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  Due primarily to the increasing shortage of allogeneic 

donor organs, xenotransplantation has become the focus of 

a growing field of research. Currently, micropigs are the 

most suitable donor animal for humans. However, no 

standard method has been developed to evaluate the 

systemic vascular anatomy of micropigs and standard 

reference values to aid in the selection of normal healthy 

animals as potential organ donors are lacking. Using 

64-channel multidetector row computed tomographic an-

giography (MDCTA), we evaluated morphological features 

of the major systemic vessels in micropigs and compared 

our results to published human data. The main vasculature 

of the animals was similar to that of humans, except for the 

iliac arterial system. However, diameters of the major 

systemic vessels were significantly different between micro-

pigs and humans. Specifically, the diameter of the aortic 

arch, abdominal aorta, external iliac artery, and femoral 

artery, were measured as 1.50 ± 0.07 cm, 0.85 ± 0.06 cm, 

0.52 ± 0.05 cm, and 0.48 ± 0.05 cm, respectively, in the 

micropigs. This MDCTA data for micropig major systemic 

vessels can be used as standard reference values for 

xenotransplantation studies. The use of 64-channel 

MDCTA enables accurate evaluation of the major systemic 

vasculature in micropigs. 
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Introduction 

Organ transplantation is considered the preferred solution 
for the treatment of terminal organ failure [28]. However, 
there has always been a serious shortage of suitable human 

donors [13]. The constant shortage of donor organs led to 
research into xenotransplantation, which was first reported 
in 1906 [14]. Pigs are currently considered the most appro-
priate source of organs for xenotransplantation to humans 
based on several advantages, including physiological/ 
anatomical organ similarities, reproductive characteristics, 
the possibility of controlled breeding, and ethical con-
siderations [1,3,42]. Furthermore, recently, research to 
avoid the rejection of grafted organs has involved the 
production of genetically-modified pigs such as the α 
1,3-galactosyltransferase gene knock-out pig, expression 
of human complement regulatory proteins (CD46, CD55, 
and/or CD59), and reducing risk of endogenous porcine 
retrovirus infection [6,8,20,26,27,32]. To resolve existing 
hurdles prior to the clinical application of pig organs, an 
appropriate method for evaluating the vascular system of 
micropigs must be established and immunological barriers 
must be addressed.

To transplant micropig solid organs into humans, evaluation 
of the vascular system and anatomical comparisons are 
essential for selection of a suitable organ as well as to gather 
sufficient pre-clinical data [5,18]. Previously, the standard 
method for preoperative angiographic evaluation of the 
donor vascular system was conventional angiography, 
whose disadvantages include being invasive and time- 
consuming, as well as the fact that it requires the use of 
ionizing radiation and large amounts of contrast agents. In 
contrast, the multidetector row computed tomographic 
angiography (MDCTA) process using doses of nonionic 
contrast media and ionizing radiation exposure that are less 
than conventional angiography [38]. Furthermore, veno-
graphy is needed to obtain additional information regarding 
the venous system prior to organ transplantation. With 
remarkable advancements in spatial and temporal resolution, 
MDCTA is now routinely performed to evaluate human 
donors for solid organ transplant. This technology has been 
confirmed as a valuable method that can provide a road map 
for surgical planning as well as to assist in donor selection 
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[17,33]. In addition, MDCTA has several advantages over 
traditional angiography; it is less invasive and permits 
visualization of organ structures and possible pathology 
[38]. 

The goal of this study was to confirm the feasibility of using 
MDCTA to evaluate the vascular system of micropigs and 
establish standard reference values for the vascular 
diameter and anatomy, which would be useful for selection 
of suitable donor organs in the future. 

Materials and Methods

Animals
All experimental protocols were approved by the Ethics 

Committee of Chonnam National University, Korea (CNU 
IACUC-YB-2008-29). Physiologically and genetically 
intact male micropigs (n = 6) were purchased from PWG 
Genetics Korea (Korea). The animals were kept in 
individual cages at the university’s central animal facility 
and received a standard pig diet and water ad libitum. The 
mean age and weight of the animals was 360 days and 
30.50 ± 1.24 kg, respectively. Prior to undergoing MDCTA, 
all animals were fasted for 24 h. The animals were 
premedicated with an intramuscular injection of azaperone 
(0.5 mg/kg) and xylazine (8 mg/kg) and anesthetized with 
an intramuscular injection of a combination of zolazepam/ 
tiletamine (4.4 mg/kg).

