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Quantifying emergence and self-
organisation of Enterobacter 
cloacae microbial communities
Valeriu Balaban1, Sean Lim2, Gaurav Gupta1, James Boedicker2 & Paul Bogdan1

From microbial communities to cancer cells, many such complex collectives embody emergent and 
self-organising behaviour. Such behaviour drives cells to develop composite features such as formation 
of aggregates or expression of specific genes as a result of cell-cell interactions within a cell population. 
Currently, we lack universal mathematical tools for analysing the collective behaviour of biological 
swarms. To address this, we propose a multifractal inspired framework to measure the degree of 
emergence and self-organisation from scarce spatial (geometric) data and apply it to investigate the 
evolution of the spatial arrangement of Enterobacter cloacae aggregates. In a plate of semi-solid 
media, Enterobacter cloacae form a spatially extended pattern of high cell density aggregates. These 
aggregates nucleate from the site of inoculation and radiate outward to fill the entire plate. Multifractal 
analysis was used to characterise these patterns and calculate dynamics changes in emergence and 
self-organisation within the bacterial population. In particular, experimental results suggest that the 
new aggregates align their location with respect to the old ones leading to a decrease in emergence and 
increase in self-organisation.

Collective behaviour in multi-agent systems attracts significant attention due to their ability to synchronise their 
actions and to self-organise in the absence of a global controller. Often observed in microbial communities, this 
behaviour drives single cells to work together to reach goals they could not reach on their own. Dictyostelium 
discoideum cells usually migrate alone, but under limited food resources, use chemotactic intercellular signalling 
to form clusters of cells in preparation to reproduce1. Vibrio fischeri inoculate in the light producing organs of 
several marine species with whom they develop symbiotic relationships. These cells after reaching a population 
threshold produce light and help the marine animal camouflage2. The chemotaxis-based group migration of can-
cerous cells (not as individuals) increases the likelihood of metastasis3. From interacting microbial communities 
to cancer populations, there is a need for analysing such complex collectives exhibiting emergent properties.

Unlike prior efforts to analyse the properties of individual swimming bacteria4–6, this work studies the col-
lective behaviour of aggregate formation, as aggregation is an emergent property of the group and not of the 
individual cells. However, macroscopic analysis of these biological multi-agent systems must deal with data that 
is limited in temporal and spatial resolutions. We propose to overcome the lack of detailed spatiotemporal infor-
mation by using images to quantify the dynamic geometry that unfolds as the individual cells sense the environ-
ment, communicate with one another, and decide to join or leave specific aggregation groups over time. More 
precisely, we do not seek to track individual cell-to-cell communication and cellular decision-making events, 
but rather quantify the higher-order spatial correlations that build up the geometrical patterns through a mul-
tifractal formalism. Towards this end, we develop analytical methods based on multifractal analysis to charac-
terise the emergent properties of complex biological patterns. Compared to earlier works on emergence7–11 and 
self-organisation11–14, current framework analyses the process across multiple observation scales and captures 
the variations across regions with similar properties. We apply it to aggregate formation in Enterobacter cloacae 
for which the incomplete measurement of cell metabolism, sensitivity level to chemoattractants, and local con-
centration of several chemoattractants prevent a rigorous analysis of the collective behaviour at the microscale.

Enterobacter cloacae cells when inoculated in soft agar medium form complex spatiotemporal patterns, shown 
in Fig. 1a, similar to those observed in Escherichia coli and Salmonella enterica15,16. These patterns result from 
the interactions of individual cells and represent examples of emergent biological behaviour. To analyse these 
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patterns, we set up four experiments placing a bacteria colony of about 106 cells in the centre of a Petri dish from 
which in the next 50 hours a pattern of aggregates grows over the entire plate. Figure 1a and Supplementary 
Video S1–S4 illustrate the time-lapse of the experiments which show that cells first generate a ring of high cell 
density, known as the swarm band, which traverses the plate for 12–14 hours. After the band expansion stage, 
within the 20 to 30 hours into the experiment, dense millimetre-scale groups of nearly immobilised cells, the 
aggregates, form at the bottom of the migration medium starting from the centre and evolving towards the edge. 
Several hours later, these aggregates disintegrate equalising the distribution of bacteria cells across the plate.

