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Abstract: Aseptic surgical trauma provokes the release of HMGB1, which engages the innate immune
response after binding to pattern-recognition receptors on circulating bone marrow-derived mono-
cytes (BM-DM). The initial systemic inflammation, together with HMGB1, disrupts the blood–brain
barrier allowing penetration of CCR2-expressing BM-DMs into the hippocampus, attracted by the
chemokine MCP-1 that is upregulated by HMGB1. Within the brain parenchyma quiescent microglia
are activated and, together with the translocated BM-DMs, release proinflammatory cytokines that
disrupt synaptic plasticity and hence memory formation and retention, resulting in postoperative
cognitive decline (PCD). Neutralizing antibodies to HMGB1 prevents the inflammatory response to
trauma and PCD.

Keywords: neuroinflammation; cognitive decline; HMGB1; high mobility group box 1

1. HMGB1: An Ubiquitous and Multifunctional Protein Involved in Inflammation
1.1. Nomenclature

HMGB1 is an abundant nuclear protein belonging to the superfamily of High Mobility
Group (HMG) proteins; the appellation, “HMG”, refers to the high electrophoretic mobility
of these proteins in polyacrylamide gels. HMG proteins are classified in three major
subgroups, namely HMGA, HMGB and HMGN, based on their structural properties. The
HMGA proteins are small, intrinsically disordered proteins that fold upon binding into
the minor groove of AT-rich DNA segments. HMGBs fold into L-shaped domains that
bind to DNA with limited sequence specificity, and leads to DNA bending and chromatin
decompaction. HMGN proteins are associated with the nucleosome between the histone
core and DNA and are composed of a nucleosome binding domain together with an acidic
chromatin unfolding domain [1].

1.2. Structure

The HMGB protein family is composed of three members (HMGB1, −2 and −3),
is evolutionarily conserved from metazoans to mammals and originally arose from the
fusion of intronless genes [2]. Human and rodent HMGB1 are identical except for two
positions in the acidic tail and the three human HMGB proteins share ≈ 80% identity. The
high degree of conservation of these proteins highlights their functional importance and
implies similar biological functions. Although highly similar, HMGB genes differ in their
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expression pattern. All three HMGB genes are expressed during development; however,
while HMGB1 is highly expressed in all adult tissues except in brain neurons, HMGB2
and −3 are only active in testis and lymphoid organs at the adult stage [3]. HMGB1 has a
tripartite domain organization with two HMG boxes A and B, connected by a short linker
and followed by an acidic C-terminal sequence composed of 30 aspartate and glutamate
residues. HMGB1 contains two lysine-rich nuclear localization signals (NLS), one located
in A box and the second between B box and the acidic tail. NLS recognition by karyopherin
α1 sustains HMGB1 predominant nuclear localization [4] (Figure 1).

Figure 1. HMGB1 is composed of three domains represented by colored boxes. The A (red) and B (blue) boxes are involved
in DNA binding. These DNA-binding domains are followed by an acidic C-terminal region (green). The three domains are
separated by linker regions (yellow). Two nuclear localization signals (NLS1 and 2) are involved in HMGB1 nuclear import;
one is located within box A and the other is positioned in the linker region before the acidic domain. The post-translationally
modified amino acids within NLS1 and 2 are underlined. K and S residues are acetylated and phosphorylated, respectively.
These post-translational modifications impair HMGB1 interaction with karyopherin α1, favoring HMGB1 cytoplasmic
accumulation and secretion. The domains involved in HMGB1 binding to different membrane receptors are also specified.

Structural studies of HMGB1 demonstrated that A and B boxes of HMGB1 fold into a
3-α-helical structure to form L-shaped domains that can independently bind to the minor
groove of B-type DNA, distort the double helix and induce bends of 90◦ or more. In vitro
affinity studies revealed that HMGB1 preferentially binds non-canonical DNA structures
such as single stranded DNA, as well as DNA containing cruciform or bent structures [5].
The acidic C-terminal sequence forms a flexible structure that can interact with specific
positions within and between the HMG boxes and modulate DNA-binding capacities and
helix-distorting activity. Moreover, these intramolecular interactions compete with HMGB1
interactions with other protein partners and regulate HMGB1 biological functions [6]. A
proposed three-dimensional structural representation (Figure 2) suggests that HMGB1
exists in a dynamic equilibrium between an “open” form that can interact with DNA and a
more closed form in which DNA binding domains are occluded.