MDCTA protocol
The examinations were performed using a 64-channel 

multi-detector row helical CT scanner (LightSpeed VCT; GE 
Healthcare, USA) according to the following parameters: 0.5 
sec per rotation, 5 mm collimation, 1.0 pitch, and a tube 
current of 120 kV per 140∼200 milliamperes. The 
MDCTA images were acquired with spatial resolution of 
0.35 × 0.35 × 0.8 mm. The CT angiographic scan was 
obtained in the craniocaudal direction, and reconstruction 
thickness and reconstruction increment were 1 mm and 0.5 
mm, respectively. 

For administration of intravenous contrast material, a 
20-gauge peripheral line was placed in an ear vein. After a 
scout CT image was obtained, arterial phase volumetric 
image data sets were acquired following initiation of an 
intravenous injection of 60 mL of nonionic contrast media 
(Ultravist 370; Schering AG, Germany) at the rate of 3 
mL/sec using an automated injector (LF CT 9000; 
Liebel-Flarsheim, USA). An automatic bolus triggering 
software program was systematically applied, with a 
circular region of interest positioned at the level of the 
superior vena cava (SVC) and a threshold for triggering 
data acquisition preset at 100 Hounsfield units to obtain 
arterial phase images. All image acquisitions were 
obtained in the craniocaudal direction and supine position. 
Imaging extended from the C1 cervical vertebrae to the 

knee joint including both pelvis and thigh. Volumetric data 
sets were transferred to an Advantage Workstation 4.3 (GE 
Healthcare, USA) equipped with Volume Viewer Plus 
three-dimensional (3D) software for subsequent review. 
Transverse 0.625-mm-thick sections were reformatted into 
maximum intensity projection images and volume 
rendered images.

Image analysis
A single radiologist reviewed all CT images at a 

workstation which permitted editing of CT volume data 
sets to create optimal 3D CTA images. Source images as 
well as 3D display images were evaluated. For 3D CTA, 
volume-rendering techniques were typically employed, 
but maximum-intensity-projection rendering was also 
used as an adjunct display. The 3D images were reviewed 
by scrolling the acquisition displayed on a workstation 
monitor in conjunction with the assessment of conventional 
2D axial images.

The reviewer measured and recorded the diameter of the 
aorta and major branches. The aorta was divided into four 
sections: ascending, arch, thoracic, and abdominal. Major 
aortic branches measured were right and left common 
carotids, celiac trunk, superior mesenteric, splenic, external 
iliac, and superficial femoral. The diameter of the main 
arteries was assessed from the most appropriate point of the 
segment, 1∼1.5 cm from the ostium, using the workstation 
electronic cursor. The presence of any anatomic variations 
or intrinsic vascular disease such as atherosclerosis and/or 
calcification was also recorded. 

In addition, both a morphological evaluation and mea-
surement of the diameter of the SVC and inferior vena cava 
(IVC) were also performed. The diameter of the SVC was 
measured at the point just proximal to the SVC-right 
atrium junction. The diameter of the IVC was measured at 
three segments: hepatic, suprarenal, and infrarenal. The 
values presented in this study are expressed as mean ± SD. 
The data obtained from the micropigs was compared to 
pertinent human data published in the literature.

Results

CT examinations were successfully performed in all six 
micropigs. There was no evidence of vascular malformation, 
arterial stenosis, aneurysm, atherosclerosis, or calcification 
found in any animal. In the present study, we measured the 
diameters of the major systemic vessels and compared 
those data to previously published human data (Table 1). 
The mean diameters of the right and left common carotid 
arteries measured were 0.57 ± 0.08 cm and 0.55 ± 0.05 cm, 
respectively (Fig. 1). There were no significant differences 
between micropigs and humans with regard to anatomy or 
diameter of the common carotid arteries.

