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ABSTRACT 

Estimates of the reproductive number for novel pathogens such as severe acute respiratory 

syndrome coronavirus 2 are essential for understanding the potential trajectory of the epidemic 

and the level of intervention that is needed to bring the epidemic under control. However, 

most methods for estimating the basic reproductive number (R0) and time-varying effective 

reproductive number (Rt) assume that the fraction of cases detected and reported is constant 

through time. We explore the impact of secular changes in diagnostic testing and reporting on 

estimates of R0 and Rt using simulated data. We then compare these patterns to data on 

reported cases of coronavirus disease and testing practices from different states in the United 

States from March 4 to August 30, 2020. We find that changes in testing practices and delays in 

reporting can result in biased estimates of R0 and Rt. Examination of changes in the daily 

number of tests conducted and the percent of patients testing positive may be helpful for 

identifying the potential direction of bias. Changes in diagnostic testing and reporting processes 

should be monitored and taken into consideration when interpreting estimates of the 

reproductive number of coronavirus disease. 

 

Keywords: basic reproduction number; coronavirus; mathematical model; reproductive 

number; transmission dynamics  

 

Abbreviations: COVID-19, coronavirus disease 2019; US, United States; R0, basic reproductive 

number; Rt, time-varying effective reproductive number; SEIR, Susceptible-Exposed-Infected-

Recovered; %pos, percent of individuals testing positive; CI, confidence interval  
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The initial stages of the coronavirus disease 2019 (COVID-19) epidemic in the United States (US) 

were characterized by difficulties in delivering and administering diagnostic tests (1). First, the 

real-time quantitative PCR assay developed and distributed by the US Centers for Disease 

Control and Prevention suffered from performance issues (2,3). As a result, all initial and 

confirmatory testing needed to be carried out by the Centers for Disease Control and 

Prevention, which led to reporting delays and capacity issues early in the epidemic (4,5). 

Initially, tests were only administered to individuals with a history of travel to certain countries 

or known contact with a positive case. By the time testing capacity increased, state and local 

health departments were faced with heavy demand for COVID-19 testing. Only individuals 

meeting specific criteria could receive a test, and these criteria have varied from state to state 

and over time.   

 

Concurrently, mathematical modelers were analyzing data on reported COVID-19 cases in order 

to develop forecasts of future incidence and evaluate the potential impact of control measures, 

often at the behest of policymakers and public health officials. These models typically rely on 

estimates of the reproductive number of the virus. The basic reproductive number (R0) is 

defined as the expected number of secondary infections produced by an infectious individual in 

a fully susceptible population; this can be used to derive the expected fraction of the 

population that will become infected in the absence of interventions and the level of control 

and/or immunity that is needed to eliminate the pathogen from circulation (6). The time-

varying effective reproductive number (Rt) measures the average number of secondary 

infections per case at each time-point in the epidemic (6), and can be used for real-time 
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monitoring of the impact of control measures (7–9). As control measures are implemented and 

immunity increases in the population, Rt will decrease (6,10). The value of R0 can be estimated 

from the growth rate of the number of cases early in the epidemic and estimates of the 

generation time (i.e. the time between infection of successive cases in a transmission chain) 

(11), whereas instantaneous values of Rt can be estimated based on the time series of case 

notifications and the distribution of the generation time (7–9). These methods have been 

shown to be robust to under-detection and underreporting, so long as the probability that a 

true case is detected and reported remains constant through time (7–9,11,12).  

 

Here, we use simulations to explore the potential magnitude and direction of biases introduced 

by changes in diagnostic testing and reporting practices similar to those occurring during the 

early stages of the COVID-19 epidemic in the US. We then compute preliminary estimates of R0 

and Rt for different states, based on publicly available data from The COVID Tracking Project 

(13), and identify where these estimates are likely to be biased. We examine changes in testing 

practices and trends in the percent of tests that are positive to evaluate the potential for bias.  