Figure 2. Schematic representations of a hypothetical compact, “tail-bound” form of HMGB1 in equilibrium with a more
open form of the protein as deduced from dynamic structural analyses. The different domains of HMGB1 are indicated and
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color-coded according to Figure 1. In the “tail-bound” state, the acidic C-terminal tail is in close interaction with linkers
and the concave faces of A and B boxes. In the open form, A and B boxes are available for intermolecular interactions.
As the concave faces of A and B boxes are involved in HMGB1 direct interactions with DNA, the equilibrium between
these two conformations probably regulates HMGB1 DNA-binding activity. Reproduced with permission from [Katherine
Stott, Matthew Watson, Françoise S. Howe, J. Günter Grossmann, Jean O. Thomas], [Tail-Mediated Collapse of HMGB1 Is
Dynamic and Occurs via Differential Binding of the Acidic Tail to the A and B Domains]; published by [Elsevier, 2010], [7].

1.3. Post-Translational Modifications

HMGB1 subcellular distribution and activity is strongly conditioned by multiple post-
translational modifications. HMGB1 contains three cysteine (“C”) residues at positions 23,
45 and 106 which are sensitive to redox-dependent modifications. C23 and C45 can form
a disulfide bridge and in oxidative conditions, all three cysteines can be sulfonated. The
redox state of these cysteine residues strongly conditions HMGB1 functional activities [8,9].

HMGB1 is modified by several other post-translational modifications such as acety-
lation, phosphorylation, methylation and poly-ADP-ribosylation. The best characterized
modifications include lysine acetylation and serine phosphorylation, promoting HMGB1
cytoplasmic localization and extracellular secretion [4,10].

HMGB1 can both passively and actively shuttle between the nucleus and the cyto-
plasm. Acetylation of lysine residues by nuclear acetyltransferases impairs HMGB1 active
nuclear import, leading to redistribution of HMGB1 into the cytoplasm. This mechanism
plays a major role in the cytoplasmic accumulation and subsequent secretion of HMGB1 by
activated monocytes [4]. Inflammation-mediated cytoplasmic phosphorylation of serine
residues within the NLS precludes HMGB1 interaction with karyopherin α1, promoting
HMGB1 cytoplasmic relocalization and secretion by innate immune cells [10].

1.4. Extracellular Release

HMGB1 can be found in extracellular compartments. HMGB1 secretion can be due to
passive release or involve active secretory mechanisms. Passive release of HMGB1 results
from lytic cell death such as necrosis through rupture of the cell membrane.

Numerous studies document HMGB1 active secretion by a variety of immune and
non-immune cells in response to various stimuli such as lipopolysaccharides (LPS) and
proinflammatory cytokines. Devoid of a leader peptide that precludes secretion through
the conventional endoplasmic reticulum–Golgi exocytic route, acetylated and/or phos-
phorylated cytosolic HMGB1 is actively released by the cells via exocytosis of secretory
lysosomes, microparticles and exosomes. However, the signaling pathways leading to
HMGB1 exocytosis, including targeting to specific vesicles, remain elusive [9]. Passively
or actively released fractions of HMGB1 differ in their pattern of post-translational modi-
fications and redox status which confer their extracellular activity [11]. While passively
released HMGB1 mostly originates from the nucleus, it is non-acetylated and fully reduced.
The actively secreted form is mostly acetylated and contains a C23–C45 disulfide bond [9].

1.5. Functions

First identified as a non-histone DNA-associated protein, HMGB1 is involved in
several nuclear processes such as chromatin stabilization, replication, DNA-damage repair
and gene transcription [5]. HMGB1 nuclear activities rely on the DNA-binding and -
bending activities of boxes A and B and on interactions with multiple nuclear factors
controlling chromatin structure and gene transcription. In normal conditions, HMGB1
is highly dynamic in the cell nucleus jumping from one chromatin site to another every
second. In cells undergoing apoptosis, HMGB1 is immobilized and is stably associated
with underacylated chromatin [12].

As previously mentioned, HMGB1 can reach extracellular compartments by pas-
sive release occurring upon tissue damage or can be secreted by non-canonical secretory
pathways. HMGB1 was first identified as a late secreted product of LPS-activated mono-
cytes/macrophages. As compared to the rapid and transient secretion of proinflamma-
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tory cytokines such TNF-α and IL-1β, which occurs within minutes upon exposure of
monocytes/macrophages to LPS, HMGB1 is detected after several hours and remains
at high levels thereafter. Similar kinetics were observed in endotoxemia mouse mod-
els. Most importantly, exposure to anti-HMGB1 prior to LPS administration in mice
strongly reduces LPS-induced lethality, thereby demonstrating the permissive role of
HMGB1 in endotoxemia-induced inflammation [13]. Serum HMGB1 levels are increased
in septic patients as compared to healthy subjects, the highest levels were observed in
non-surviving septic patients, identifying HMGB1 as a valuable clinical marker of sep-
sis severity/progression [13]. Since then, the inflammatory role of HMGB1 has been
demonstrated in multiple infectious contexts as well as in sterile injury such as liver is-
chemia/reperfusion and autoimmune diseases, establishing HMGB1 as a prototypical
host-derived damage-associated molecular pattern (DAMP) [14,15].

