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Abstract

The value learning process has been investigated using decision-making tasks with a cor-

rect answer specified by the external environment (externally guided decision-making,

EDM). In EDM, people are required to adjust their choices based on feedback, and the

learning process is generally explained by the reinforcement learning (RL) model. In addition

to EDM, value is learned through internally guided decision-making (IDM), in which no cor-

rect answer defined by external circumstances is available, such as preference judgment. In

IDM, it has been believed that the value of the chosen item is increased and that of the

rejected item is decreased (choice-induced preference change; CIPC). An RL-based model

called the choice-based learning (CBL) model had been proposed to describe CIPC, in

which the values of chosen and/or rejected items are updated as if own choice were the cor-

rect answer. However, the validity of the CBL model has not been confirmed by fitting the

model to IDM behavioral data. The present study aims to examine the CBL model in IDM.

We conducted simulations, a preference judgment task for novel contour shapes, and

applied computational model analyses to the behavioral data. The results showed that the

CBL model with both the chosen and rejected value’s updated were a good fit for the IDM

behavioral data compared to the other candidate models. Although previous studies using

subjective preference ratings had repeatedly reported changes only in one of the values of

either the chosen or rejected items, we demonstrated for the first time both items’ value

changes were based solely on IDM choice behavioral data with computational model

analyses.

Introduction

Externally guided decision-making (EDM) and computational modeling

The value learning process used by humans and animals has been investigated using a deci-

sion-making task with a correct answer specified by the external environment (externally
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guided decision-making, EDM; [1]). In this case, people are required to adjust their choices

based on feedback indicating a correct answer. The learning process of EDM is generally

explained by the reinforcement learning (RL) model. In the typical RL model, the expected

value (e.g., 0.8 is the expected value in the case of 1 dollar being rewarded with a probability of

80%) associated with the choice guides the choice behavior, and the expected value is updated

in accordance with prediction error (i.e., the difference between the expected value and actu-

ally delivered reward) [2–4]. The appropriateness of the computational model is verified by fit-

ting the model to trial-by-trial behavior choice data. Through the model-based analysis, latent

variables can be estimated, such as the degree of value update (learning rate) as a model param-

eter, expected value, and prediction error of each trial. These estimated latent variables have

been applied to neuroscience to understand the neural basis of EDM including social interac-

tion [5–7].

Internally guided decision-making (IDM) and computational modeling

In addition to the RL in EDM, the value of an item is learned through internally guided deci-

sion making (IDM) [1,8–20], in which no correct answer defined by external circumstances is

available and one has to decide based on one’s own internal criteria, such as preferences [1]. In

IDM, it has been believed that the value of a chosen item is increased and that of a rejected

item is decreased, called choice-induced preference change (CIPC; [8]). The IDM and EDM

are distinguished conceptually, operationally, and from the neural bases [1,21–24]. Neverthe-

less, a choice-based learning (CBL) model [18,21,23,25,26] based on RL in EDM has been pro-

posed for the IDM value-learning process. Thus the basic learning principles are assumed to

have a commonality between EDM and IDM [18,22,25].

In the CBL model the values of both the chosen and rejected items are updated as if own

choice were the correct answer. The CBL model was first proposed by Akaishi et al. [25] and

revealed the tendency of people to make the same decision on perceptually ambiguous stimuli

without feedback. In their model, the choice itself serves as feedback and the value of the

choice estimate is updated as if the previous choice was the correct choice. Although Akaishi

et al. [25] used a perceptual decision-making task, which was more externally guided than

internally guided [1], they proposed that the same mechanism can be applied to the CIPC in

IDM. Based on Akaishi’s model, Nakao et al. [22,23] constructed the CBL model for IDM and

conducted simulations to show that the behavioral index they used (i.e., change of decision

consistency) is observed as the result of CBL.

However, as Nakao et al. [22,23] described, they could not test the appropriateness of the

CBL model in IDM by fitting the model to the actual behavioral data. The stimuli used in their

IDM task (i.e., occupation words for an occupation preference judgment task) are not appro-

priate for the application of computational model analysis. The stimuli are subject to partici-

pants’ initial preferences formed through their daily life experiences before the experiment,

and the existence of differences in initial value among stimuli makes it difficult to estimate

model parameters properly, such as learning rate [27]. No studies have overcome this method-

ological limitation to apply computation analysis to IDM behavioral data.

The first aim of the present study was to examine the appropriateness of the CBL model in

IDM by fitting the model to actual behavioral data. We applied the following two strategies to

overcome the methodological limitation to applying computation analysis to IDM behavioral

data. First, we used preference judgment for novel contour shapes as an IDM task. In EDM

studies, novel contour shapes have been used, the initial value of which can be assumed to be

equal, and applied to computational model analysis (e.g., [28–30]). By following the EDM

studies, we used novel contour shapes to minimize the distortion of model parameter
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estimation caused by the different initial preferences. Second, we compared the CBL model

with a control model without free parameters (e.g., learning rate) in which the probability of

choosing an option was estimated based on the chosen frequency in the previous trials. The

control model shared the assumption that there was no difference in initial preference among

novel contour shapes in the CBL model and preference was estimated based on choice history.

Hence, even if the effect of an initial value difference could not be completely ruled out by

using novel contour shapes, a better fit of the CBL model to behavioral data than the control

model indicated the CBL model’s appropriateness for incorporating free parameter.

Are values of both chosen and rejected items changed in IDM?