 

METHODS 

Examining the impact of changes in testing using simulated data 

We simulated data using a stochastic SEIR (Susceptible-Exposed-Infected-Recovered) model to 

explore the potential impact of changes in testing practices on estimates of R0 and Rt. We 

modeled a population of 1 million individuals and initialized the epidemic with 10 infectious 

individuals to minimize the chances of early epidemic fadeout. We assumed everyone else was 
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susceptible at the start of the epidemic. New infections were assumed to arise according to a 

Poisson process (approximate tau-leaping method); the state transitions and rates are 

described in Table 1, and model parameters are given in Table 2. We simulated the model to 

day 70 using a time-step of t=0.05 days, and assumed a decrease in the transmission rate 

occurring on day 50, consistent with the impact of social distancing interventions.  

 

We tracked the number of “true cases” on day d (Yd) as the number of individuals entering the 

infectious period each day. We assumed that each true case occurring on day d had a 

probability prep(d) of being tested, testing positive, and being reported (where prep(d) is a 

probability conditional on being a true case). The number of tests performed was assumed to 

scale with the true incidence, such that for every true case that occurred on day d, there were 

ntest(d) individuals with similar symptoms who were tested (i.e. ntest(d) is the ratio of the 

number of tests to the number of true cases). We assumed that testing and reporting of test 

results occurred with some delay, which followed a gamma probability distribution, rep,d(t), 

with parameters ad and bd. Thus, we calculated the number of individuals tested (Td) and the 

number of positive cases (Cd) on day d as follows: 

   ∑                     

 

   

 

   ∑                               

 

   

 

We rounded the value of Td to the nearest integer and sampled Cd from a binomial distribution, 

with the additional constraint that CdTd. As an indicator of changes in testing practices, we 
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estimated the percent of individuals testing positive as  ̂        ⁄   The expected value of 

%pos is given by:  (    )                 ⁄ . 

 

As our base case, we assumed that the probability of a “true case” being reported was prep=0.1 

and the ratio of tests performed to total number of true cases was ntest=0.5; we assumed a 

mean reporting delay between onset of infectiousness and testing results of 6.6 days (14). We 

then modelled scenarios in which the fraction of true cases detected and reported (as indicated 

by prep) and the testing capacity (i.e. ratio of individuals tested to true cases, ntest) either 

increased or decreased linearly between days 20 and 60 of the epidemic. To examine the 

impact of sudden changes to the probability of a true case being tested (e.g. associated with 

changes in testing criteria) and testing capacity (e.g. associated with a rapid expansion of 

supply), we also explored scenarios in which prep and ntest increased or decreased abruptly on 

day 40 (Table S1). Finally, we examined the effect of a two-fold increase or decrease in the 

average reporting delay. 

 

We performed sensitivity analyses to explore the how the results varied for different 

magnitudes of increase in prep and ntest (Web Appendix 1). We also explored a more realistic 

model for the disease and observation process, in which the probability of a true case being 

tested and reported, as well as the associated reporting delay, depends on symptom status and 

disease severity, and testing capacity increases independent of the number of true cases after 

the initial stages of the epidemic (Web Appendix 2).  

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



 7 

Estimation of R0 from simulated data 

We estimated R0 from the growth rate of the epidemic, as described by Lipsitch et al (11): 

                    

where r is the growth rate, V is the generation interval (which is not typically observable and 

usually approximated by the serial interval (15)), and f is the proportion of the generation 

interval spent in the latent period. The growth rate (r) was determined by fitting Poisson 

regression models to the daily number of “true cases” (Yd) and reported cases (Cd) on days d=21 

to 40. Thus, we implicitly assumed that cases occurring over the first 20 days of the epidemic 

are unlikely to have been recognized. For an SEIR model, the mean generation interval is 

implicitly defined as the sum of the average latent period (1/) and the average infectious 

period (1/) (16), and the proportion of the generation interval spent in the latent period is 

f=1/(V). We estimated 95% confidence intervals (CIs) for our estimate of R0 by incorporating 

uncertainty in the estimated growth rate, but did not incorporate uncertainty in f or V. 

 

Estimation of Rt from simulated data 

We estimated Rt using the approach described by Cori et al (9), implemented using the EpiEstim 

software (17). We used a daily time step and a 7-day moving window. We assumed that the 

generation interval was gamma distributed (i.e. parametric) with a mean of 6.5 days and 

standard deviation of 4.0, consistent with data from Flaxman et al (18).  