For four replicate experiments, we quantified the emergence and the self-organisation from the evolution 
of the aggregation pattern. In such complex, dynamic patterns, it is unclear to what degree the location of new 
aggregates is random or whether the aggregation pattern has order which extends over length scales much larger 
than the size of an individual aggregate. In what follows, we describe the new mathematical framework based on 
multifractal analysis and then use it to quantify the degree of emergence and self-organisation in collective micro-
bial communities from image snapshots. The analysis of emergence and self-organisation was used to analyse the 
spatial properties of the aggregation pattern over multiple scales it unfolds covering the plate.

Results
Multifractal analysis.  The fundamental feature of fractal objects is self-similarity across scales. Namely, any 
part of the fractal under any magnification exhibits similar properties as the initial fractal17. For example, in terms 
of shape, branches connected to the tree trunk present similar properties as ones connected to other branches. 
In other words, solely from the shape, the branch itself cannot be differentiated from the magnification of one of 
its parts.

The fundamental measure for self-similar objects is the fractal dimension. This dimension D defines how 
volume V scales with the object linear size l, i.e., ∼ −V l D. To better explain this, we express the volume in terms 
of box counting. In this case, to calculate the volume, we cover the fractal object with hypercubes of dimension d 
and edge length l and multiply the number of hypercubes containing part of the object with the volume of a 
hypercube. Mathematically this is expressed as V l N l l( ) lim ( )l

d
0= → , where V(l) is the volume of the fractal, N(l) 

is the number of hypercubes that cover the fractal, and ld is the volume of the hypercube. Since we are interested 
in the scaling behaviour of the volume with respect to the linear scale and since ∼N l V l( ) ( ), in what follows, 
instead of V(l), we will analyse how N(l) varies with l. As example, a segment of length 1 can be covered with 
N(l) = 1/l one-dimensional hypercubes (segments) of length l resulting in ∼ −V l l( ) 1 and therefore the fractal 
dimension is D = 1. Next, we follow the same steps for a surface of unit area and find that N(l) = l−2. Both objects, 
the line and the plane, are not fractals as their volume is related to their linear size by an integer exponent.

More formally, the fractal dimension using the box counting approach is defined for an object as follows:

D log N l
log l

lim ( ( ))
(1/ ) (1)l 0

=
→

This formula, when applied to previous non-fractal objects, yields the same result, which for these objects 
is equal to their Euclidian dimension. For fractal objects, however, the result is a real (non-integer) number. To 

Figure 1.  The growth phases of the microbial community along with the aggregation rates for the four 
experiments. (a) The development of the Enterobacter cloacae aggregation pattern. During the first stage 
bacteria form a band that traverses the plate, the 23h mark. Next, starting from the site of inoculation at the 
centre of the plate, a pattern of aggregates forms radiates outward, 32 h and 41 h sectors. Towards the end, 
aggregates disintegrate as shown in the 50h time mark. (b) The evolution of the number of aggregates during the 
investigation interval. The interval starts when plates form 300 aggregates and spans the next eight hours, the 
period of time needed for full coverage of the plate.
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illustrate this, we will use the expression (1) to compute the fractal dimension of the Cantor set fractal shown in 
Fig. 2a top. To construct this fractal, we divide a segment of length 1 into three equal parts and remove the middle 
one. We repeat the procedure for each newly formed segment. Now, in order to compute the fractal dimension 
of the Cantor set, we count the number of segments of length l = 3−n that cover the object, where n is a natural 
number. Since for any n, only 2/3 of segments cover a part of the fractal, we find that N(l) = 2n and substituting 
in expression (1), we obtain D = log(2)/log(3) ≈ 0.63. As we can see, the obtained fractal dimension is less than 1 
since it covers less space than a line, but greater than 0 since it is more than just a point.