As is common in CIPC studies using model-free classical CIPC paradigms, only the value

change in either the chosen or rejected item or no change has been frequently reported (e.g.,

[14,15,18,20]), whereas it is widely believed that the values of both the chosen and rejected

items change in CIPC (e.g., [15,18,20]). Although the reason for the unilateral value change

and/or the small effect size of CIPC [19] is unclear, the measurement of the value change

(CIPC) has been based on subjective preference ratings before and after the preference deci-

sion making, and that might lead to the non-robust experimental results. Indeed, the subjective

rating is contaminated with rating noise [19] and is not always consistent with the choice

behavior [31]. These pieces of evidence suggest the importance of establishing a method for

examining CIPC without using subjective ratings. Besides, not using a subjective rating is also

useful to avoid pseudo CIPC [12,19], which is caused in cases where both of the following pro-

cedures are applied: (1) noise-contaminated subjective ratings to measure CIPC, and (2) calcu-

lating the preference changes separately for chosen and rejected items. Although rate-rate

choice [12,14,16] and blind choice [13,15] paradigms using subjective rating have been devel-

oped to avoid pseudo CIPC, the effect size is small [19]. Developing a method that does not

use noise-contaminated subjective rating would lead to a more robust observation of CIPC.

The second aim was to investigate whether the value of both chosen and rejected items

changed without using subjective ratings. To achieve this aim, we compared the CBL model

with both values changed and with the models with either the value of chosen or rejected item

changed. Note that although we collected subjective preference ratings for all novel contour

shapes after the IDM (i.e., preference choice) task, the rating data were not for the computa-

tional model analysis to examine the CIPC, but to examine the inconsistency between subjec-

tive ratings and choice behavior suggested by the previous study [31].

Improvements in CBL-based models

In EDM studies, the RL models incorporating various parameters, such as reducing decision

noise with the accumulation of experience in decision-making [32] and value forgetting over

time [33], have been proposed. With reference to those EDM studies, as the third aim of the

present study, we explored the possible modification of the CBL model to explain CIPC better.

Aims

The general aim of the present study was to examine the value learning process in IDM (i.e.,

CIPC) by applying an RL-based CBL model to behavioral data. More specifically, as we have

described above, we examined (1) the appropriateness of the CBL model in IDM, (2) whether

the value of both chosen and rejected items changed, and (3) the possible modification of the

CBL model. We addressed the first and second aims in Study 1 and the third aim in Study 2.

In both studies, first, we conducted simulations for parameter and model recoveries to con-

firm whether the models acceptably identified the actual parameter and model. We generated
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500 sets of artificial choice data using each model with the same setting with the experiment,

and fit the model to the artificial data. For parameter recovery, we examined whether the

parameters used for generating the artificial data were successfully estimated by the model fit-

ting in each model, while for model recovery, we examined whether the models used to generate

the artificial data show the best fit to their own artificial data. We then conducted a behavioral

experiment and used the computational models to analyze actual choice behavioral data.

Study 1

In Study 1, we examined (1) the CBL model’s appropriateness by using preference judgment

with novel contour shapes and a control model, and (2) whether the value of both chosen and

rejected items changed or not. The control model for the first aim estimated the probability of

selecting an option based on the chosen frequency in the previous trials without free parame-

ters. The control model shared with the CBL models the assumption that there is no difference

in the initial value among the novel contour shapes. For the second aim, we compared the four

types of CBL models describing how participants updated items’ values in the series of prefer-

ence judgment tasks (Table 1). The four CBL models differed in whether only the value of cho-

sen or rejected items changed (CBLαc and CBLαr, respectively), or whether both values

changed with the same or different learning rates (CBLαcr and CBLαcαr respectively).

Regarding the first aim, we expected CBL models to fit better than the control model with

the series of choice behaviors in IDM. Concerning the second aim, we expected the CBL

model with both learning rates for chosen and rejected item (CBLαcr and/or CBLαcαr) to fit

better than the other CBL models with either of the learning rates (CBLαc and CBLαr).

Method

Participants

Forty-eight healthy Japanese university students (male = 21, female = 27, mean age = 21, age

range = 18–36) participated in the behavioral experiment. All participants were native Japanese

speakers, right-handed, with normal or corrected-to-normal vision. The study was approved by

the ethics committee of the Graduate School of Education, Hiroshima University. According to

the guidelines of the research ethics committee of Hiroshima University, all participants pro-

vided written informed consent. They were paid for their participation in the experiment.

Stimuli and apparatus

From Endo et al. [34], we selected 15 novel contour shapes with moderate complexity, width,

smoothness, symmetry, orientation and association values (Table 2). The IDs of the shapes

Table 1. Summary of the differences among the four computational models.

CBL models Degree of value change after decision

chosen rejected

CBLαc αc(1−Qi(t)) 0

CBLαr 0 αr(1−Qi(t))
CBLαcr αcr(1−Qi(t)) αcr(1−Qi(t))
CBLαcαr αc(1−Qi(t)) αr(1−Qi(t))

Note. α denotes learning rate, and Qi(t) denotes value of item i at trial t. αc and αr represent the different values of

learning rates applied to the chosen and rejected items, while αcr denotes that the learning rate of chosen and rejected

items are the same value.

https://doi.org/10.1371/journal.pone.0244434.t001
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were 29, 31, 35, 36, 37, 39, 42, 44, 45, 56, 63, 65, 81, 87, and 92. The size of the image used in

the experiment is 800 × 600 pixels. Participants could see a picture on the screen within 30

degrees of the angle of view. All possible combinations of 15 shapes (i.e., 105 pairs) were

generated.

In each trial, one of the 105 pairs was presented with one member on the left and the other

on the right side of the screen on a white background via Psychopy [35]. The order of trials

and presentation sides of shapes were randomized across participants. The display screen size

was 1920 × 1080 and the experiment was run on a Windows 10 PC.