 

COVID-19 testing data for the United States 
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Daily data on the reported number of positive and negative tests for COVID-19 in the US and by 

state were downloaded from the COVID Tracking Project on August 31, 2020 (13). The COVID 

Tracking Project data come from state/district/territory public health authorities, and 

occasionally, from trusted news sources, official press conferences, or (rarely) social media 

updates from state public health authorities or governors [12]. We analyzed the data from 

March 4, 2020, onward, as this is the first date that negative tests for COVID-19 were 

consistently reported for the entire US. We also extracted information on COVID-19 testing 

criteria from each state health department’s website during mid-March, mid-April, and mid-

May. Data sources are documented in the Appendix dataset. 

 

Estimation of R0 from state-level testing data 

To estimate R0 from data on the daily number of reported positive COVID-19 cases in the US 

and different states, we fitted Poisson regression models to the first three weeks of data 

(March 4 through March 24, 2020) to estimate the growth rate. For states that did not report 

any cases early on, the Poisson regression models were fitted to data beginning the first day a 

positive case was reported through March 24, which is approximately one week after the 

national “15 Days to Slow the Spread” guidelines were announced (on March 16) (19). We 

assumed that the mean generation interval was 6.5 days and that the average latent period was 

2.9 days (18,20,21). We calculated 95% CIs for the R0 estimates based on uncertainty in the 

estimated growth rate, but did not account for uncertainty in the generation interval or latent 

period in order to highlight the differences associated with testing practices.  
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Estimation of Rt from state-level testing data 

Estimates of the time-varying reproductive number in each state were generated using 

EpiEstim (9,17). We again used a daily time step and 7-day moving window, and assumed that 

the generation interval was gamma distributed with a mean of 6.5 days and standard deviation 

of 4.0 (18).  

 

Analyses were implemented using MATLAB v9.3 (MathWorks, Natick, MA). Data and code are 

available from https://github.com/vepitzer/COVIDtestingbias. 

 

RESULTS 

Based on our simulations (Web Table 1, Web Figure 1), the likelihood and degree to which R0 

and Rt are biased depends on the manner in which diagnostic testing practices and reporting 

change over time. When the fraction of incident cases detected and reported is constant over 

time and testing capacity scales with the number of “true” cases, the number of confirmed 

positive cases provides an unbiased estimate of R0, despite possible delays in the reporting 

process (Web Figure 2). In this instance, the percent of individuals testing positive is expected 

to be stable over time. Estimates of Rt are also expected to be unbiased, but lag 2-4 days behind 

in detecting a decrease in Rt below the threshold value of 1 (i.e. when the epidemic is receding) 

(Figure 1A-D). If the fraction of true cases detected and reported is increasing or decreasing 

linearly over time, estimates of R0 based on the growth rate of confirmed cases will be over- or 

under-estimated, respectively (Web Figure 2). The magnitude of the bias is positively correlated 

with the rate at which the fraction of true cases detected and reported is changing (Web Figure 
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3, Web Table 2). The time-varying reproductive number, Rt, will also be slightly over- or 

underestimated (Figure 1E-L). However, when prep is decreasing, the bias is partially offset by 

the reporting delay (Figure 1I-L). Importantly, the magnitude of the bias decreases over time, 

and estimates of Rt are still able to detect the impact of sustained interventions (Figure 1, Web 

Figure 4). A gradual increase or decrease in the percent of individuals testing positive (%pos) is a 

potential indicator of such bias. However, %pos is also expected to decrease or increase over 

time if the testing capacity expands more or less quickly than the number of true cases, 

respectively (Figure 1M-T). In this instance, estimates of R0 and Rt based on the number of 

confirmed cases are unbiased (Web Figure 2). Thus, contextual knowledge is needed to 

interpret whether a change in %pos is indicative of a potential bias in estimates of the 

reproductive number.  

 

Abrupt changes to testing criteria, affecting the fraction of true cases detected and reported, 

are also expected to bias estimates of R0 and lead to a large but temporary bias in estimates of 

Rt predominantly in the days following the change (Figure 2A-H, Web Figure 5). The potential 

for such bias may be indicated by a sudden change in the percent of individuals testing positive, 

as well as an abrupt change to the daily incidence of reported cases. A similar change in %pos 

may also occur with an abrupt change to the testing capacity (Figure 2I-P, Web Figure 5). 