However, in nature, most of the fractal-like objects contain regions with approximately similar scaling rates, 
but not strictly the same as fractals require. To analyse these objects, it is natural to consider them as a set of frac-
tals to accommodate for the difference in the observed scaling behaviour. These objects with multiple scaling rates 
are named multifractals and the ones with one scaling rate monofractals. Both types of fractals are constructed 
in the same way, the only difference are the properties of the initial set. For monofractals, the scaling rates in the 
initial set are either zero or one, whereas multifractals have no such restrictions. Figure 2 illustrates the first three 
construction steps for monofractals and multifractals. First, the algorithm divides the support into subintervals 
and assigns a weight to each subinterval based on the corresponding rate17. Next, previously formed subintervals 
are considered as the new support and the procedure repeats. Since both fractal objects shown in Fig. 2a have 
three scaling rates, the segments at each step are divided into three with the middle one removed since its rate is 
zero. In the monofractal, all segments have the same weight, however, in the multifractal example, the right (in 
Fig. 2a) part has double the weight of the parent segment weight since the last scaling rate is two. Moreover, as 
shown in Fig. 2b, fractals can be constructed also on circular support. In this case, the initial set contains no zeros, 
and thus no segments are removed. If we randomly distribute points in each sector based on its weight, we can 
generate spatial patterns that resemble the bacteria aggregation process but it is not identical. The Supplementary 
Fig. S6 shows the results of such simulations including also the initial set from above. As it can be seen, the mul-
tifractal results closely match the pattern shown in Fig. 1a, but not the monofractal because of the large empty 
sectors corresponding to the zero scaling rate.

On the basis that multifractals contain multiple scaling rates that cannot be encoded into a single number, the 
fractal dimension has to be extended to a function. As a result, the previous relationship ∼ −N l l( ) D augments to 

∼α
α−N l l( ) f ( ) where f (α) is the multifractal spectrum, a function of the crowding index α. The crowding index, 

also called Hölder exponent, groups regions with the same scaling exponent and maps to one fractal dimension. 
To simplify the quantitative analysis, in what follows, we normalise the support to have unit volume, and thus, the 
measure covered by the hypercubes becomes a probability as all sum to one. The crowding index is now expressed 
as p l l( )i ∼ α, where pi (l) is the probability of the hypercube of linear size l with index i. Multiple regions can be 
characterised by the same α, case in which, Nα counts all the hypercubes that cover these regions, and thus f (α) 
the fractal dimension of this subset of hypercubes. In general, the fractal spectrum is a single-humped function 
with max f (α) = D, where D is the fractal dimension of the object with the same initial set, but will all non-zero 
rates equal to 1. Note, the multifractal spectrum for a monofractal is a point since all regions have one scaling rate 
and thus are identified by single crowding index α and a single fractal dimension f (α) = D.

To better grasp the meaning of α and f (α) let us look at the scaling properties of the leftmost and rightmost 
segments of the multifractal shown in Fig. 2a. From the figure, we see that these two segments have at each step 
the lowest and respectively the highest weight as indicated by the number of lines composing the segments, and 
thus correspond to αmax and αmin, respectively. Moreover, since both at each step correspond to only one segment, 
N l N l l( ) ( ) 1, 0

min max
= = ∀ >α α , they have a zero fractal dimension f (α) = 0 as = ∀ >l l1, 00 , Fig. 3b. Since 

other crowding indices are covered by more than one hypercube they have a non-zero fractal dimension and 
generate the humped shape of the spectrum.

The computation of the multifractal spectrum f (α) for an object has two steps, (1) calculate the generalised 
dimension for multiple linear sizes l to estimate the scaling properties of regions, and (2) obtain the multifractal 

Figure 2.  Multifractal construction steps on linear and radial support. (a) Construction steps for the Cantor 
set, the monofractal, and the multifractal version of it. Multifractals, in contrast to monofractals, have at least 
two distinct growth rates which generate segments of different weights. (b) The same construction steps applied 
on circular support but at each step split into smaller sectors.
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spectrum from the Legendre transformation of the generalised dimension17–19. To obtain the generalised dimen-
sion Dq, first, we compute the Renyi entropy using the probabilities pi (l) of the hypercubes, and then divide the 
entropy by log (l) to adjust the measure to the observation scale. Of note, despite its name, the generalised dimen-
sion is a scale adjusted entropy and not a fractal dimension defined as

=
−

∑
.

→

=D
q

p l
l

1
1

lim
log( ( ) )

log( ) (2)q
l

i
N

i
q

0

1

where the sum is over hypercubes of non-zero probability. The generalised dimension for the objects shown in 
Fig. 2a as a function of order q (i.e., between −15 to 15) is shown in Fig. 3a. The order q has the role of an adjust-
able magnifying glass that selects only regions with specific properties. Negative values of q give more weight to 
low probabilities whereas positive values of q to high probabilities. This adjustable entropy allows us to capture 
the scaling behaviour. As Fig. 3a shows, the monofractal produces a straight line whereas the multifractal a mono-
tonic decreasing function capturing the diversity of the scaling exponents.