Preference judgment task

Participants performed 5 blocks of 21 trials of a preference judgment task. Participants were

instructed to choose the preferred one from the two presented shapes. There were 105 combi-

nations of stimuli, and each stimulus pair was presented only once. Each stimulus was pre-

sented 14 times. Before the experimental trials, participants were given four practice trials to

familiarize themselves with the experimental process. The stimuli used in the practice were dif-

ferent from those used in the experimental trials.

Each trial began with the fixation cross shown for a randomly selected period of 2,000 ms,

2,400ms, or 2,600ms (Fig 1). After that, two shapes were presented on the left and right side of

the fixation cross for 2,000 ms. Participants indicated their choice with the “f” (left) or the “j”

(right) key on a standard computer keyboard as quickly and accurately as possible after the

shapes were presented. Although the two stimuli disappeared (i.e., turned to white screen)

after 2,000 ms to control the exposure time for each stimulus, participants could make their

decision by pressing the key after the stimulus disappeared. The white screen was presented

until the participants’ keypress for preference judgment. If the key was pressed within 2,000

ms, the stimuli were also displayed until the end of the display time (i.e., 2,000 ms) and the

white screen was not presented. The reaction time (RT) from the presentation of the two sti-

muli to the response was recorded. After each block of 21 trials, the participants pressed any

key to continue the task once they had rested enough.

In order to examine the consistency of preference judgment and subjective rating, the par-

ticipants conducted the subjective preference rating task after the preference judgment task. In

the rating task, participants were instructed to evaluate their subjective preference for each of

the 15 novel contour shapes, rated on a 5-point scale (1 = extremely dislike, 5 = extremely like).

The data of the preference ratings of the Likert scale were not used in the computational

model analysis.

CBL models

In the traditional reinforcement learning model, the expected value of the chosen option is

learned through a series of previous behavior results and used to decide a later choice. The

learning process of the reinforcement learning model can be written as

Qðt þ 1Þ ¼ QðtÞ þ aðrðtÞ � QðtÞÞ ð1Þ

The combined strength Q(0 ≦ Q≦ 1) between the choice (conditional stimulus) and the

Table 2. Summaries of the geometrical properties of 15 novel contour shapes.

Complexity Width Smoothness Symmetry Orientation Association

Mean 5.09 5.54 4.60 3.65 5.03 65.7

SD 1.42 1.81 1.67 1.72 2.14 6.84

https://doi.org/10.1371/journal.pone.0244434.t002
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reward (unconditional stimulus) is updated in each trial t. r(0 ≦ r≦ 1) represents the degree of

compensation in the trial t. α(0 ≦ α≦ 1) is a parameter that determines the degree of updating

of V in one trial (learning rate).

Previous simulation studies [22,23] applied the Rescorla-Wagner reinforcement learning

rule [36] to build CBL models. The learning process of the CBL models is that the value of cho-

sen items increases while the value of rejected items decreases. The learning process of CBL

model can be written:

Viðt þ XÞ ¼
ViðtÞ þ að1 � ViðtÞÞ if i was chosen

ViðtÞ þ að0 � ViðtÞÞ if i was rejected
ð2Þ

(

where the value Vi(t) of option i is updated at trial t and the updated V value is held unchanged

until the item is presented after X trials (c.f., F-CBL model in Study 2). The learning rate α and

prediction error (1 –Vi(t) or 0 –Vi(t), depending on whether it was chosen or rejected by a par-

ticipant) determined the degree of value change followed by choice. The learning rate takes a

value between 0 and 1.

Fig 1. Experimental procedure of IDM task and subjective rating. A) In the IDM task, participants were asked to

choose his/her preferred option from two stimuli. The stimuli display time was 2,000 ms. In case participants did not

respond during the period, the screen displayed a blank screen until the response. B) In a subjective preference rating,

participants subjectively evaluated all 15 stimuli on a 5-point scale (1 = extremely dislike, 5 = extremely like). The data

of the subjective rating were not used for the computational model analysis.

https://doi.org/10.1371/journal.pone.0244434.g001
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The difference between the values of the two options was applied to the following softmax

function to calculate the choice probability.

Pchosen ¼
1

1þ expð� bðVchosenðtÞ� VrejectedðtÞÞ
ð3Þ

Pchosen indicates the probability that the model selects the option actually chosen by a partici-

pant. Vchosen and Vrejected and indicates the estimated value of each chosen and rejected item. β
determines the slope of the softmax function. The higher β is, the more the judgment is based

on the values, while the lower β is, the more random the choice is and more independent of

the value.

We prepared four models based on the RL model (see Table 1). Since it is possible that only

the chosen or rejected items’ value changes occurred as in previous CIPC studies (e.g.,

[14,20]), we prepared models in which only the chosen or rejected items’ value changes

(CBLαc and CBLαr, respectively). In addition, we also prepared two models in which the values

of both the chosen and rejected items change, with either the same (CBLαcr) or different learn-

ing rates (CBLαcαr).

Control model without free parameters. To examine the validity of setting the free

parameters (i.e., α and β) in the CBL models, we conducted behavioral data analyses using a

control condition without free parameters. In the control model, the value V of the chosen

item i is given by

ViðtÞ ¼
Nchosen

i ð1 : t � 1Þ

Npresented
i ð1 : t � 1Þ

ð4Þ

Npresented
i ð1 : t � 1Þ is the number of times item i is presented before trial t. Nchosen

i 1 : t � 1ð Þ is

the number of times item i is chosen among them. Vi is 0 when the item i is presented for the

first time.