However, in this case, it is accompanied by a change to the daily number of individuals tested, 

and estimates of R0 and Rt based on fitting to the number of positive cases are not expected to 

be biased (except for the reporting delay). The most difficult bias to detect may be due to a 

change in the reporting delay distribution (Figure 2Q-X). In this case, %pos is likely to remain 
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roughly constant through time, but estimates of R0 and Rt will be biased, especially when the 

reporting delay increases. 

 

Our conclusions are robust to the inclusion of additional model complexity that allows for the 

reporting probability to be related to the severity of symptoms and the continued scale-up of 

testing capacity (Web Appendix 2, Web Tables 3-4, Web Figures 6-9). Temporal variation in %pos 

may indicate the potential for bias in estimates of R0 and Rt, but similar patterns can be due to 

changes in testing capacity that do not lead to bias. Furthermore, examining %pos cannot detect 

bias due to changes in the reporting delay distribution (Figure 2Q-X), or due to concurrent 

changes in both the fraction of true cases detected and reported and the testing capacity (Web 

Figures 4-5).  

 

Based on the number of confirmed COVID-19 cases across the US through March 24, 2020 

(before any observable impact of social distancing measures, Figure 3), and assuming a fixed 

serial interval of 6.5 days, we estimate that R0 for the US is 3.24 (95% confidence interval (CI): 

3.21-3.26, accounting only for uncertainty in the growth rate). Nationally, the percent of 

individuals testing positive for COVID-19 increased from 10-15% in early March to around 20% 

in late-March (Figure 3). This early increase in the %pos could be due to an increase in the 

fraction of true cases detected and reported or a decrease in testing capacity relative to “true” 

incidence; thus, our estimate of R0 may be a slight overestimate. Estimates of R0 for all 50 states 

and the District of Columbia vary from 1.53 (95% CI: 0.83, 2.44; Wyoming) to 5.03 (95% CI: 4.56, 

5.50; Connecticut) (Web Table 5); trends in the %pos vary by state (Figure 4). 
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Estimates of Rt for the US and individual states were generally high initially (Rt>3) but decreased 

over time (Figures 3-4, Web Figure 10). This may be due to a low probability of detecting cases 

at the start of the epidemic in late February/early March. The %pos increased gradually during 

March in a number of states (e.g. Arizona and New York), which could reflect a slight upward 

bias in estimates of Rt; however, sharp decreases in the %pos (e.g. in Arizona in mid-March) 

reflect increases in testing capacity, and therefore should not indicate a potential downward 

bias (Figure 4A,D,E,H).  

 

Nationally and in most states, Rt hovered around 1 between early April and end of August, 

2020, and increased above 1.5 in Arizona and Florida in June (Figures 3-4, Web Figure 10). 

Testing capacity increased steadily across all states through mid-July, leading to decreases in 

the %pos in Michigan and New York (Figure 4K,L,O,P). While the %pos increased in Arizona and 

Florida during June/July (Figure 4I,J,M,N), any bias in estimates of Rt should be minimal (see 

Web Appendix 2, Web Figure 9).     

 

DISCUSSION 

During the first three months of the COVID-19 epidemic in the US, testing practices varied 

dramatically over time and from state to state (22). Due to the limited availability of tests early 

in the epidemic, most states recommended that only those with a history of travel to affected 

countries or known contact with a confirmed case be tested (4,5). Once the disease became 

more widespread throughout the US and testing capacity increased, testing guidelines were 
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relaxed, but there were still considerable differences from state to state (Web Appendix 3). For 

example, as of April 15, 2020, Washington state had no restrictions on who could be tested for 

COVID-19, but prioritized hospitalized individuals and essential service providers exhibiting 

symptoms (23), whereas New York still recommended restricting testing to those with a known 

positive contact or travel history and/or symptomatic individuals who had tested negative for 

other infections (24). By May 15, most states had updated testing criteria to include anyone 

with symptoms and/or an association with a known COVID-19 case. As testing practices 

changed over time, we demonstrated that these changes may introduce bias into estimates of 

R0 and Rt, affecting inference about how much control is needed and when control measures 

have reduced transmission below the critical threshold necessary to sustain the epidemic.   