Next, applying the Legendre transformation to Dq, the multifractal spectrum f (α) is recovered as f f( )q qα =  
from

α =
∂ −

∂

q D
q

[( 1) ]

(3)q
q

f q q D( 1) (4)q q qα= − −

Figure 3b shows the multifractal spectrum obtained using the above transformation for four multifractal 
objects. The maximum value of the spectrum indicates how much the fractal fills the space, i.e., less empty 
regions, the higher the maximum. Fractal objects with a zero in the initial set, namely[1, 0, 2], have the spectrum 
maximum lower than the Euclidian dimension of the support as part of it is not covered by the fractal. Further, 
the width of the spectrum depicts variability (diversity) across regions as the limits, αmin and αmax, correspond to 
the regions with the highest and the lowest scaling exponent, and thus, the larger the difference between these val-
ues, the wider the spectrum. When multiple regions correspond to αmin or αmax, the matching fractal dimension f 
(αmax) or f (αmin) becomes non-zero, as illustrated by the right side of the1,2 spectrum shown with dashed lines in 
Fig. 3b. For this spectrum, the limit value f (αmin) ≈ 0.63 is same as the fractal dimension of the Cantor set, since 
the two ones in the initial set contribute in this case.

When computing the multifractal spectrum for real-world data several aspects must be considered. The reader 
may observe that when we computed the fractal dimension of a surface we used square boxes, but when we gen-
erated patterns similar to ones of Enterobacter cloacae we used radial boxes. The reason is if we cover the plates 
with square boxes the majority will partially cover the aggregates due to the round shape of the plates as shown in 
Supplementary Fig. S1. To overcome this, we use radial boxes that do not suffer from this problem. After selecting 
the box shape, the next step is to compute the probabilities pi for different box sizes. Since the expression for Dq 
contains a limit operator, we estimate its value from the slope of the numerator with respect to the denominator 
and as both contain logarithms the box sizes have to be selected on a logarithmic scale to evenly spread the points 
for a better linear fit. Moreover, the linear fit should be performed for each value of q with a range chosen such 
that the generalised dimension Dq saturates at the limits. In this case, extending the range of q has little effect as 
no more information about the distribution is gained. A multifractal spectrum generated by negative values of q 

Figure 3.  (a) The generalised dimension Dq is a decreasing function for multifractals and constant for 
monofractals. (b) The multifractal spectrum computed from the generalised dimension. Monofractals have the 
spectrum concentrated to a point whereas for multifractals the spectrum is a single-humped function.
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has to receive special attention since in this case probabilities of lower value receive more weight and thus have to 
be estimated precisely as the error is also amplified in this case.

The multifractal spectrum is the central part of any multifractal analysis and can be used to describe the group 
properties of interacting agents, such as bacteria aggregates. The multifractal analysis investigates the statistical 
scaling laws of complex fragmented geometrical objects which cannot be described by classic geometric meth-
ods18. Considering that microbial communities exhibit complex time-varying aggregation patterns, we employ 
the above-mentioned multifractal formalism to characterise the phase-space dimensionality and complexity of 
the observed dynamics. Consequently, interpreting the microbial community as an intelligent system driven by 
heterogeneous interactions meant to cooperate for achieving a collective goal allows us to develop two approaches 
for quantifying the instantaneous degree of emergence and self-organisation in collective systems.

Emergence quantification in collective microbial communities.  Systems composed of interacting 
components have the value of the whole greater than the sum of the constituents due to the extra value created by 
the interactions which are not present when the constituents are considered separately. Furthermore, since part 
of the system properties resulted from local interactions they change dynamically over time. These properties are 
called emergent and their change over time is called emergence. Identically, the aggregates, that change in form 
(arrangement) and spatial (distance between aggregates) distribution over time, represent an emergent property 
since they result from the cell-to-cell interactions and not of individual cells. Consequently, given that generalised 
dimensions Dq characterises the distribution of the emergent property across multiple scales, we define in equa-
tion (5) the degree of emergence exhibited by a microbial community as

E
D
t

g q dq( ) (5)
q∫=

∂

∂

where E represents the emergence, Dq the generalised dimension, t represents time, and g(q) a function that 
makes the integral finite. In this particular case, g(q) was chosen to be ∂α(q)/∂q which is non-zero for the range 
of q for which it selects regions with different scaling properties. An advantage of expression (5) is that by taking 
a definite integral over a particular range of q the emergence of specific regions in the system can be obtained. 
Notably, integrating over the negative values of q gives the emergence in regions with a small number of aggre-
gates. Whereas integrating over the positive values of q computes the emergence in regions with a large number of 
aggregates. Consequently, this emergence formula quantifies the multi-scale nature of the aggregates distribution 
in space.