The probability that the model selects the option chosen by a participant (Pchosen) is given

by

Pchosen¼
VchosenðtÞ þ 1

VchosenðtÞþVrejectedðtÞ þ 2
ð5Þ

To define the probability, even if both the chosen and rejected items’ values are zero, one and

two were added to the numerator and the denominator, respectively (see, Ito and Doya [37]).

Simulations and model-based behavioral data analyses

The following two simulations and model-fits to the actual behavioral data were run on Matlab

(www.mathworks.com). We used Matlab’s fmincon function to estimate the free parameters,

such as the learning rate (α) and the gradient of the softmax function (β) that maximizes each

CBL model’s likelihood of generating behavioral data.

Simulation 1 (Parameter recovery). First, we conducted Simulation 1 (parameter recov-

ery) to confirm whether the experimental design and each model satisfy the goal of estimating

the model parameters from the choice data [38]. More specifically, in each model, we exam-

ined whether the model parameters used to generate artificial behavioral data were successfully

estimated after fitting the model to the artificial behavioral data.

In each of the models, simulations were conducted 100 times. When generating the artifi-

cial behavioral dataset, we used the same settings as the actual experimental design. That is, the

number of stimuli was 15 and the trial consisted of the possible combinations of these (i.e., 105
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trials). In this study, we used novel contour shapes to assume the initial values of stimuli are

consistent when applying computational model analysis. We, therefore, set the initial value for

all stimuli to 0.5 in the CBL models. The initial value of all items in the control model was set

to 0 since the number of times all items presented was 0. The range of parameters set for each

model when generating artificial behavioral datasets is shown in Table 3. “U” indicates a uni-

form distribution, and the value of α was randomly selected from a uniform distribution on

the interval (0, 1), and the value of β was randomly selected from a uniform distribution on the

interval (0, 20). We set β in that range because a larger value of β generates random choice

behavioral data, which reflects the differences of the models less.

We estimated the best fitting parameters for each artificial behavioral dataset by the maxi-

mum likelihood method. The log-likelihood (LL) for all the trials was written in terms of the

choice probabilities of the individual model for the chosen option in the behavioral data as

LL ¼
XT

t¼1
logPchosenðtÞ ð6Þ

where T represents the total number of trials. The Pchosen is the probability that the model

selects the stimuli actually chosen by a participant in each trial t, calculated based on formulas

(2) and (3). We used Matlab’s fmincon function with an interior-point method [39] to estimate

the free parameters that maximize the likelihood of each model generating behavioral data.

Optimality tolerance and step tolerance were set to 1e-8. The search range of α and β were the

same as the range set during artificial data generation.

Simulation 2 (model recovery). We conducted Simulation 2 (model recovery) to confirm

whether the true model showed the best fit to the behavioral data generated from that model.

To evaluate the relative goodness of fit of the models, the AIC (Akaike Information Criterion)

was used, which is given by

AIC ¼ � 2LLþ 2k ð7Þ

where k is the number of free parameters. A smaller AIC denotes a better model fit to the data.

We simulated the behavior of the four CBL and control models in the preference judgment.

As in Simulation 1, artificial behavioral data were generated. The method of model parameter

estimation was also the same as in Simulation 1. Each generated dataset was then fit to each of

the given models to determine which model showed the best fit (according to AIC). Then 500

artificial datasets per each model were generated, and the frequency of being the best fit model

was calculated for each fitted model.

CBL model fit to the behavioral data. We conducted computational model analyses of

the actual behavioral data. The method of model parameter estimation was the same as Simu-

lations 1 and 2. However, to deal with the possibility that the actual value of β could be greater

than 20, we performed an additional analysis with the search range of β set to 0–100. The AICs

were calculated using all the models that fulfilled the criteria in the two simulations by applying

the choice data of each participant to the model. The AICs were tested using the multiple-com-

parison Holm method, adjusted for all possible combinations of the model comparisons.

Table 3. Parameter settings for each model (Simulations 1 and 2).

Models Parameters

CBLαc αc * U(0,1), β* U(0,20)

CBLαr αr * U(0,1), β* U(0,20)

CBLαcr αcr * U(0,1), β* U(0,20)

CBLαcαr αc * U(0,1), αr * U(0,1), β* U(0,20)

https://doi.org/10.1371/journal.pone.0244434.t003
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For an intuitive understanding of how much the models predicted the behavioral data, we

calculated the normalized likelihood [37] given by

zL ¼ eðLL=TÞ ð8Þ

where LL is the log-likelihood calculated based on formula (6), and T represents the total num-

ber of trials. The normalized likelihood represents the averaged probability per trial of the

model selecting the item actually chosen by a participant. This index presents 0.5 when the

probability of the model choosing the actually chosen item by a participant is a chance-level. A

larger normalized likelihood denotes better model prediction to the behavioral data. However,

different from the AIC, the normalized likelihood was not adjusted for the impact of the num-

ber of free parameters.

RT data analysis

To confirm whether the participants faithfully conducted preference judgment, we compared

RTs between the large (choice between two similarly preferred items) and small conflict

(choice between preferred and not preferred items) conditions. Previous studies reported that

preference judgment takes longer for large than small conflict trials [21,40–42]. We divided tri-

als into large and small conflict trials on the preference judgment by calculating the difference

between the chosen frequencies of two stimuli in each trial. More specifically, we first calcu-

lated the chosen frequency across trials for each stimulus, and then calculated the difference in

the chosen frequency between the two stimuli in each trial. Trials with differences in chosen

frequency less than the average (i.e., the preferences for the two stimuli were similar) were

assigned to the large conflict condition, while those with differences in chosen frequency

greater than the average were assigned to the small conflict condition. Finally, for each partici-

pant, we calculated the mean RT in each conflict condition. The RTs outside the mean ± 3SD
within each participant were excluded from the analyses.

