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Automated detection of diabetic retinopathy in retinal images

Carmen Valverde, María García1, Roberto Hornero1, María I López-Gálvez2

Diabetic retinopathy (DR) is the leading cause of blindness 
in the working-age population.[1] Screening for DR and 
monitoring disease progression, especially in the early 
asymptomatic stages, is effective for preventing visual loss and 
reducing costs for health systems.[2] Most screening programs 
use nonmydriatic digital color fundus cameras to acquire 
color photographs of the retina.[3] These photographs are then 
examined for the presence of lesions indicative of DR, including 
microaneurysms (MAs), hemorrhages (HEMs), exudates 
(EXs), and  cotton wool spots (CWSs).[4] In any DR screening 
program, about two-third of patients have no retinopathy.[2] 
The application of automated image analysis to digital fundus 
images may reduce the workload and costs by minimizing the 
number of photographs that need to be manually graded.[5]

Many studies can be found in the literature regarding digital 
image processing for DR. Most algorithms comprise several 
steps. First, a preprocessing step is carried out to attenuate image 
variation by normalizing the original retinal image.[6] Second, 
anatomical components such as the optic disk (OD) and vessels 
are removed.[7] Finally, only those remaining pathological 
features of DR are retained for subsequent classification. This 
review gives an overview of the available algorithms for DR 
feature extraction and the automatic retinal image analysis 
systems based on the aforementioned algorithms.

Materials
The methodological quality of published articles was 

evaluated, and the following inclusion criteria were defined. 
Only studies published in English and indexed in PubMed 

in the last 10 years (2005–2015) were considered. In addition, 
the results of these studies must be presented using mean 
sensitivity (SE), mean specificity (SP), or area under the 
Retinopathy Online Challenge (ROC) curve. Research works 
using image modalities different from color retinal images 
or aimed at pathologies different from DR were dismissed.

Methods and results of literature search for EXs segmentation 
algorithms, red lesions (RLs) segmentation algorithms, and DR 
screening systems are presented in the following section.

Segmentation of exudates
EXs are lipoprotein intraretinal deposits due to vascular leakage.[8] 
They appear in retinal images as yellowish lesions with well-
defined edges. Their shape, size, brightness, and location vary 
among different patients.[9] When clusters of EXs are located in the 
macular region, they are indicative of macular edema (ME), which 
is the main cause of visual loss in DR patients. For this reason, 
many researchers introduced the idea of a coordinate system 
based on the location of the fovea to determine DR grading.[10]

Different techniques have been proposed for EXs detection. 
In Table 1, information regarding the results of these methods 
and the databases used in each study is summarized. They can 
be divided into four categories.[11]

Region growing methods
With these techniques, images are segmented using the 
spatial contiguity of gray levels. In the method described by 
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Sinthanayothin et al.[12] adjacent pixels were considered as 
belonging to the same region if they had a similar gray level 
or color.[12]

Thresholding methods
With these methods, EXs identification was based on a global or 
adaptive gray level analysis. As EXs are mainly characterized 
by their color, Sánchez et al.[13] employed color features to 
define a feature space. They proposed a modification of the 
RGB model and used the intensity of various pixels in the 
new color space to create their training set.[13,14] Other authors 
divided the image into homogeneous regions and applied an 
adaptive thresholding method to each region.[15,16]

Mathematical morphology methods
The algorithms based on these methods employed 
morphological operators to detect structures with defined 
shapes. Different morphological operators were used for 
EXs detection in the work of Sopharak et al.[17] Zhang et al.[18] 
proposed a two‑scale segmentation method. To detect large 
EXs, authors performed a morphological reconstruction 
followed by a filtering and thresholding operation. Then, 
authors applied a top‑hat operator to the green channel of the 
original image to recover small EXs.[18]

Classification methods
These studies employed machine learning approaches to 
separate EX from non‑EX regions, including additional types 
of bright lesions (BLs), such as drusen and CWSs. Although 
a classification stage was also part of many of the previous 
studies, we have included in this category only those studies 
for which classification was the main step.