Figure 4a shows the degree of emergence computed from the patterns of Enterobacter cloacae aggregates 
extracted from time-lapse imaging of migrating bacteria. The integration of the generalised dimension was per-
formed for q ∈ [0, 10] and thus the results do not include the emergence of regions with a small number of aggre-
gates. Negative q values were not considered to avoid misleading results since more data points are required to 
estimate precisely the scaling properties of these regions. The dots in Fig. 4a represent the degree of emergence 
between two consecutive image snapshots. All plates exhibited a similar trend, a sharp decrease in emergence fol-
lowed by an asymptotic convergence to zero after the two hours mark relative to the investigation interval. Since 
the emergence conveys the change in multiscale entropies and the two hours time mark occurs before aggregates 
cover the entire plate, it indicates that the new aggregates formed after this time preserve the system entropy.

Figure 4.  The computed emergence and self-organisation metrics and the evolution of the multifractal 
spectrum over time. (a) The emergence metric computed using equation (5), which has a decreasing trend as 
more aggregates form on the plate and saturates several hours before the plates are fully populated. (b) The self-
organisation degree of Enterobacter cloacae microbial community computed using expression (6) indicating 
an increase in self-organisation as aggregates populate the plate. (c) The evolution of the multifractal spectrum 
for the experiment four which registered the highest growth rate. It shows the superposition of multifractal 
spectrum computed at each time point encoded as colour. The spectrum shown in orange represents the time 
when the spectrum converges to a constant shape after the first four hours of the experiment.
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Quantifying self-organisation in microbial communities.  Self-organisation, similar to emergence, 
denotes a collective behaviour and represents the ability of a group to drive the system towards an ordered state. 
During this transition, all group members, independently and in the absence of a centralised controller, adjust 
their actions to increase the order of the whole.

From the perspective of multifractal analysis, monofractals exhibit perfect order since all the regions have 
identical properties across all scales. On the other hand, in multifractal systems, regions have different proper-
ties that vary across the observation scales. Therefore, multifractals exhibit a lower degree of self-organisation. 
Systems maintain their degree of self-organisation when the emergence is zero since it quantifies the changes 
in system properties over time, and thus no changes in system properties imply no changes in self-organisation 
degree. The next expression is proposed for measuring the self-organisation degree of a system:

S f d( ) ( ) (6)0
2∫ α α α α=− −

where S represents the self-organisation, α0 the principal crowding index obtained when q = 0, and f (α) the 
fractal dimension associated with the respective crowding index. When applied to monofractals, this expression 
yields zero since α is always equal to α0 as the spectrum is concentrated to a point. However, multifractals do not 
have a spectrum concentrated in a point, and therefore, the integral in this case would always be greater than zero, 
and because of the minus sign in front of the integral, would always yield a lower self-organisation degree com-
pared to the monofractal case. Moreover, for multifractals the larger the variation of properties between regions 
that compose the system, the wider the multifractal spectrum and thus the lower the self-organisation.

The self-organisation properties of Enterobacter cloacae were analysed from the computed multifractal spec-
trum. Figure 4c and Supplementary Fig. S8 show the evolution of the multifractal spectrum. All experiments dur-
ing this interval follow the same general pattern, the spectrum varies more in the first hours and then converges 
to a constant shape, which is an expected behaviour given the coupling between emergence and self-organisation. 
In experiment four, Fig. 4c, the spectrum converges after 4.5 hours to the shape showed in orange. The conver-
gence of the multifractal spectrum indicates that the probability distribution of the locations of aggregates also 
converges. New aggregates appear at positions that preserve the current degree of self-organisation; the current 
distribution of aggregates dictates the location of new aggregates.