Besides, we conducted a correlation analysis between RTs and the difference between the

chosen frequencies of the two stimuli in each trial. The trials with a larger difference in the

chosen frequency corresponded to those with a smaller difference. In each participant, the

data of the mean ± 3SD were excluded, and the Pearson’s correlation coefficient (r) between

RT and conflict was calculated. The r values were converted to Fisher’s Z to conduct a one-

sample t-test against 0 (i.e., no correlation).

Rating data analysis. To examine the consistency between the preference judgment and

subjective rating, we first counted the frequency of each participant’s choice for each stimulus

and applied a median split to divide the stimuli into high frequency stimuli and low frequency

stimuli. The average subjective rating scores for these two types of stimuli were compared.

We also conducted a correlation analysis between the chosen frequency and subjective rat-

ing of the stimuli, as well as a reaction time data analysis.

Results

Results of Simulation 1 (Parameter recovery)

In Simulation 1, we confirmed that the parameters of the computational model during the

generation of artificial data could be properly calculated by applying the same computational

model to the artificial data. We found good consistency between the set parameter values (sim-

ulated) and estimated values (fit) (Fig 2, rs> .77), confirming that the parameters of the mod-

els could be calculated when the initial values of the stimuli were equal.
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Results of Simulation 2 (Model recovery)

Fig 3 shows the mixed matrix resulting from the model recovery. When each model was used to

generate artificial data and the respective model showed better fit to the data it generated than the

other models, that model can be regarded as able to recover the true model from the data. When

Fig 2. Results of parameter recovery in Study 1 (Simulation 1). A parameter recovery was conducted to confirm

whether each model satisfied estimating the model parameters from the choice data. The correlation coefficients

between the parameters used to generate the artificial data are shown as parameter recovery indices. All model

parameters used to generate artificial behavioral data were successfully estimated by fitting the same models.

https://doi.org/10.1371/journal.pone.0244434.g002
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the control model and CBLαcr models were the true models, the model could be recovered by the

respective model. However, when CBLαc or CBLαr were the true models, the control model

showed the best fit. This meant that we could not determine whether CBLαc, CBLαr, or the control

model was the true model when the control model showed the best fit. Besides, when CBLαcαr was

the true model, CBLαcr showed the best fit. Thus, we could not distinguish whether the true model

was CBLαcr or CBLαcαr when CBLαcr showed the best fit. In other words, from the present study,

we thus could not clarify whether the learning rates between chosen and rejected items differed.

One plausible reason for the failure of the CBLαcαr model recovery is that in the cases the

randomly selected αc and αr to generate the artificial data using CBLαcαr were similar to each

other, CBLαcr fitted the artificial data. Meanwhile, CBLαc or CBLαr fitted best when there was

a large difference in the learning rates. In fact, as we can see in Fig 3, compared with the cases

where the CBLαcr model generated the artificial data, there are more cases where CBLαc or

CBLαr provided the best fit when CBLαcαr generated the artificial data. Besides, as shown in

Table 4, the difference between αc and αr to generate the artificial data by CBLαcαr was larger

in the cases the CBLαc or CBLαr adopted than the case of the CBLαcr was the best.

Results of CBL and control model fit to the experimental behavioral data

Fig 4 shows a comparison between the models where the search range for alpha and beta were

0–1 and 0–20, respectively. All the CBL models showed a better fit to the behavioral data than

the control model (ts(47)> 11.30, ps < .001; Holm). CBLαcr showed the best fit for the

Fig 3. Results of model recovery in Study 1 (Simulation 2). A model recovery was conducted to confirm whether the

true model showed the best-fit to the behavioral data generated from that model. The artificial data generated by each

simulated model were used for model fit. The model with the smallest AIC was adopted as the best fit model for the

data. Each model generated 500 sets of artificial data and the data were fitted to all models. The value in each cell

indicates the proportion of the best fit model in the 500 sets of artificial data in each simulated model.

https://doi.org/10.1371/journal.pone.0244434.g003

Table 4. Summary of randomly determined learning rates to generate artificial data using CBLαcαr in the cases

where the other three CBL models showed the best fit (Simulations 2).

The best fit model Proportion of artificial data where αc> αr Mean αc Mean αr

CBLαc 100% 0.58 0.07

CBLαr 0% 0.03 0.60

CBLαcr 50% 0.52 0.53

https://doi.org/10.1371/journal.pone.0244434.t004
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behavior data (ts(47) > 2.47, ps< .035; Holm). When we compared AIC at an individual par-

ticipant level, 16.67%, 10.42%, 60.41%, 10.42%, and 2.08% participants showed the best fit to

the CBLαc, CBLαr, CBLαcr, CBLαcαr, and control models, respectively.

The normalized likelihood for CBLαc, CBLαr, CBLαcr, CBLαcαr, and the control models

were 57.17% (SE = 0.64), 57.55% (SE = 0.67), 59.08% (SE = 0.75), 59.47% (SE = 0.74), and

49.16% (SE = 0.16), respectively. Similar to the results of the AIC, all the CBL models showed

higher probability to select the actually chosen option than the control model (ts(47) > 12.21,

ps< .001; Holm). CBLαcr showed a significantly higher probability than the other models (ts
(47)> 6.37, ps < .001; Holm), except CBLαcαr. CBLαcαr showed a significantly higher proba-

bility than CBLαcr (t(47) = 5.39, p< .001; Holm).