1.6. Molecular Signaling for Inflammation

HMGB1 is undoubtedly an important mediator of inflammation and HMGB1 neu-
tralizing strategies have beneficial effects in preclinical models of several inflammatory
diseases. To date, up to 14 different HMGB1 receptors have been described, including the
receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLR) which
recognize both DAMPs and Pathogen-Associated Molecular Patterns (PAMPs) [15,16].
HMGB1 synergizes with several DAMPs and PAMPs to trigger postreceptor signaling and
this cooperation is essential for inflammatory responses to HMGB1. HMGB1 redox status
has been shown to regulate receptor binding and thereby condition the biological outcome
of HMGB1 cytokine activity [17].

The best characterized HMGB1 receptors are RAGE and the LPS-binding receptor
TLR4–MD2. RAGE is the first HMGB1 receptor that was identified and binds all redox
forms of HMGB1. The sequence 150–183, ranging from the last 10 residues in HMGB1 box
B to the start of the acidic tail, has been identified as the RAGE-binding epitope [18]. RAGE
has various ligands that can trigger multiple signaling pathways by forming heterodimers
with other receptors or membrane-bound signaling proteins. Whether alone or in a com-
plex with other DAMPs such as nucleic acids, HMGB1 can activate RAGE-dependent
signaling pathways leading to the nuclear relocalization of NF-kB transcription factor
and, thereby, proinflammatory gene expression [19]. An immunogenic peptide located
in HMGB1 box A generated by apoptosis-induced cleavage also binds to RAGE, thereby
raising the possibility that HMGB1 signaling through RAGE might depend on HMGB1
interacting domain [20]. The capacity of RAGE to bind fully reduced HMGB1 accounts for
the inflammatory response induced by tissue damage triggering further passive release of
reduced nuclear HMGB1. Recently, it was shown that fully reduced HMGB1 promotes LPS
internalization by inflammatory macrophages in a RAGE-dependent manner. Cytosolic
LPS activates caspase-11 and gasdermin D-mediated pyroptosis, contributing to DAMP
release and inflammation upon sepsis [21].

Interaction of HMGB1 with TLR4–MD2 receptor triggers NF-kB activation and expres-
sion of proinflammatory mediators. Binding studies revealed that while HMGB1 B box
binds MD2 with low affinity and very low dissociation rate, HMGB1 A box binds TLR4
with high affinity and high dissociation rate. The capacity of HMGB1 to bind MD2 and LPS
to bind TLR4 might explain the synergistic interaction between HMGB1 and LPS in trig-
gering proinflammatory cytokine production and LPS lethality [13]. TLR4–MD2 signaling
depends on the presence of C23–C25 disulfide bond and reduced C106 in HMGB1 [8,16].
Therefore, HMGB1 signaling through TLR4–MD2 activation is conditioned by the redox
state of the environment. In increasing oxidative conditions, HMGB1 cysteines are fully
oxidized and become irreversibly sulfonated. Fully oxidized and sulfonated HMGB1 has
no cytokine activity [22].
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1.7. Anti-Inflammatory Signaling

Growing evidence indicates a more complex role of HMGB1 in the immune response
as HMGB1 is involved in mechanisms mediating immunosuppression. For example,
HMGB1 contributes to anti-inflammatory mechanisms during sepsis by forming a complex
with the acute phase protein haptoglobin. HMGB1-haptoglobin complex binds to CD163
receptor in macrophages and elicits the production of anti-inflammatory mediators [23]. In
a tumor microenvironment, hypoxia-induced release of HMGB1 induces the accumulation
of anti-inflammatory M2-like (“alternatively activated”) macrophages and IL-10 production
by RAGE signaling, thereby favoring tumor development [24]. Moreover, HMGB1 induces
M2-like macrophage polarization by assembling in a multimolecular signaling complex
with complement component C1q, RAGE and Leukocyte-associated Ig-like Receptor 1
(LAIR-1) [25]. The HMGB1-RAGE axis also controls the adaptative immune response
by promoting the migration and survival of regulatory T cells which correspond to a
subset of T lymphocytes dampening T cell responses and maintaining immunological
tolerance [26]. HMGB1 exerts a dampening activity on T cells by binding soluble CD52
released upon T cell activation and favoring CD54 ligation to Siglec-10 receptor, leading to
the downregulation of T cell receptor signaling [27].

HMGB1 is thus a key endogenous factor controlling inflammation in response to
damage or danger to the organism.