The mean diameters of the micropig ascending and 



Evaluation of the micropig vascular system    211

Table 1. Comparison of micropig and human angiographic data

Micropig (cm) Human (cm) References

Common carotid  artery Right 0.57 ± 0.08 0.65 ± 0.09 (age: 52.8 ± 16.0, weight: 85.5 ± 15.6, n = 194) [19]
Left 0.55 ± 0.05

Ascending thoracic aorta 1.69 ± 0.12 3.09 ± 0.41 (age: 50.2 ± 16.5, weight: 73.1 ± 15.7, n = 70) [11]
Descending thoracic aorta 1.23 ± 0.11 2.43 ± 0.35 (age: 50.2 ± 16.5, weight: 73.1 ± 15.7,  n = 70) [11]
Aortic arch 1.50 ± 0.07 2.77 ± 0.37 (proximal), 2.61 ± 0.41 (distal) [11]

 (age: 50.2 ± 16.5, weight: 73.1 ± 15.7, n = 70)
Superior vena cava 1.93 ± 0.33 N/A
Abdominal aorta 0.85 ± 0.06 1.22 ± 0.23 (age: 22 ± 3.8, BMI: 20.5 ± 1.6, n = 26) [2]
Celiac trunk 0.52 ± 0.08 0.79 ± 0.04 [36]
Superior mesenteric artery 0.68 ± 0.05 N/A
Splenic artery 0.38 ± 0.05 0.56 ± 0.13 (age range: 27∼87, n = 60) [25]
Inferior vena cava Hepatic 1.65 ± 0.20 1.36 ± 0.28 (age: 44 ± 8, BMI: 22 ± 4, n = 10) [39]

Suprarenal 1.59 ± 0.21 
Infrarenal 1.26 ± 0.07

External iliac artery Right 0.52 ± 0.05 7.96 ±1.69 (age: 54 ± 10, n = 25) [16]
Left 0.53 ± 0.05 7.97 ± 1.24 (age: 54 ± 10, n = 25)

Femoral artery Right 0.50 ± 0.05 1.06 ± 0.04 (age: 25.4 ± 1.5, weight: 77.8 ± 4.9) [31]
Left 0.47 ± 0.04

The values are expressed as mean ± SD. BMI: body mass index (kg/m2), N/A: not available, Age: years, Weight: kg.

Fig. 1. Volume-rendering image showing both the right and left 
common carotid arteries.

Fig. 2. Coronal maximum intensity projection showing the 
normal structure of the aortic arch including the ascending/ 
descending thoracic aorta.

descending thoracic aorta, aortic arch, and SVC were 1.69 ± 
0.12 cm, 1.23 ± 0.11 cm, 1.50 ± 0.07 cm, and 1.93 ± 0.33 
cm, respectively. The anatomic structure of the thoracic 
aorta and aortic arch of the micropigs was similar to that of 
humans (Fig. 2), but the diameters of these vessels were 
considerably smaller than those in humans. In addition, the 
significant anatomical differences in SVC of micropig 

compared with human were not observed. 
In the abdominal region, we evaluated the abdominal 

aorta, celiac trunk, superior mesenteric artery, splenic 
artery, and hepatic/suprarenal/infrarenal IVC. The mean 
diameters of these vessels were 0.85 ± 0.06 cm, 0.52 ± 0.08 
cm, 0.68 ± 0.05 cm, 0.38 ± 0.05 cm, and 1.65 ± 0.20/1.59 
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Fig. 4. Coronal maximum intensity projection (A) and 3D-CTA 
images (B) of the pelvic region vascular system. 

Fig. 3. Post-anterior views of the coronal maximum intensity 
projection (A) and the volume-rendered image (B) showing 
abdominal artery in the micropig. AA: abdominal aorta, CHA: 
common hepatic artery, SA: splenic artery.

± 0.21/1.26 ± 0.07 cm, respectively. There were no 
anatomical variations in the micropigs in relation to 
humans; however, the diameter of the abdominal aorta was 
significantly smaller than in humans (Fig. 3). In addition, 
there were no significant differences between micropigs 
and humans with regards to anatomy or diameter of the 
IVC.