In cases where the search range of β was set to 0–100, similar results were observed to when

the search range was 0–20, except that no significance was found between CBLαcr and

CBLαcαr. The mean AICs for CBLαc, CBLαr, CBLαcr, CBLαcαr, and the control models were

121.49 (SE = 2.40), 120.28 (SE = 2.48), 115.14 (SE = 2.71), 115.71 (SE = 2.69), and 149.16

(SE = 0.71), respectively. All the CBL models showed better fits to the behavioral data than the

control model (ts(47) > 11.23, ps< .001; Holm). CBLαcr (ts(47) > 6.14, ps< .001; Holm) and

CBLαcαr (ts(47)> 5.98, ps < .001; Holm) showed better fits than the other models.

Taken together, the CBL models showed better fits than the control model. Besides, the

CBLαcr and CBLαcαr models in which both the updated chosen and rejected values showed

better fits than CBLαc and CBLαr in which only one of the value were updated.

Results of RT

We examined participants’ RT in the large and small conflict conditions of preference judg-

ment. We found that participants’ reactions took longer in the large than the small conflict

Fig 4. AIC results after fitting each model to actual behavioral data (Study 1). � p< .05, �� p< .001. The black dots,

error bars, and colored dots indicate the average, standard deviation (SD), and each participant’s data, respectively.

https://doi.org/10.1371/journal.pone.0244434.g004
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condition (t(47) = 3.68, p< .001; Fig 5A). This result was consistent with those of previous

studies [21,40–42]. Besides, we observed significant correlation between RT and conflict

(mean Z = -0.21, SE = 0.02, t(47) = -8.77, p< .001). The scatter plot between the RT and con-

flict from all the trials of all the participants is shown in Fig 5B.

These results were consistent with previous studies [21,23,42], and indicated that partici-

pants had conducted the preference judgment task faithfully.

Results of subjective rating

We compared the subjective preference ratings of frequently chosen stimuli (high-frequency;

HF) and less frequently chosen stimuli (low-frequency; LF). No significant difference was

found between the two conditions (t(47) = −.313, p> .75, Fig 6A). Besides, no significant cor-

relation was found between chosen frequency and subjective rating (mean Z = 0.02, SE = 0.04,

t(47) = 0.40, p = 0.69; Fig 6B). Thus, the preference reflected in choice behavior was not

reflected in subjective rating after the preference judgment task, which is consistent with the

results of the research of Katahira et al. [31].

Discussion

Study 1 aimed to examine (1) the CBL model’s appropriateness by comparing CBL models

with the control model, and (2) whether the value of both chosen and rejected items changed

or not.

Regarding the first aim, CBL models showed a better fit to IDM behavioral data than the

control model (Fig 4). Although the results of Simulation 2 (Fig 3) showed that the control

model was the best fit for a certain proportion of data even when the CBL (especially, CBLαc

and CBLαr) models were the true model, the CBL model did not have the best fit when the

control model was the true model. Since the CBL models had a better fit than the control

model to the actual behavioral data, it was unlikely that the control model was the true model.

The control and CBL models similarly assumed no difference in initial preference among

novel contour shapes and estimated value based on the preference choice history. Since the

main difference was the presence of free parameters (i.e., learning rate and reverse tempera-

ture), the better fit of the CBL models to behavioral data than the control model confirmed the

CBL model’s appropriateness for incorporating free parameters.

Fig 5. The relationships between the degree of conflict and reaction time (RT). (a) The mean average of RT in high-

and low-conflict conditions (back dots), SD, and each participant’s data (colored dots). �� p< .001. (b) A scatter plot of

all the trial data of all the participants between RT and the difference of chosen frequency. The trials with a larger

difference in the chosen frequency corresponded to those with less conflict. The black regression line corresponds with

all the data points of all the participants. The orange and green dots and the regression lines correspond with the

participants’ data that showed the strongest negative correlation and the data that did not, respectively.

https://doi.org/10.1371/journal.pone.0244434.g005
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With regard to the second aim, although the CBLαcαr result of the model fit to the experi-

mental behavioral data was unreliable because the model failed model recovery in Simulation

2, CBLαcr did fit the behavioral data better than CBLαc and CBLαr. This result verified that the

values of chosen and rejected items are updated in IDM, as had been believed in the CIPC

studies. Although previous CIPC studies using subjective preference ratings had repeatedly

reported changes only in one of the values of either chosen or rejected items, we demonstrated

for the first time both items’ value changes based solely on IDM choice behavioral data with

computational model analyses.

Importantly, although CBLαcr was adopted in model comparisons, there remained the possibil-

ity that the CBLαcαr was a true model and that was likely useful for parameter estimation of indi-

vidual learning. Although CBLαcαr had failed model recovery in Simulation 2, as can be seen in

Fig 3, the results of this model recovery indicated that the true model could be CBLαcαr when

CBLαcr was the best fit. Besides, in Simulation 1, the CBLαcαr model showed good parameter

recovery. Furthermore, although averaged AIC by fitting the actual participants’ data was better in

CBLαcr than in CBLαc, CBLαr, and CBLαcαr (Fig 4), when we compared AIC in an individual par-

ticipant’s data, 16.67%, 10.42%, and 10.42% of participants showed a best fit to CBLαc, CBLαr and

CBLαcαr, respectively. For those participants’ data, the estimating parameters in CBLαcr were likely

to be inappropriate. For parameter estimation in individual participants, including those who had

different learning rates for chosen and rejected items, it was possible that applying CBLαcαr, which

is a model that encompasses the CBLαc and CBLαr, that CBLαcr would be plausible.