In Osareh et al.,[19] images were segmented using a 
combination of color representation in the Luv color space 
and an efficient coarse to fine segmentation stage based on 
fuzzy c‑means clustering.[19] A similar approach was proposed 
by García et al.,[20] who combined global and adaptive 
histogram thresholding methods to coarsely segment bright 
image regions. Finally, a set of features was extracted from 
each region and used to assess the performance of three 
neural network (NN) classifiers: Multilayer perceptron 
(MLP), radial basis function (RBF), and support vector 
machine (SVM).[20]

A multi‑scale morphological process for candidate EX 
detection was proposed by Fleming et al.[9] A SVM was 
subsequently used to classify candidate regions as EX, drusen 
or background based on their local properties.[9] In the study 
by Niemeijer et al.,[21] each pixel was assigned a probability 
of being an EX pixel, resulting in a lesion probability map 
for each image. Pixels with a high probability were grouped 
into probable lesion pixel clusters. Then, each pixel was 
classified as true EX or as non‑EX depending on the cluster 
characteristics. Finally, a BL was classified into EX, CWSs or 
drusen by means of a k‑NN classifier and a linear discriminant 
classifier.[21]

Segmentation of red lesions (microaneurysms and hemor-
rhages)
MAs are small saccular bulges in the walls of retinal capillary 
vessels.[22] In color fundus images, MAs appear like round 
red dots with a diameter ranging from 10 to 100 µm. MAs 
are difficult to distinguish from dot‑HEMs, which are a little 
bigger.[23] MAs are normally the first retinal lesions that 
appear in DR and their number has a direct relationship to 
DR severity.[24]

Several approaches have been proposed for MAs 
segmentation through color image analysis. In Table 2, 
information regarding results of these methods and the 
databases used in each study is summarized. The methods for 
RL detection can be also divided into four categories.[25]

Region growing methods
Fleming et al.[22] evaluated an algorithm where region growing 
was performed on a watershed gradient image, to identify 
candidate RL regions.[22] An interesting MA detection algorithm 
was developed at the University of Waikato and validated 
by Jelinek et al.[26] It was an automated MA detector inspired 
by the detectors developed by Cree et al.[27] and Spencer.[24] A 
top‑hat transformation was first used to discriminate between 
circular, nonconnected RL and the elongated vasculature. 
Candidate lesions were then segmented by means of a region 
growing algorithm.

Mathematical morphology methods
A polynomial contrast enhancement operation, based on 
morphological reconstruction methods, was used by Walter 

Table 1: Performance of exudates segmentation methods

Reference Lesion-based 
results (%)

Image-based 
results (%)

Number of test 
images

Methodology

SE SP SE SP

Fleming (2007) ‑ ‑ 95.0 84.6 13,219 (300 with EXs) SVM

Niemeijer (2007) 95.0 86.0 ‑ ‑ 300 k‑NN

Sinthanayothin (2008) 88.5 99.7 ‑ ‑ 30 RRGS

Sopharak (2008) 80.0 99.5 ‑ ‑ 60 Morphology, Naive Bayes, SVM

Sánchez (2008) 88.0 ‑ 100.0 100.0 58 Theresholding, Fisher

Osareh (2009) 93.5* 92.1*,† 96.0 94.6 150 FCM; MLP, SVM

García (2009) 87.61 83.51† 100.0 92.59 67 MLP, RBF, SVM

Jaafar (2010) 91.2* 99.3* ‑ ‑ 64 Thresholding
Zhang (2014) ‑ ‑ 96.0 89.0 82 Morphology

*Pixel‑based, †Predictivity. SE: Sensitivity, SP: Specificity, SVM: Support vector machine, k‑NN: k‑nearest neighbor, RRGS: Recursive region growing segmentation, 
FCM: Fuzzy c‑means, NN: Neural network, MLP: Multilayer perceptron, RBF: Radial basis function, EXs: Exudates
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et al.[28] to detect MAs and to discriminate between MAs and 
vessels.[29]

Wavelet‑based methods
The method proposed by Quellec et al.[30] was based on 
template matching using the wavelet transform. Images 
were descomposed in subbands, each subband having 
complementary information to describe MAs.