In the pelvic region, the diameters of the external iliac 
artery and superficial femoral artery were 0.52 ± 0.05 cm, 
and 0.48 ± 0.05 cm, respectively which were 42.4% and 
46.3% comparable to human vessels, respectively.

In all six micropigs examined, the external and internal 
iliac arteries arose directly from the aorta. There was no 
discernable common iliac artery in the micropigs. These 
findings were clearly different from the human vasculature 
(Fig. 4).

Discussion

Solid-organ transplantation is currently the definitive 
solution for end-stage organ failure. Accurate preoperative 
imaging of donor vasculature is of great importance 
because vascular variations, such as accessory arteries and 
early branching, are particularly important when determining 
optimal organ extraction procedures and the type of 

anastomosis [7,24,37]. Furthermore, imaging evaluation 
of vascular systems using MDCTA plays a critical role in 
solid-organ transplantation to facilitate the selection of 
suitable donors, planning the surgical procedure, and 
revealing any co-existing pathology [17,33]. The gold 
standard technique for preoperative donor evaluation is 
conventional angiography, but this procedure has the 
drawback of being invasive [4]. Angiography using MDCT 
is fast, safe, minimally invasive, and now is routinely used 
in the preoperative evaluation of potential human donors 
for renal and liver transplantation [12,35,40,41]. In this 
study, we performed anatomical evaluations and diameter 
measurements of the major systemic vessels in micropigs 
using 64-channel MDCTA. The morphology and branching 
patterns of the major vessels were constant between the 
micropigs and there were no anatomical variations found 
during this study. In addition, the morphology of the major 
micropig vessels did not reveal significant differences 
when compared to those of humans, except for in the case 
of the iliac artery. In all micropigs evaluated, the external 
and internal iliac arteries arose directly from the aorta. The 
external artery detached one branch, the deep femoral 
artery, which continued as the femoral artery. There was no 
common iliac artery corresponding to that of humans, 
which arises from the aorta and branches off into the 
external and internal iliac arteries. Although differences in 
vascular diameter, morphology, and branching pattern 
between micropigs and human [2,19,25,30,39] can be 
overcome with modern surgical techniques at the time of 
transplantation, there is the possibility that the function of 
the related micropig organs could be compromised in 
human systems following transplantation. Thus, further 
studies are needed to evaluate and compare micropig organ 
function with that of humans.

In addition, the smaller diameter of micropig arteries 
compared to human vessels [11,16,31] may be problematic 
in terms of perioperative complications. It has been 
suggested that a smaller diameter donor artery may 
contribute to an increased incidence of post-trans-
plantation complications. For example, hepatic arteries 
with diameters less than 3 mm are considered to present a 
high surgical risk for liver transplantation [15]; thus, 
accurate preoperative evaluation of the arterial diameter is 
essential for successful organ transplantation. Previous 
studies reported that CTA can replace conventional 
angiography traditionally used for preoperative evaluation 
of potential organ donors [4,21,22]. Along with the rapid 
evolution in technique, the number of detectors has 
gradually increased, allowing shorter scan rotation times, 
submillimeter slice acquisition parameters, and isotropic 
datasets [9,17,18,30]. MDCTA appears to be an ideal 
method to evaluate hepatic arteries and venous anatomy, as 
well as detect potential hepatic transplant complications 
such as hepatic artery and/or portal vein stenosis or 
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thrombosis [10]. In addition, MDCTA has been reported to 
be as accurate as renal angiography for evaluating the 
arterial anatomy [29,34] and more sensitive for detecting 
venous and parenchymal structures [23]. Therefore, 
MDCTA is a suitable method to evaluate the anatomy of 
vascular structures of potential xenotransplantation donors 
as well as human recipients. 

In conclusion, we present CTA data for the major 
systemic vessels in micropigs, which can be used as 
standard reference values for xenotransplantation studies. 
We have determined that 64-channel MDCTA allows 
accurate evaluation of the major systemic vasculature in 
micropigs. 
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