2. Perioperative Neurocognitive Disorders
2.1. Terminology

The earliest reference to cognitive problems after surgery was a short report in
1887 [28]. The first modern report of postoperative cognitive complications was by a
practitioner at a geriatric hospital in England [29]. Since then, confusion has reigned not
only for the suffering patients but for the investigators that were attempting to describe a
constellation of neurocognitive syndromes that appeared to arise in the elderly surgical
patient. Bedford’s description [29] contained terms that were descriptive (e.g., mentally
inaccessible; torpid) but which did not correspond to the terminology of mental illness
that existed at that time. With the advent of the cardiopulmonary bypass (CPB) technique
to facilitate cardiac surgery, patients who exhibited a postoperative state of confusion,
were said to be suffering from “pumphead,” in reference to the putative deleterious effect
that the CPB pump had on cognitive processing. In the landmark international observa-
tional study involving non-cardiac surgery patients [30], the investigators used another
non-standard term, namely, Postoperative Cognitive Dysfunction (POCD). In widespread
use, POCD has proved to be a catch-all term that has no relationship to the taxonomy of
neurocognitive conditions that appears in the Diagnostic and Statistical Manual of Mental
Disorders (DSM).

In an attempt to categorize an increasingly disparate number of cognitive problems,
Evered et al. convened The Nomenclature Consensus Working Group, with a panoply of
stakeholders from the clinical and experimental community, to further refine the termi-
nology [31]. Arising from that workshop was the all-encompassing term Perioperative
Neurocognitive Disorders (PND), which included conditions that are characterized by its
time of onset with respect to the surgical intervention, and to its durability and which
conform to the terminology in the DSM-V. For the purposes of this review, PND will
be used throughout although it is acknowledged that PND and its subdivisions do not
precisely layer onto the preclinical models of these complications.

2.2. Healthcare Impact of Perioperative Neurocognitive Disorders (PND)

Dementia is expected to affect 75 million patients worldwide by 2030 [32]. The
catastrophic impact that dementia has for the patient, their caregivers and healthcare
systems cannot be overestimated [33]; however, there are no studies detailing the effect
that the perioperative progressive dementia states will have globally. The additional costs
of providing healthcare to patients that develop postoperative delirium in the US has
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been estimated to be USD 32.9 billion/year [34]. Added to that is the loss of meaningful
productivity by the surgical patient and the patients’ caregivers who are both removed
from their vocational lives and for whom life will likely never return to normal despite the
short-lived nature of delirium [35].

2.3. Inflammatory Pathogenesis of Perioperative Neurocognitive Disorders

While the etiological pathways that result in PND are still not precisely known,
the field has progressed since the initial reports which emphatically stated that general
anesthetics were the culprit [1,29]. However, the risk of developing postoperative delirium
does not differ whether the patient receives a general or a regional anesthetic [36], and in
fact may be greater for those receiving regional anesthesia [37], thereby shedding doubt
on the putative causal role of general anesthesia [38]. Furthermore, in cardiac surgery
it was noted that the risk of developing cognitive decline postoperatively did not differ
depending on whether patients received on- vs. off-pump cardiac surgery [39]; therefore,
the possible deleterious effects of the “pump” as a cause of “pumphead” have also been
rejected as a reason for cognitive decline in cardiac surgical patients.

Beginning with a preclinical report in which a robust hippocampal inflammatory
response and a decline in hippocampal-dependent cognition were both noted in adult
rats exposed to surgery [40], the possible role of aseptic trauma-induced inflammation
for cognitive decline has been the focus of considerable attention. The following is a
description of the results of a series of studies from a single laboratory implicating the role
of HMGB1-induced inflammation for the cognitive decline that follows the aseptic trauma
of surgery. In each case, rodents were exposed to aseptic surgical trauma under isoflurane
general anesthesia; the trauma involved the insertion of an intramedullary pin into the tibia
of the hindlimb followed by fracture of the tibia at the midpoint with osteotomy scissors.

The trauma of surgery during anesthesia in mice causes rapid release of HMGB1 into
the circulation which represents a 10-fold increment over the baseline levels within one
hour of the trauma [41]. That such a mechanism exists for engaging the innate immune
response had previously been suggested by Matzinger in his description of the manner in
which “danger” or “damage” elicits an inflammatory response that is termed a damage-
associated molecular pattern or DAMP [42]. Prior to Wan et al.’s report [40], work from the
laboratory of Watkins and Maier had drawn attention to hippocampal inflammation as a
consequence of rats subjected to danger in the form of a brief electrical shock [43].