 

Monitoring the number of tests performed and the percent of tests that are positive over time 

can help to indicate the potential for bias in estimates of reproductive numbers. However, the 

reporting of test results, particularly for negative tests, has been inconsistent in many states. In 

California, for example, there was a more than eight-fold increase in the number of negative 

tests reported on March 13, and another four-fold increase on April 4, 2020 (13). These large 

increases in the number of negative tests were not accompanied by a corresponding increase in 

the number of confirmed cases. While estimates of R0 and Rt based on the number of 

confirmed cases are not expected to be influenced by these abrupt changes in the number of 

reported tests, it becomes difficult to interpret the intervening gradual increases in the %pos. 

Moreover, we do not recommend using the %pos to adjust for changes in testing practices; this 

will introduce bias when the change in %pos results from a change in the number of tests (i.e. 
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the denominator). Instead, we advocate for reconstructing the under-ascertained case series 

based on reported deaths (for which the reporting fraction is higher and less variable over time 

(25)) accounting for the relevant delay distributions (26). 

 

It is more difficult to detect whether the time between onset of infectiousness and the 

reporting of test results (i.e. the reporting delay) has changed over time. Our simulations 

suggest that such changes could bias estimates of R0 and Rt, but would not be reflected in the 

percent of individuals testing positive over time. Individual-level data on the date of symptom 

onset, date of testing, and date of reporting are needed to resolve this potential bias. Estimates 

of Rt are also expected to lag behind true changes in the transmission rate due to reporting 

delays. Simple approaches to adjusting for the reporting delay, such as shifting the time series 

by the mean reporting delay or subtracting a sample of the delay distribution from each 

observation (i.e. convolution), fail to correct for the bias (12). Nowcasting approaches may be 

useful for resolving the bias by inferring the number of infections occurring on each day based 

on observed cases, hospitalizations and deaths, and known reporting delays (26–28). 

 

We used a parsimonious transmission model and observation process in order to clearly 

demonstrate the bias that may result from changes to testing practices over time. Including 

additional details in the disease and observation process, such as differences in reporting of 

severe versus mildly symptomatic cases, does not qualitatively change our conclusions (see 

Appendix). However, we do not consider how additional complexities and heterogeneity in the 

transmission process may also relate to the probability that cases are detected and reported 
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over time. For example, older individuals may be both more susceptible to infection with severe 

acute respiratory syndrome coronavirus 2 and more likely to transmit to others, as well as being 

more likely to be tested for COVID-19 due to their increased risk of severe disease. Such 

heterogeneities are likely to affect both the true value of Rt as the disease spreads to different 

populations (e.g. nursing homes), as well as our ability to generate unbiased estimates of Rt. 

Further work is needed to explore the impact of such complexities in the transmission and 

reporting process.  

 

Decisions regarding the lifting of stay-at-home orders and loosening of social distancing 

requirements, and when such measures may need to be reinstated, depend on having a good 

understanding of current levels of transmission. Reliable estimates of the reproductive number 

are essential for quantifying the impact of control measures on transmission and making 

informed decisions about future interventions, e.g. (7,18,29–31). However, changes in testing 

policies and practices, as well as delays in the reporting process, can lead to bias in estimates of 

the reproductive number, as we have demonstrated. It important to carefully document and 

track such changes in testing and reporting practices in order to make correct inferences. 
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Table 1. State transitions and rates for the stochastic simulation model.  

Event  State transition Ratea,b 

New infection Susceptible to Exposed 
∑      

    

    
   

   

      

 

Onset of infectiousness Exposed to Infectious 
∑         

   

      

 

Recovery from infectiousness Infectious to Recovered 
∑         

   

      

 

aModel parameters (, , ) are defined in Table 2. The variable d refers to the day in the 

simulation model, while    is the time-step of the simulation (=0.05 days). 

bThe total population size at time t in the model, N(t), is equal to the sum of the Susceptible (S), 

Exposed (E), Infectious (I), and Recovered (R) states. 

 

Table 2. Stochastic SEIR model parameters. 