On the left part of the peak, the spectrum describes the properties of the regions with a large number of 
aggregates, whereas the right characterises the ones with a small number of aggregates. In Fig. 4c, the varying 
shifts upward of the left part of the multifractal spectrum f (α) suggest an increase in the number of regions with 
more aggregates and a decrease in variation of the scaling properties across these regions. However, the right half 
of the spectrum exhibits only an abrupt shift to the left and no organised movement over the vertical axis which 
implies that the number of regions that contain fewer aggregates decreased. Comparing the spectrum evolution 
shown in Fig. 4c with the theoretical experiment from Supplementary Fig. S7 hints that later aggregates follow a 
monofractal distribution whereas the first aggregates that appear follow a multifractal one.

Figure 4b shows the degree of self-organisation computed using equation (6). In case of this strain of bacteria, 
the distribution of the aggregates is described by a multifractal, and hence the self-organisation measure will be 
lower than zero. All four experiments display a rapid increase of self-organisation fuelled by the emergence at the 
beginning of the investigation interval which then saturates to a constant value several hours later. Although the 
experimental conditions were the same, the position of individual aggregates was non-deterministic, however, the 
collective properties of patterns formed were consistent. Moreover, by analysing Fig. 4b and Fig. 1b it can be seen 
that the aggregation rates and the number of aggregates show no correlation with the manifested emergence and 
self-organisation behaviour of the microbial communities.

Discussion
Collective behaviour refers to complex macroscopic dynamics of microbial communities exhibiting emergence 
and self-organisation properties without a global controller. Alternatively stated, the cognitive abilities and the 
adaptation to environmental changes are distributed among individuals forming the group20–25. The emergent 
behaviour in systems ranging from microbial communities to carcinogenic systems and somatic cellular societies 
generates complex qualities not present at the individual level such as information generation, collective memory, 
and efficient cell-to-cell communication. Consequently, recognising the exhibited degree of collective intelli-
gence highlights the importance of quantifying the capabilities of microbial communities to explore (emergence) 
and optimise (self-organisation) in changing environments. In many cases, detailed microscopic information 
about individual processing and cell-to-cell communication as well as molecular changes in the environment 
are difficult to record, hence, a multi-scale spatiotemporal methodology is required to quantify the emergence 
and self-organisation in spatially complex biological systems. Consequently, this paper presented a multifractal 
inspired framework for characterising the collective behaviour and investigating from a macro perspective the 
aggregation properties of Enterobacter cloacae.

The strategy for estimating the emergence from snapshots of complex systems dynamics improves prior efforts 
based on information theoretic concepts of quantifying emergence7–11 and self-organisation11–14. For instance, 
in11, the emergence is proportional to the information produced by complex systems, and self-organisation was 
defined as the increase in complexity in response to internal influences and excluding external ones. However, 
these metrics are hard to evaluate in practice since the analysed system may not be isolated from the environ-
ment, and the external influence may be unknown. Moreover, all previously proposed methods do not explicitly 
consider the scale of interaction, therefore when the system dynamics are influenced by phenomena operating 
at different scales special procedure must be applied when combining individual metrics computed at different 
scales. To overcome this challenge, equations (5) and (6) exploit the generalised dimension and the multifractal 
spectrum to characterise complex systems dynamics over multiple scales.
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Using the proposed multifractal framework, it was found that emergence slowly decreases as the aggregates 
cover the plates, Fig. 4a. As emergence is proportional to the change in the generalised entropy, the positions of 
previously formed aggregates regulated the position of new ones such that the entropy remained constant. Since 
self-organisation is a reaction to changing environmental conditions, and given the increase of self-organisation 
metric, Fig. 4, Enterobacter cloacae microbial communities adapt the distribution of aggregates to resemble a 
monofractal distribution, similar densities at all scales and all regions to conform to environmental constraints. 
As the environmental conditions are set by the cells themselves and, at a larger extent, each aggregate through 
their production of chemoattractants, bacteria restrict their swimming behaviour into certain patterns. Moreover, 
from the marked spectrum it can be seen that the spatial distribution settles before the aggregates completely 
cover the plates, which suggest the presence of an optimum spatial arrangement. Similar to water freezing during 
which the molecules arrange themselves in a specific order as the temperature decreases, the Enterobacter cloacae 
self-organises in a monofractal resembling aggregation pattern as the nutrients level decrease across the plate. 
Alternatively, a widening of multifractal spectrum would indicate an increase in the diversity of the distribution 
among sectors and, thus, it would imply that multiple configurations of the aggregates position offer similar 
benefits in the environment lacking enough nutrients. The tendency of the aggregates formed by bacteria to obey 
a monofractal law rather than a multi-fractal one might imply a form of self-optimisation that is taking place 
within the community since the monofractal will enforce more exact repetition and symmetry in the system than 
a multifractal law.