Causally associated with the release of HMGB1, transcription of monocyte chemotactic
protein-1 (MCP-1) rapidly increases within the hippocampus [41]. That HMGB1 is necessary
was demonstrated with a neutralizing antibody directed against HMGB1 in which the
surgery-induced neuroinflammatory cascade and behavioral changes of cognitive decline
were entirely prevented [41]. That HMGB1 is itself sufficient for neuroinflammation and
cognitive decline was demonstrated by fact that the disulfide form of the HMGB1 antigen
produces the same inflammatory and behavioral changes as was seen after surgery [41,44].
Through HMGB1 signaling pathways in circulating bone-marrow derived monocytes (BM-
DMs), NF-kB, a cytosolic transcription factor, relocates into the nucleus where it promotes
the synthesis and release of proinflammatory cytokines such as, TNF-α, IL-1β and IL-6.
These newly elaborated mediators of inflammation rapidly rise following trauma [45] and
each of IL-1β [45], TNF-α [46] and IL-6 [47] are causally related to the downstream neu-
roinflammation and cognitive decline. The blood–brain barrier (BBB), which is normally
an impediment to translocation of large, highly charged molecules as well as cells, becomes
more permeable following trauma [48]); while both HMGB1 [49] and the proinflammatory
cytokines [50] are capable of increasing BBB permeability, its roles in the mechanism of
trauma-induced BBB “leakiness” has not been clearly established. MCP-1, is the chemo-
attractant for the rapid influx of BM-DMs into the brain [48] where these cells become
tissue macrophages working in concert with classically activated microglia [51] to further
increase transcription and expression of proinflammatory cytokines and chemokines within
the hippocampus. The increase in these proinflammatory mediators may be sufficient to
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disrupt synaptic plasticity [52] that is the basis for long-term potentiation, a neurophysio-
logic mechanism for learning and memory. The HMGB1-induced inflammatory response
to trauma normally resolves through a combination of neural [44,48] and humoral [53]
mechanisms that restores the organism to its pretrauma baseline. While these pathogenic
features of trauma-induced neuroinflammation were initially demonstrated in animals, the
rise in proinflammatory cytokines, including in the CSF [54], disruption of the blood–brain
barrier [55], penetration of BM-DMs into the brain [56] and activation of microglia [57]
have each been demonstrated in surgical patients (Figure 3).

Figure 3. Peripheral trauma released HMGB1, which in turn engages the innate immune response by binding to receptors,
including the receptor for advanced glycation end-products (RAGE), on circulating bone marrow-derived monocytes
(BM-DM). This results in the translocation of the transcription factor nuclear factor kB (NF-kB) which increases the synthesis
and release into the circulation of proinflammatory cytokines. These cytokines disrupt the blood–brain barrier (BBB),
allowing the translocation of BM-DM into brain attracted by the chemokine monocyte chemoattractant protein-1 (MCP-1),
which itself is HMGB1-dependent. In the presence of BM-DMs within the hippocampus, quiescent microglia become
activated and release proinflammatory cytokines. Long-term potentiation (LTP), a synaptic plasticity mechanism required
for creating and storing memory, is disrupted by the proinflammatory cytokines in the hippocampus.

2.4. Other Effects of HMGB1 on the Pathogenic Mechanisms Leading to PND

Apart from the initiation of the systemic inflammatory response that is described above,
HMGB1 has also been associated with other proinflammatory actions in the pathogenic
mechanism leading to neuroinflammation and cognitive decline. Recombinant HMGB1 in-
duces morphological changes in endothelial cells and pericytes in an in vitro BBB model
and, contrastingly, neutralizing antibody to HMGB1 reduced astrocyte swelling and detach-
ment as well as opening of tight junctions using scanning electron microscopy in an in vivo
ischemia–reperfusion model [58]. Similarly, in rodent models of Traumatic Brain Injury
(TBI), postinjury administration of neutralizing antibody to HMGB1 prevented BBB per-
meability; in this circumstance RAGE receptors mediate the HMGB1-induced changes in
BBB [59]. Patients with Minimal Cognitive Impairment, a predementia state, were found
to have elevated circulating levels of HMGB1 that was associated with rise in soluble
thrombomodulin, a marker of BBB disruption; downregulation of zona occludin-1 protein
at intercellular tight junctions was deemed to be the putative reason for disruption in
an in vitro model [59]. Apart from HMGB1-induced disruption of the BBB [49,58] and
upregulation of the chemo-attractant MCP-1, BM-DM translocation may also be facilitated
by the direct effects of HMGB1 on microvascular endothelial cells through upregulation of
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processes that engage rolling and flattening of circulating leukocytes [60]. HMGB1 has also
been directly implicated in the activation of microglia in a model of epilepsy [61].

Consideration should also be given to the possibility that HMGB1 may be involved in
the resolution of inflammation. When HMGB1 complexes with the complement protein
C1q, it cross-links signaling through both RAGE and LAIR-1 changing the profile from
proinflammatory to pro-resolving mediators.

3. Attenuation of HMGB1-Induced Neuroinflammation

Heretofore, the causal link between HMGB1 and the risk of developing PND in hu-
mans remains circumstantial. Yet, as the evidence continues to accrue in the preclinical
literature, it is worthwhile to consider the therapeutic strategies that will be needed to miti-
gate the putative role of HMGB1 in the development of postoperative neuroinflammation
and cognitive decline. Below are therapeutic strategies that can be implemented in the
event that the initiating role of HMGB1 for postoperative cognitive decline is established.