Parameter  Symbol Valuea Reference 

Transmission parameter  0.85 for d < 50 

0.5 for d  50 

Assumption 

(consistent with 

     and     ) 

Average duration of latent period 1/ 2.9 days (14,20) 

Average duration of infectious period 1/ 3.7 days (14,20) 

R0, basic reproductive number; Rt, time-varying effective reproductive number 

aThe variable d refers to the day in the simulation model. 
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Figure Legends 

Figure 1. Impact of gradual changes in testing practices on Rt estimation based on simulated 

data. The daily number of individuals tested (dashed line) and confirmed cases (solid line) per 

10,000 people are plotted for days 20 to 70 of the simulated epidemic (first column), along with 

the percent of tests positive (second column) and the estimated time-varying reproductive 

number (Rt, third column) for the true cases (solid line) and confirmed cases (dashed line). The 

grey shaded regions represent the 95% confidence intervals (CI) around the Rt estimates. We 

quantified bias in the estimate of Rt as the difference between the upper or lower 95% CI of the 

Rt estimate for the observed cases minus the mean estimate for the true cases (black bars, 

fourth column).  (A-D) Base case in which the fraction of true cases detected and reported and 

the reporting delay are constant over time and the testing capacity scales with the number of 

true cases. (E-H) The fraction of true cases detected increases from 5% to 25% between days 20 

and 60. (I-L) The fraction of cases detected decreases from 25% to 5% between days 20 and 60. 

(M-P) The testing capacity increases from 0.2 individuals per case to 0.8 individuals per case 

between days 20 and 60. (Q-T) The testing capacity decreases from 0.8 individuals per case to 

0.2 individuals per case between days 20 and 60.  

 

Figure 2. Impact of abrupt changes in testing practices on Rt estimation based on simulated 

data. The daily number of individuals tested (dashed line) and confirmed cases (solid line) are 

plotted for days 20 to 70 of the simulated epidemic (first column), along with the percent of 

tests positive (second column) and the estimated time-varying reproductive number (Rt, third 

column) for the true cases (solid line) and confirmed cases (dashed line). The grey shaded 
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regions represent the 95% confidence intervals (CI) around the Rt estimates. We quantified bias 

in the estimate of Rt as the difference between the upper or lower 95% CI of the Rt estimate for 

the observed cases minus the mean estimate for the true cases (black bars, fourth column). (A-

D) The fraction of true cases detected and reported increases from 5% to 25% on day 40. (E-H) 

The fraction of true cases detected and reported decreases from 25% to 5% on day 40. (I-L) The 

testing capacity increases from 0.2 individuals per case to 0.8 individuals per case on day 40. 

(M-P) The testing ratio decreases from 0.8 individuals per case to 0.2 individuals per case on 

day 40. (Q-T) The mean reporting delay increases from 6.6 days to 13.2 days on day 40. (U-X) 

The mean reporting delay decreases from 6.6 days to 3.3 days on day 40.   

 

Figure 3. Reported number of COVID-19 cases and tests in the US and estimated time-varying 

reproductive number. (A) The daily number of individuals tested (x105, grey, left axis) and 

confirmed cases (x104, black, right axis) in the United States are plotted for March 4 to August 

30, 2020. (B) The daily number of individuals tested (grey) and confirmed cases (black) for 

March 4 to April 1 are plotted on the log10 scale. The dashed lines represent the fitted Poisson 

regression models, used to estimate R0 from the growth rate, while the dotted vertical black 

line represents the March 24 cut-off date used. (C) The percent of tests positive through time is 

plotted for the daily data (grey) and the 15-day moving average of the daily number of cases 

and tests (black). (D) The estimated value of the time-varying reproductive number, Rt, is 

plotted for March 11 to August 30. The grey shaded region corresponds to the 95% confidence 

interval around estimates of Rt, while the dashed black lines represent Rt=1 (i.e. the threshold 

for epidemic growth).  
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Figure 4. Reported number of COVID-19 cases and tests and estimated time-varying 

reproductive numbers for select US states. The daily number of confirmed cases (x103, black) 

and individuals tested (x103, grey) are plotted for (A-D) March 4 to April 1, and (I-L) April 1 to 

August 30, 2020, for four representative US states (Arizona: first column (A,E,I,M), Florida: 

second column (B,F,J,N), Michigan: third column (C,G,K,O), and New York: fourth column 

(D,H,L,P)). The percent of tests positive (dashed line) and the estimated value of the time-

varying reproductive number (Rt, solid line) are plotted for (E-H) March 11 to April 1, and (M-P) 

April 1 to August 30, 2020. The grey shaded region represents the 95% confidence interval 

around estimates of Rt, while the grey horizontal line represents Rt=1 (i.e. the threshold for 

epidemic growth). 
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