The present study’s subjective ratings were not consistent with choice behavior (Fig 6). Sub-

jective ratings were contaminated by rating noise [19]; it is known that there is a discrepancy

between the values reflected in the subjective rating and those actually reflected in the choice

behavior [31]. This could be the reason for the low effect size [19] in the paradigm of assessing

CIPC from a combination of subjective ratings and behavioral choices. That was one of the

reasons why we introduced the CBL model analysis to examine CIPC without using subjective

ratings. However, it should be noted that the stimuli in the present study were presented 14

times and selected multiple times unlike the typical CIPC experiment [8]. Such multiple selec-

tions could lead to large discrepancies between choice behavior (i.e., the chosen frequency in

preference judgment) and subjective rating. Therefore, it is important to note that the discrep-

ancy between choice behavioral data and subjective ratings in this study does not negate the

paradigm’s usefulness using subjective ratings.

Fig 6. The relationship between subjective preference rating and chosen frequency in a preference judgment task.

(a) Mean subjective preference ratings for frequently chosen (high-frequency) and less chosen (low-frequency) stimuli

(back dots), SD (error bars), and each participant’s data (colored dots). (b) A scatter plot of all stimulus data from all

participants between subjective preference rating and chosen frequency. The black regression line corresponds to all

data points of all participants. The orange and green dots and regression lines corresponding to participant’s data

showed the strongest negative correlation and those that did not, respectively.

https://doi.org/10.1371/journal.pone.0244434.g006
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Study 2

In Study 2, we did an exploratory investigation into the possible modification of the CBL

model to explain CIPC better. We constructed and validate modified Tβ-CBL (CBLɑcr model

with time-varying β) and F-CBL (CBLɑcr model with the forgetting parameter for unpresented

items) based on the CBLɑcr model that had a best fit to the behavioral data in Study 1.

The Tβ-CBL was constructed to examine the possibility that the more a stimulus was expe-

rienced, the less noise was included in the IDM. To investigate this possibility, we set the β as a

variable over time by following Yechiam et al. [32].

The F-CBL model was developed to explore the possibility that the value of the items not

presented decayed over time. In the CBL models in Study 1, the values of the chosen and the

rejected stimuli updated, while the value of the stimulus that was not present in a trial

remained unchanged. To examine the possibility of attenuations of the values of unpresented

stimuli, we added the forgetting factor (αF) to the CBLɑcr model.

The examination of the F-CBL model corresponded to the examination of trial-based tem-

poral autocorrelation in IDM. The CIPC was considered to cause autocorrelation in IDM: cho-

sen items’ preference increased and items were subsequently more likely to be chosen, while

rejected items’ preference decreased and items were subsequently less likely to be chosen. The

CBL model was one of the computational models that represented such autocorrelation. The

CIPC was reflected in the time series behavioral data as a stimulus-based autocorrelation

because two out of 15 stimuli were presented in the present study task and that could be cap-

tured by CBLɑcr model. However, it was also possible that the item chosen in the recent past

was more likely to be chosen, that is, a trial-based temporal autocorrelation. Since the F-CBL

included attenuation of the value of stimuli not presented in each trial, this model would be

the best fit if there were a trial-based temporal autocorrelation in the IDM.

Methods

Modified CBL models

Tβ-CBL model: In this model, β increases with increasing experiences (i.e., the number of

times the items are presented).

b ¼ ð
Npresented

L ð1 : tÞ þ Npresented
R ð1 : tÞ

2
�

1

10
Þ
^c ð9Þ

Npresented
L ð1 : tÞ and Npresented

R ð1 : tÞ is the number of times the stimuli shown at the left and right

sides on the screen are presented until the trial t. c is a free parameter that modulates the

degree of increase in β with experience. The higher the c value, the clearer the preference judg-

ment as experience the presentation and judgment of the stimuli.

F-CBL model: In this model, the value V of the items i that did not present in each trial t was

updated as follows:

Viðtþ1Þ ¼ ð1 � aFÞ � ViðtÞ if i was not presented ð10Þ

where αF is the forgetting factor which modulates the degree of attenuation of the value. The

forgetting factor was included by following the previous EDM study [33]. In this model, the

forgetting factor was applied to unchosen items, unlike the present study.

Simulations and model-based behavioral data analyses

The simulations for parameter and model recovery were conducted in the same way as Study

1. Parameter recovery in Simulation 3 was conducted for the Tβ-CBL and F-CBL models.
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Model recovery in Simulation 4 included the CBLɑcr, Tβ-CBL, and F-CBL models. In both the

simulations, the range of c in the Tβ-CBL model was set to (0, 9), corresponding approximately

to the range of β (0, 20) in the CBLɑcr model. The range of the forgetting factor (αF) in the

F-CBL model was set to (0, 1), the same as the learning rate by following the previous study,

which included the forgetting factor for the RL model [33].

Results

Simulation 3 (Parameter recovery)

Overall, different to Simulation 1, the correlations between the simulated and fitted parameters

were not strong in the both the Tβ-CBL and F-CBL models (Fig 7, rs> .40).

Results of Simulation 4 (Model recovery)

Fig 8 shows the mixed matrix resulting from the model recovery. When the Tβ-CBL model

was the true model, the CBLαcr model also fitted best in the same proportion as Tβ-CBL

model. The other two models were able to recover a true model.