3.1. Protein Compounds

A. Monoclonal Antibody Directed at HMGB1

Perioperatively, in a rodent population undergoing tibia fracture surgery, HMGB1
action was blocked with the administration of neutralizing monoclonal antibody [42] This
intervention led to a decrease in levels of circulating HMGB1 and IL-6 for up to 24 h
postoperatively, as well as a decrease in hippocampal neuroinflammation as evidenced by
a decrease in transcription of the proinflammatory IL-6 and TNF-α cytokines as well as the
chemokine, MCP-1. Postoperative cognitive decline, reflected by a decrease in freezing time
in the context-sensitive trace-fear conditioning paradigm, was attenuated by anti-HMGB1
(Figures 4 and 5).

Figure 4. Effects of anti-HMGB1 antibody on postoperative cognitive decline. Preoperative Anti-
HMGB1 antibody administration restored postoperative freezing time to control levels. (n = 15–16;
**** p < 0.001 control versus surgery, and ** p = 0.001 surgery versus anti-HMGB1+surgery with one-
way ANOVA and Bonferroni post hoc analysis) Reproduced with permission from [Vacas, S.; Degos,
V.; Tracey, K.J.; Maze, M.], [High-mobility Group Box 1 Protein Initiates Postoperative Cognitive
Decline by Engaging Bone Marrow–derived Macrophages]; published by [Wolters Kluwer Health,
Inc., 2014] [41].
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Figure 5. (A–D): Effects of anti-HMGB1 antibody on hippocampal interleukin (IL)-6, tumor necrosis
factor (TNF)-α, IL-1β and monocyte chemotactic protein (MCP)-1 24 h postoperatively. Postoperative
hippocampal Il-6; TNF- α, IL-1β and MCP-1 levels significantly decreased after anti-HMGB1 antibody
(n = 6; * p = 0.023; ** p = 0.009; *** p < 0.001; # p = 0.003; ## p = 0.005 with one-way ANOVA and
Bonferroni post hoc analysis) Reproduced with permission from [Vacas, S.; Degos, V.; Tracey, K.J.;
Maze, M.], [High-mobility Group Box 1 Protein Initiates Postoperative Cognitive Decline by Engaging
Bone Marrow–derived Macrophages]; published by [Wolters Kluwer Health, Inc., 2014] [41].

Similarly, the effects of neutralizing HMGB1 were also studied in rats undergoing liver
surgery [62]. Anti-HMGB1 antibody was administered pre- and postoperatively and was
associated with a decrease in microglial activation (measured by Iba-1 quantification in CA1
and dentate gyrus hippocampal regions) 72 h postoperatively. Liver surgery was associated
with postoperative cognitive impairment (assessed in the Barnes maze paradigm); this
was significantly improved by administration of the neutralizing HMGB1. Furthermore,
surgical stress-induced anxiety (measured by the open field test) was also improved by
negating HMGB1 function [62].

i. Persistent cognitive impairment after severe sepsis remains a major challenge for
survivors [63]. In a murine sepsis model involving cecal ligation and puncture
(“CLP”), the elevated serum HMGB1 levels peaked 3 to 4 weeks postinjury and
only returned to baseline levels by week 12; associated with these changes, the
mice exhibited a significant decline in spatial memory for up to four months [64].
Administration of anti-HMGB1 antibody on days 7, 9 and 11 after the injury led to
significantly reduced serum HMGB1 levels, as well as a significant improvement in
spatial memory [64];

ii. HMGB1 release was studied in murine models of electroshock and pentylenete-
trazole (PTZ)-induced convulsions. Administration of neutralizing HMGB1 was
associated with a decrease in seizures in both models [65]. Anti-HMGB1 antibody
administration also led to a decrease in release and translocation into the cytosol
HMGB1 from the nuclei of hippocampal neurons and astrocytes. Pilocarpine in-
duced seizures in mice were associated with BBB opening (as measured by Evans
Blue leakage); exposure to the anti-HMGB1 antibody inhibited BBB leakage [66].
Pilocarpine-induced seizures are accompanied by activated microglia and astrocytes
in the hippocampal CA1 region; anti-HMGB1 antibody administration attenuated
glial activation [67];
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iii. Outcome after exposure to anti-HMGB1 antibody was studied in a fluid percussion
induced TBI model in mice [66]. The TBI-induced elevated circulating levels of
HMGB1 and microglial activation (as evidenced by CD68 positivity) were both
attenuated; functionally, TBI-induced impairment in cognition (assessed in the
Morris Water Maze) and locomotion (assessed in the rotarod) were improved with
anti-HMGB1 antibody [66].