The proposed mathematical framework can analyse multiple types of collective behaviour and discover uni-
versal laws exhibited by large communities when limited microscopic spatiotemporal information is available, 
i.e., no access to individual trajectories of microbial agents, agent interactions, or other molecular information 
that are difficult to monitor26. In the future, these new metrics to quantify emergence and self-organisation that 
occurs over multiple scales enable new insights into the advantages of collective behaviour in biological systems. 
It is known that pattern formation is essential to many biological systems and has fitness advantages for popula-
tions of cells. For example, complex spatial arrangements of bacteria in biofilms result in increased resistance to 
antibiotics and other stresses27–30. Specific structures also are likely to optimise efficiency of cellular communica-
tion31, although the relationship between emergence and multiscale communication in cellular communities is 
not yet clear. Quantifying the dynamics of emergence of such systems should uncover mechanisms that generate 
complex biological patterns and will potentially reveal collective properties may have been optimised to balance 
cooperative and competitive interactions between cells. Complex spatial structures are also observed in eukary-
otic systems32, including tissues and tumours. Our analysis could generate insights into the collective behaviour 
in such cellular networks to aid in the development of therapeutic strategies to target cell-cell interactions and 
emergent properties. There is also interest in extending our ability to program synthetic biological systems over 
multiple lengths scales33,34. Advanced analytical tools to analyse the multiscale patterns that occur in natural and 
synthetic biological systems, such as the methods reported here, will be needed to develop a more complete and 
predictive understanding of the mechanisms and consequences of collective behaviour in cellular networks.

Methods
Experimental setup.  The motility plate is a 94 mm petri dish (Greiner Bio-One) containing 10 mL of motil-
ity gel, which is about 1.3 mm in thickness. Motility gel consisted of 0.26% agar, and M9 minimal salts (BD) sup-
plemented with 2 mM MgSO4, 0.1 mM CaCl2, 22 mM (0.4%) glucose, 3 mM sodium succinate, and 20 μg/mL each 
of the amino acids histidine, methionine, threonine, and leucine35. After being poured, the media was allowed 
to solidify for 1 hour on the benchtop. Afterward, the dishes were inoculated in the centre with bacteria culture 
and were sealed with parafilm. Growing at 25 °C, the bacterial community radiated outwards in collective motion 
from the inoculation centre and coalesced into patterns about 45 hours later.

Bacteria cultures.  The pattern-forming strain was from a collection of bacteria isolated in a previous study36. 
16S rRNA sequencing revealed the strain to be most closely related to Enterobacter cloacae. For experiments, the 
strain was inoculated from frozen glycerol stocks and grown to saturation overnight in M9 salts medium sup-
plemented with 2 mM MgSO4, 0.1 mM CaCl2, and 0.25% glycerol as the carbon source37. The strain was grown 
at 37 °C at 3 mL scale and shaken at 200 rpm. The next day, we diluted the suspension cultures to an optical den-
sity at 600 nm of 0.2. We inoculated 10 μL of the culture (106 cells) on the motility plate at this density for each 
experiment.

Multifractal spectrum calculation from experimental data.  In order to perform multifractal analysis, 
first, the position of aggregates on the petri dish has to be extracted using image processing methods. The current 
setup uses an LED panel to uniformly illuminate the plates from above and a camera that every 10 minutes takes 
an image of the plate from below. As a result of this setup, the bacteria aggregates identified by a high cell den-
sity block more light to reach the camera sensor and thus appear in the image as regions of dark pixels whereas 
regions with fewer bacteria correspond to brighter pixels. Since the bacteria aggregates appear as dark regions and 
thus correspond to groups of pixels with lower intensity values, their position can be detected using a local min-
ima algorithm. Next, using the box-counting method with radial boxes the probabilities of individual boxes can 
be estimated using the extracted locations of the aggregates. These probabilities are computed for multiple linear 
scales l for the radial boxes, which are then substituted into equation 2 for computing the generalised dimension 
Dq. Subsequently, applying the Legendre transformation to Dq the multifractal spectrum is obtained. More infor-
mation about this procedure is provided in Supplementary Materials.

Data availability.  The jupyter notebook used to process the images of microbial communities images and 
compute the multifractal spectrum along with the introduced metrics will be available on the GitHub page.
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