Hybrid methods
A hybrid RL segmentation algorithm was developed by 
Niemeijer et al.[31] The system combined the candidates 
detected using a mathematical morphology based algorithm 
with the candidates of a pixel classification based system.[31] 
An approach based on multi‑scale correlation filtering was 
evaluated by Zhang et al.[32] For candidate detection, authors 
calculated the correlation between pixel intensity distributions 
throughout the image and a Gaussian model of MAs using a 
sliding window technique.[32] A different approach was based 
on calculating cross‑section profiles along multiple orientations 
to construct a multi‑directional height map.[33]

Another method based on feature classification was 
proposed by García et al.[34] A set of features was extracted from 
image regions, and a feature selection algorithm was applied 
in order to choose the most adequate feature subset for RL 
detection. Four NN‑based classifiers were used to obtain the 
final segmentation: MLP, RBF, SVM, and a combination of 
these three NNs using a majority voting schema.[34,35] Sanchez 
et al.[36] used a three‑class Gaussian mixture‑model‑based on 
the assumption that each pixel belonged to one of the three 
classes: Background, foreground (vessels, lesions, and OD), 
and outlier.[36] The method developed by Mizutani et al. used 
a modified double ring filter, which extracted MAs along with 
blood vessels. This method was designed to detect areas of 
the image in which the average pixel value was lower (inner 
circle) than the average pixel value in the area surrounding it 
(outer circle).[37,38]

Due to the numerous MA detection methods published, an 
international MA detection competition, the retinopathy online 
challenge (ROC), was created to compare the results of different 
methods.[4] The dataset used for the competition consisted of 50 
training images with available reference standard and 50 test 
images for which expert annotations were not provided. This 
permitted a fair comparison between algorithms proposed by 
different groups. The results of five different methods such as 
Valladolid,[36] Waikato,[26] Latim,[30] OkMedical,[32] and Fujita 
Lab[37] were presented by five different teams of researchers. 
The results of these five MA detection methods were evaluated 
using the ROC database.[4]

Diabetic retinopathy screening systems
The previously mentioned studies and the related algorithms 
have enabled different research groups to develop computer‑
aided diagnosis (CAD) systems for DR screening. Information 
regarding results of these methods is shown in Table 3. DR 
severity levels are characterized by the number and type of 
retinal lesions that appear in the image, as well as by the retinal 
area in which these lesions appear. Different authors have 
proposed several DR severity scales to automatically determine 
the stage of DR in a patient.

The work developed by Singalavanija et al.[39] tried to 
differentiate between normal and DR fundus. Although authors 
detected DR lesions with a good SE and SP, their DR screening 
system was not sensitive enough to detect early stages of 
nonproliferative DR (NPDR).[39] In the same way, Dupas et al.[40] 
determined the severity of DR. Grade 0 was established when 
no RLs were detected. Besides, Grades 1, 2, and 3 were defined 
according to the number and type of RLs detected in a retinal 
image. Authors also evaluated the risk of ME in a patient 
according to the distance between EXs and the fovea.[40] The 
automated system proposed by Tang et al.[41] separated normal 
retinal images from unhealthy images. Images with different 
quality and resolution were used. No DR severity grading was 
reported in this study.[41]

Table 2: Performance of red lesions segmentation methods

Reference Lesion-based 
results (%)

Image-based 
results (%)

Number of test 
images

Methodology

SE SP SE SP

Niemeijer (2005) 31.0 ‑ 100.0 87.0 100 (train and test) Pixel classification using k‑NN

Fleming (2006) ‑ ‑ 85.4 83.1 1141 Region growing based, k‑NN

Jelinek (2006) ‑ ‑ 85.0 90.0 758 Top-hat transform and a Bayes classifier

Walter (2007) 89.0 ‑ 97.0 ‑ 94 Gaussian filtering, top-hat transform

Quellec (2008) 89.62 89.50 ‑ ‑ 35 Wavelet-based

Sánchez (2009) 0.332* ‑ ‑ ‑ 50† Logistic regression

Mizutani (2009) 63.5 ‑ ‑ ‑ 50† Double ring filter

Zhang (2010) 0.357* ‑ ‑ ‑ 50† Mathematical morphology

71.3 ‑ ‑ ‑ 11

García (2010) 86.01 51.99‡ 100.0 56.0 65 NN

Jaafar (2011) 89.7 98.6 98.8 86.2 219 Morfology‑based

Lazar (2013) 0.423* ‑ ‑ ‑ 110 (50†) Directional cross-section profile features
Inoue (2013) 72.9 ‑ ‑ ‑ 25 Morphology‑based

*Results obtained by means of FROC curve. An FROC curve plots sensitivity (the proportion of true positive detections) against the average number of false 
positives per image, †ROC database, ‡Predictivity. SE: Sensitivity, SP: Specificity, k‑NN: k‑nearest neighbor, NN: Neural network, ROC: Retinopathy online challenge, 
FROC: Free‑response receiver operating characteristic