B. Recombinant Box A

i. Because HMGB1 binds to its receptors through Box A, strategies have been consid-
ered in which recombinant Box A is administered as a decoy preventing natural
binding of the ligand to its signaling pathways on the surface of immunocytes.
In an in vitro assay involving cultured macrophages, stimulation with HMGB1 to
release TNF-α and IL-1β was prevented dose-dependently with recombinant Box
A [68];

ii. In vivo experiments examining outcome in LPS-exposed mice, recombinant Box A
improved survival and surviving mice were more alert and active and resumed
feeding earlier [68];

iii. In a CLP model of sepsis, survival was improved even when the administration of
recombinant Box A was administered 24 h postinjury [68].

3.2. Non-Protein Compounds

A. Glycyrrhizin

Glycyrrhizin is a natural triterpene glycoconjugate derived from the root of licorice
which binds to both A and B boxes, thereby inhibiting its chemoattractant functions in
fibroblasts and smooth muscle cell [69].

i. In a spinal cord ischemia–reperfusion injury (IRI) murine model circulating levels
of HMGB1, IL-6, IL-1β and TNF-α were significantly lowered by glycyrrhizin [70]
than in those of the control group from 2 to 72 h after reperfusion. Functionally,
the degree of paraplegia in the hind-limbs was also significantly improved by
glycyrrhizin [70];

ii. Obesity induced by a high-fat, high-fructose diet (HFHFD) in rats for 14 weeks
results in systemic and neuroinflammation as well as cognitive decline. Rats that
were exposed to glycyrrhizin for the final 6 weeks of the HFHFD had significant
reduction in plasma and hippocampal levels of HMGB1, IL-6, IL-1β and TNF-
α [71]. Similarly, diet-induced decline in spatial memory (Y maze paradigm) was
prevented with glycyrrhizin [72];

iii. In a TBI model, rats that were treated after injury with glycyrrhizin expressed lower
levels of HMGB1 in microglia/macrophages and the activated microglia changed
to the M2 reparative phenotype 5 days after TBI [71]. Rotarod testing revealed a
decrease in maximal speed needed to stay on the rotarod 1 day after TBI, whereas
rats treated with glycyrrhizin had an improved maximal speed [71].

B. Polyunsaturated Fatty Acid (PUFA)

Specialized pro-resolving mediators (SPM) are produced from the family of n-3 polyun-
saturated fatty acids and mediate the resolution of inflammatory responses. After TBI, rats
that received PUFA exhibited a decrease in microglial activation and decreased levels of
TNFα, IL-1β, IL-6, IFN-γ and HMGB1 [73].

C. Flavonoid (Baicalin)

Flavonoids, found in fruits, vegetables, chocolate and dark tea, among others, are ca-
pable of inhibiting proinflammatory transcription factors. Baicalin, a flavonoid supplement
used in traditional oriental medicine, can penetrate the blood–brain barrier (BBB).

i. Adult mice subjected to LPS-induced sickness behavior have glial activation (both
microglia and astrocytes) with high HMGB1 levels in the hippocampal glia [74].
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Exposure to baicalin prevented glial activation and elevated hippocampal proin-
flammatory cytokines; functionally, the LPS-induced cognitive decline (assessed in
the Morris Water Maze was significantly improved [74].

4. Identification of Patients Prone to Enhanced Neuroinflammation/PND

Patient-related, as well as perioperative factors, can increase the risk of the develop-
ment of PND. In this section we consider the putative role that HMGB1 may play in the
pathogenic mechanisms that increase the risk of developing PND. The possible role that
naturally circulating anti-HMGB1 IgM neutralizing antibodies may play in preventing
PND [75] is of interest but is not further considered because there are, as yet, no reports
describing HMGB1 antibody levels perioperatively.

4.1. Non-Modifiable Patient-Related Factors That Affect Development of PND

A. Age

Increasing age is associated with both a higher prevalence of PND [76], as well as
higher plasma levels of HMGB1 in non-surgical patients [77]. Whether the increase in
age-related PND is due to higher levels of HMGB1 requires further exploration.

B. Gender

HMGB1 plasma levels are significantly higher in females [77]. There appears to be
a synergistic interaction between estrogen and HMGB1 in which the levels of the former
enhance the levels of the latter [78]. In addition, binding of estrogen to estrogen-responsive
elements in the nucleosome is strengthened by HMGB1 [79]. In a meta-analysis of studies
involving spinal surgery, females were significantly more likely to develop postoperative
delirium [80]. Interestingly, other neurodegenerative conditions, in which neuroinflamma-
tion is a key pathogenic factor, are also more common in females [81]. A possible linkage
between PND prevalence in females and HMGB1 has not been formally investigated.

C. Genetic and Racial Factors

Thus far the only genetic factor that appears to increase the risk of the development
of PND is whether males have the Apo E4 allele [82]. There are several mutations on
the HMGB1 gene that have been noted to increase the levels of circulating HMGB1 [83],
however, the relevance of these mutations for the development of PND has not been
established. Plasma HMGB1 levels were noted to be higher in an African American cohort
compared to a Caucasian one [77], while the relative risk of developing postoperative
delirium may be greater (1.3) for non-whites; the 95% confidence intervals crossed unity
(0.8–2.1) [84]; the entire effect may reflect social disadvantage.

