamer-enabled biological
material system

Protein drugs [212] 1. Inherent drug efficacy
2. High payload capacity

1. Immune response
2. High production cost

3. Low blood-brain barrier
permeability

4. Short shelf-life

Nucleic acid drugs [213]
1. Low synthetic cost

2. Inherent drug efficacy
3. High payload capacity

1. Susceptibility to nuclease
degradation

2. Rapid renal filtration
3. Risks of genetic mutations

DNA nanostructures [214]

1. Programmed drug capture
and release

2. High uptake
3. Ease of fabrication and

modification

1. Susceptibility to nuclease
degradation

2. Rapid renal filtration
3. Risks of genetic mutations

Aptamer-enabled
non-biological material

system

Micelles [215]

1. Ease of assembly
2. Prolonged circulation and

retention time
3. Drugs to be protected from

environmental stimuli, e.g.,
pH, enzymes, etc.

1. Limited payload capacity
2. Dependency of critical

micelle concentration
3. Use only for lipophilic

drugs

Hydrogels [216]

1. Highly hydrophilic and
biocompatible

2. Inherent tissue regenerative
properties

3. Low cellular toxicity4.
Relatively deformable to
conform to the shape of

implanted sites

1. Low tensile strength
2. Limited payload capacity

3. Limited drug homogeneity
4. Risks of drug burst-release

Polymeric nanoparticles [217]

1. Controllable and sustained
drug release

2. Flexible drug loading
patterns

3. Multiple fabrication
approaches

4. Tunable physiochemical
properties

1. Difficulty to scale-up the
Manufacturing

2. Insufficient research
ontoxicological evaluations

Branched polymeric
Nanostructures [218]

1. Increased solubility of
lipophilic drugs

2. High density of functional
moieties

3. Fast cellular entry

1. High production cost
2. Cellular toxicity

3. Unsustainable drug release
4. Challenges for hydrophilic

drugs

Gold nanoparticles [219]

1. Ease of synthesis
2. Allow light-trigged drug

release
3. Inherent photothermal

anti-cancer effects
4. Low cellular toxicity

5. High payload capacity
6. Allow imaging-guided

drug delivery

1. Difficulty for degradation
and plasma clearance

2. Prone to aggregations
3. Undesirable accumulations

at liver or spleen
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Table 1. Cont.

Aptamer-Based Therapeutics Functionalized
Nanomaterials Advantages Disadvantages

Magnetic nanoparticles [220]

1. High payload capacity
2. Allow MRI-guided drug

delivery
3. Hyperthermia-mediated

therapy
4. Controllable drug release

1. Highly magnet-dependent
2. Risks of causing vascular

embolization
3. Undesirable accumulations

at liver or spleen

Quantum dots [221]
1. Fluorescence-guided drug

delivery
2. Instinct anti-cancer effects

1. Rapid renal filtration
2. High cellular toxicity

Silica nanoparticles [222]
1. High payload capacity

2. Tunable and uniform pore
sizes

1. Only allow intravenous
injection for administration

2. Low biodegradability

Carbon materials [223]

1. High payload capacity
2. High cell membrane
penetration capability

3. pH-mediated drug release

1. High hydrophobicity
2. High cytotoxicity

Liposomes [224]

1. Low cytotoxicity
2. High cellular uptake

3. High biocompatibility
4. Drugs to be protected from

environmental stimuli

1. Accelerated blood or
reticuloendothelial system

clearance
2. Low colloidal stability
3. High production cost

For clinical translation, major obstacles encountered by these therapeutic strategies
are discussed below. Firstly, one concern is the limited choice of aptamers for clinical use.
Aptamers are short and single-stranded nucleic acids which are prone to degrade under the
physiological environment containing nucleases. Meanwhile, most aptamers in literature
were generated via in vitro selection. There is a high risk of losing their affinity in vivo in
the physiological milieu. Therefore, aptamer stabilization methods and innovative SELEX
strategies are urgently needed.

Secondly, the pharmacokinetics, pharmacodynamics, and off-target effects of aptamer-
conjugated therapeutic materials are little understood in vivo. Relative to traditional
materials-based nanomedicines, aptamer-functionalized systems are likely to acquire new
features in size, structure, and surface charge, which may influence behavior in cellular
uptake, biodistribution, metabolism and excretion in vivo. However, to date, only a few
studies have assessed these therapeutic systems in vivo and differing results were found
in different experimental models for the same nanocarriers [225]. Therefore, reliable and
standardized animal models should be established to allow systematic and universal
in vivo evaluations for aptamer-attached therapeutic candidates.

Thirdly, the biosafety issue of aptamers-based nanomedicines remains to be addressed
prior to clinical trials. As foreign nucleic acids aptamers may hold some risks of genomic
insertion, and immune responses need to be better understood. In addition, some materials
functionalized by aptamers exhibit inherent cytotoxicity. For example, Cd-contained
QDs have been found to cause DNA damage in cells and have high toxicity. To ensure
biosafety for clinical trials, systematic toxicity evaluations of candidate aptamers-integrated
treatments must be performed.

Regardless of the challenges, attempts are being made to address many of these is-
sues. For example, for aptamers that are susceptible to nuclease degradation, researchers
developed a variety of chemical modification and circularization approaches to enhance
their serum stability, some of which significantly stabilized aptamers for long-term in vivo
research [213,226,227]. Progress has also been seen in identifying robust aptamers with
in vivo evolution strategies. Cheng et al., successfully selected RNA aptamers directly
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from mouse, which greatly reduced the risk of changing or losing functions when used
in vivo [228]. In addition, more and more aptamer therapeutics such as NOX1257, Pegni-
vacogin, ARC1779, and SL1026 are undergoing pharmacokinetic, pharmacodynamic and
biosafety studies, allowing better understanding of their in vivo behavior [229].

With the impressive advances in the construction and application of aptamer-conjugated
materials systems, it is likely that aptamer-functionalized biomaterials will have a major
beneficial impact on human health in future.
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