January 2016 Valverde, et al.: Automatic detection of DR 29

A different DR severity grading method was proposed 
by Usman Akram et al.,[42] based on the type (RLs and EXs) 
and number of lesions detected. Only images without lesions 
were considered normal images.[42] In other studies,[43] authors 
proposed a four different severity grades. Level R0 (no DR) 
corresponded to the case where no RLs were found in an 
image. Besides, levels R1, R2, and R3 (DR images) corresponded, 
respectively, to the cases where a small, medium and large 
number of RLs appeared in an image. Authors evaluated the 
accuracy of their algorithm in distinguishing normal (R0) from 
pathological (R1, R2, R3) images.[43] Roychowdhury et al.[44] 
designed a system based on machine learning techniques. 
Images were classified as with or without DR according to the 
number of RLs detected.

Several automatic retinal image analysis systems have 
already become commercially available.[45] These include the 
Retinalyze System®, which combines the ability of RL detection 
and image quality control to identify patients with DR and 
separate them from patients with no signs of DR.[46,47] In the 
same way, iGradingM® performs “disease/no disease” grading 
for DR. This software combines image quality assessment 
algorithms with MA detection methods.[48] SE above 90% for 
referable retinopathy was achieved [49,50] and showed a manual 
grading workload reduction of 36.3%.[51] This system was later 
tested[52] using two‑field photographs. In this study, authors 
found that the inclusion of a second image (disk centered field) 
did not improve the results. Besides, they also established that 
including the detection of other types of lesions in the screening 
system resulted to similar SE but also in a higher number of 
false positives when compared to the case in which only MAs 
were considered.[52]

Another available system is IDx‑DR®.[53‑55] It uses several 
algorithms developed at the University of Iowa for DR lesions 
detection, such as MAs and HEMs,[31,30] EXs and CWSs.[21] IDx‑
DR® also includes algorithms for the detection of other types 
of DR signs, such as neovascularization.[23] The system was 
validated on a database of 1748 fovea‑centered images.[53] The 
aim of the study was to validate the system in referable DR 
detection. Referable DR was defined as more than mild NPDR 

and/or ME. Using IDx‑DR®, authors found that the prevalence 
of referable DR was 21.7%.[53]

The software RetmarkerDR®, developed at the University 
of Coimbra, should also be mentioned. It is based on 
combining image quality control with RL detection.[56] The 
system was able to separate images with no signs of DR or 
with no evolution of DR compared to previous screening 
visits, from those with signs of DR pathology or evolution.[56] 
The system showed a potential reduction of 48.42% in the 
workload of human graders.[57] Finally, Telemedical Retinal 
Image Analysis and Diagnosis Network® is a web‑based 
service in which the quality of retinal images is automatically 
evaluated.[58,59]

These systems have been successfully applied in DR 
screening scenarios to identify the presence of DR or referable 
DR. However, to the best of our knowledge, they are not able 
to identify the high‑risk DR or the presence of DME yet.[45]

Discussion
Early DR detection is important to slow down disease 
progression and avoid severe vision loss in diabetic patients. 
Regular DR screening is paramount to ensure timely 
diagnosis and treatment. However, the interpretation and 
grading of fundus images for this task is actually a manual 
process. This is a time‑consuming approach, which is 
also subject to inter‑observer variability. For this reason, 
automatic methods to detect DR‑related lesions, as well as the 
development of CAD systems for DR can be a reliable option 
to cut down DR screening costs, to reduce the workload 
of ophthalmologists and to improve attention to diabetic 
patients. In this regard, the British Diabetic Association 
(BDA) estimates that the rates of any screening program for 
DR should reach SE >80% and SP >95%.[60] This issue should 
be considered when comparing the different alternatives for 
DR lesions detection and screening.[61]

The algorithms for DR lesions detection included in this 
review were very heterogeneous. The validation methods and 
test databases of the studies were not uniform or standardized. 