4.2. Pre-Existing Medical Diseases That Affect Development of PND

A. Atrial fibrillation (AF)

The presence of AF at any stage of life is accompanied with an increased risk of
cognitive dysfunction, but not necessarily in the perioperative period [85]. While patholog-
ical causes of cognitive decline, such as small vessel disease and neurodegeneration, are
also associated with AF [86], some have speculated that HMGB1 may be responsible for
eliciting atrial fibrillation [87]. Furthermore, two mutations in HMGB1 (rs2249825G/G and
rs2249825C/G) have been found to be associated with increased risk of postoperative AF af-
ter coronary artery bypass graft surgery [88]. Additionally, the 3′UTR variant rs1045411T/C

of HMGB1 may influence the risk of late-onset AF after cardiac surgery [89].

B. Obesity, diabetes mellitus and the metabolic syndrome

Plasma HMGB1 levels were higher in non-surgical individuals with higher BMI, waist
circumference and waist to hip ratio [77] and HMGB1 is overexpressed in diabetic patients
compared to non-diabetics [90]. Higher production of HMGB1 by adipose tissue may
explain these findings [91]. Patients suffering from obesity, diabetes and the metabolic syn-
drome have a low-grade inflammation through activation of the innate immune system [92].
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Obesity, diabetes and metabolic syndrome are risk factors for PND [93,94], although its
link to higher levels of HMGB1 has not been established.

C. Obstructive Sleep Apnea (OSA)

OSA, the most common form of Sleep Disordered Breathing, is on the increase, affect-
ing 3 to 17% of the general population depending on gender, age and body mass index [95],
and substantially increases the risk of developing postoperative delirium [96], although ob-
servational studies have not detected a decline in cognitive performance [97] OSA patients
have higher plasma HMGB1 levels compared to healthy controls; interestingly, HMGB1
normalized after CPAP treatment [98], an intervention that also decreases the risk of neu-
rocognitive dysfunction [99]. The reason why OSA patients have higher HMGB1 levels
may be due to the repeated bouts of hypoxemia that occur in OSA patients during sleep
as simulating intermittent hypoxic conditions in mice results in higher plasma HMGB1
levels [100].

D. Gut Microbiota

A brain–gut microbiota axis involving neural, immune and endocrine pathways has
been identified as a possible mechanism for increasing the risk of neuroinflammation [101],
a pivotal pathogenic mechanism for PND. Given the ubiquitous use of prophylactic antibi-
otics in the perioperative period it is likely that the gut microbiome may be altered, which
can increase the risk of prolonged postoperative neuroinflammation [102,103]. Aged mice
that developed cognitive decline after aseptic trauma had an altered gut microbiome [31];
furthermore, exposure to trimethylamine N-oxide (TMAO), a gut microbiome-derived
metabolite, increased the likelihood of cognitive decline following aseptic trauma [104].
Interestingly, TMAO transduces its signaling role for the development of endothelial
dysfunction via HMGB1 [105,106].

E. Neurological diseases

Neurodegenerative and neurovascular diseases are associated with an increased
risk of development of PND. [107] HMGB1 plays a pivotal role in the progression of
these neurological conditions [108], possibly by enhancing neuroinflammation [109,110].
HMGB1 and its receptors are increased in the brains of patients with multiple sclerosis
and in mice with experimental autoimmune encephalomyelitis [111], as well as in the
glia of amyotrophic lateral sclerosis. In Alzheimer’s Disease, secreted HMGB1 impairs
memory through pattern recognition receptors that engage the innate immune response;
furthermore, the secreted HMGB1 can aggregate to neuritic plaques and then bind Aβ,
which in turn inhibits the phagocytosis and degradation of Aβ by microglial cells [111].

Chronic pain states are associated with cognitive decline [112]. Interestingly, HMGB1
participates in the pathogenesis of neuropathic pain [111] and HMGB1 antibodies can
diminish neuropathic pain in rats [113]. Whether increased perioperative HMGB1 can
affect postoperative pain is not known.

5. Conclusions

This brief review has focused on the multiple functions that HMGB1 plays in the
development of PND. Apart from initiating the inflammatory process that progresses to
neuroinflammation that can alter learning and memory, HMGB1 may also have a role
as a marker for both the risk of developing PND as well as of the progression of the
disease itself. HMGB1 may represent a molecular target to disable in order to prevent
the development and progression of PND; current strategies to disable HMGB1 include
the use of neutralizing antibodies and post-translational modifications that may alter its
functional capacity. While much remains unknown, this DAMP is likely to be a future
focus of investigations into the pathogenesis and treatment of PND.
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