Table 3: Comparison of automatic diabetic retinopathy screening systems

Author-system Image-based 
results (%)

Patient-based 
results (%)

Number of 
test images

Grading Commercialized

SE SP SE SP

Retinalyze System® ‑ ‑ 97.0 75.0 165 (83)* DR‑no DR: RL Yes

iGradingM® ‑ ‑ 90.5 67.4 14,406 (6722)* DR‑no DR: RLs Yes

IDx‑DR® ‑ ‑ 96.8 59.4 1748 (874)* Referable DR: RLs, EXs, CWSs, NV Yes

RetmarkerDR® ‑ ‑ 95.8 63.2 21,544 (5386)* DR‑no DR: RLs Yes

TRIAD Network® 75.0 85.0 ‑ ‑ 395 Retinal disease (not only DR) Yes (only for quality)

Singalavanija (2006) 74.8 82.7 ‑ ‑ 336 DR‑no DR: RLs, EXs No

Dupas (2010) 83.9 72.7 ‑ ‑ 761 Grading DR: RLs, ME No

Tang (2013) 92.2 90.4 ‑ ‑ 9954 DR‑no DR: RLs, EXs No

Akram (2014) 99.17 97.07 ‑ ‑ 1410 Grading DR: RLs, EXs No

Antal (2014) 90.0 91.0 ‑ ‑ 1200 DR‑no DR: RLs No
Roychowdhury (2014) 100.0 53.16 ‑ ‑ 1200 DR‑no DR: RLs No

*Number of patients in the database. SE: Sensitivity, SP: Specificity, DR: Diabetic retinopathy, RLs: Red lesions, EXs: Exudates, CWSs: Cotton wool spots, 
NV: Neovascularization, ME: Macular edema, TRIAD: Telemedical Retinal Image Analysis and Diagnosis
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Therefore, it was not possible to make a direct comparison 
of their performance. However, some results should be 
underlined. In the case of EXs, nine studies complied with 
the inclusion criteria. Most of these studies achieved the BDA 
figures. As shown in Table 1, the highest lesion‑based SE and 
SP were obtained with the method proposed by Jaafar et al.[15] 
and the highest image‑based SE and SP were obtained by 
Sánchez et al.[14] However, it should be mentioned that the 
results of the studies in Table 1 are not directly comparable due 
to the lack of common measurement criteria and evaluation 
databases. For example, the studies by Fleming et al.[9] and 
Niemeijer et al.[21] used a larger database. Besides, these two 
studies were remarkable because they included the detection 
and differentiation of several types of BLs.

In the case of RLs, 12 studies met the inclusion criteria for 
this review. The SE and SP values, in this case, are generally 
below the figures for EXs detection. This indicates that RLs 
detection is more challenging. However, the results obtained in 
some studies [Table 2] were only slightly below the BDA values. 
It should be noted that not only SE and SP figures are important; 
the number of images employed in each study must be taken 
into account. In the case of Fleming et al.[22] and Jelinek et al.[26] 
a higher number of images were used than in others studies 
with better results. It should also be mentioned that results of 
the ROC competition were not measured in terms of SE and 
SP.[4] Thus, we could not evaluate whether the participants 
met the requirements of the BDA. However, it is noteworthy 
that the methods included in the competition could be directly 
compared using a common database and evaluation criteria.

The lesion detection algorithms have also allowed the 
development of CAD systems for DR screening. Several of the 
studies included in Table 3 focus on separating DR and healthy 
cases.[39,41,44,46,48,56] Other authors also attempt to make a first DR 
severity grading by distinguishing referable and nonreferable 
DR cases.[40,42,43,53] This means that there are computationally 
efficient algorithms that could allow the detection of derivable 
DR. Moreover, most of commercially available DR screening 
systems reached 80% SE in detecting DR cases, although none 
of them achieved the SP values recommended by the BDA. 
The inclusion of a DR severity grading stage poses additional 
complexity to these systems since DR severity grades were 
not standardized and nonuniform severity scales were used.

Although the results of the developed algorithms are 
promising, challenges still remain. Further work is necessary 
to improve the proposed CAD systems so they can efficiently 
reduce the workload of ophthalmologists. First, the proposed 
methods should be tested on larger databases to ensure that 
they are capable of preventing visual loss in DR patients in a 
cost‑effective way. Although there are some publicly available 
databases designed for automatic retinal image analysis, 
algorithms should be tested in a larger datasets representative 
from screening scenarios. In addition, inter‑ and intra‑observer 
variability should be addressed in studies related to DR lesions 
detection or DR screening software development. Finally, DR 
severity grading systems should be consistent with clinically 
approved DR severity scales and thus, consider the different 
signs of DR. Despite these difficulties; several research groups 
are working toward the improvement and validation of CAD 
systems to efficiently diagnose DR and determine the DR 
severity grade in a patient. The final goal would be to develop 

an automatic system for DR screening with enough accuracy 
to be incorporated in the daily clinical practice.
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