Fig 7. Results of parameter recovery in Study 2 (Simulation 3). The correlation coefficient between the parameter

used to generate artificial data is shown as indices of parameter recovery.

https://doi.org/10.1371/journal.pone.0244434.g007
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Results of model fit to the experimental behavioral data

Fig 9 shows a comparison between the models. The result for CBLαcr is the same as in Fig 4 in

Study 1. CBLαcr model showed better fits to the behavioral data than the other two models (ts
(47)> 7.55, ps < .001; Holm). CBLαcr showed the best fit for behavior data (ts(47) > 2.47, ps

< .035; Holm). When we compared AIC on an individual participant level, 83.33%, 20.08%,

and 14.58% of the participants showed a best fit to the CBLαcr, Tβ-CBL, and F-CBL models,

respectively.

The normalized likelihoods for CBLαcr, Tβ-CBL, and F-CBL were 59.08% (SE = 0.75),

54.04% (SE = 0.26), and 59.20% (SE = 0.75), respectively. CBLαcr and F-CBL showed higher

probability to select the actually chosen option than Tβ-CBL (ts(47) > 9.34, ps< .001; Holm).

F-CBL showed a higher probability than CBLαcr (t(47) = 2.27, p = .028; Holm).

Discussion

Study 2 was an exploratory investigation into the possible modification of the CBL model. In

the comparison of AIC, the CBLαcr model showed a better fit to IDM behavioral data than the

Tβ-CBL and F-CBL models (Fig 9). In contrast, F-CBL showed a better fit in normalized likeli-

hood than CBLαcr and there was a discrepancy between normalized likelihood and the AIC

results. This discrepancy was likely caused by no adjustment for the number of free parameters

in normalized likelihood. The F-CBL model had one more free parameter than the CBLαcr

model. The results of Simulation 4 (Fig 8) suggested that if the F-CBL model were the true

model, there would be a similar number of participants for whom the CBLαcr and F-CBL mod-

els would be the best fit. In the actual behavioral data results, however, 83.33% of the partici-

pants showed a best fit on the CBLacr model. Thus, it could be concluded that the CBLαcr was

a better fit than the other two models in the present study.

In the first place, however, it should be noted that the parameter recovery of the Tβ-CBL

and F-CBL models was not as good as that of the CBLαcr. That is, it remains possible that the

Fig 8. Results of model recovery in Study 2 (Simulation 4). The model with the smallest AIC was adopted as the

best-fit model to the data. Each model generated 500 sets of artificial data and the data were fitted to all the models.

The value in each cell indicates the proportion of the best-fit model in 500 sets of artificial data in each simulated

model.

https://doi.org/10.1371/journal.pone.0244434.g008
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experimental paradigm of the present study was not designed well enough to validate the two

modified CBL models. For example, looking at the results of parameter recovery for the F-CBL

model (Fig 7), which was prepared to examine trial-based temporal autocorrelation, adding

the forgetting factor αF in the CBLαcr model reduced the accuracy of αcr estimation (c.f., Fig 2).

The learning rate αcr led to a stimulus-based autocorrelation such that the chosen item was

more likely to be chosen when presented later. Theoretically, in the present paradigm, the

same item was presented every seven trials on average. Hence, it is possible that stimulus-

based autocorrelation and trial-based autocorrelation are not easily estimated separately.

Future experiments with an increased number of items may be useful to evaluate the F-CBL

model properly.

General discussion

The general aim of this study was to examine the value learning process in IDM (i.e., CIPC) by

applying the RL-based CBL model to behavioral data. The first aim of the present study was to

examine the appropriateness of the CBL model in IDM by fitting the model to actual behav-

ioral data. In Study 1, by using novel contour shapes and comparing with the control model

without free parameters (e.g., learning rate), we showed the appropriateness of the CBL models

to describe CIPC in IDM. The second aim was to investigate whether both chosen and rejected

items’ value changed without using subjective ratings. In Study 1, we also compared four CBL

models (CBLαc, CBLαr, CBLαcr, and CBLαcαr). Although previous CIPC studies using subjec-

tive preference ratings had repeatedly reported changes only in one of the values of either cho-

sen or rejected items, we demonstrated for the first time both items’ value changes during

IDM, based solely on choice behavioral data with computational model analyses as EDM

studies.

Fig 9. AIC results after fitting each model to actual behavioral data (Study 2). �� p< .001. The black dots, error

bars, and colored dots indicate the average, SD, and each participant’s data, respectively.

https://doi.org/10.1371/journal.pone.0244434.g009
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The third aim was to explore the possible modification of the CBL model. From the compu-

tational model analysis of the behavioral data in Study 2, the CBLαcr model fitted better than

the other modified models, Tβ-CBL and F-CBL models. However, the parameter recovery of

the two modified models was not as good as the CBLαcr model and there remained the possi-

bility that the present study’s paradigm was not appropriate for considering these

modifications.

Taken together, it was shown that the CBLαcr model (and also potentially CBLαcαr, see Dis-

cussion in Study 1) could explain CIPC in IDM, the potential for further model improvement

remains, though.

Cognitive dissonance theory

The phenomenon of CIPC has been explained by the theory of cognitive dissonance [43],

according to which choosing one item from two items with the same preference subjective rat-

ing produces dissonance feelings, which is called “cognitive dissonance.” After that, people

adjust their preferences to support their choice as reasonable. That is, they increase their pref-

erence for the chosen items and decrease their preference for the rejected items to restore cog-

nitive consistency. Although the present study’s model analysis was not limited to trials with

the two items with similar values (i.e., preference), the results supported CIPC. However, by

incorporating dissonance into the CBLαcr model it could be a better model to explain CIPC in

IDM, and this possibility should be explored in a future study with an appropriate experimen-

tal paradigm for that.

In the context of studies of cognitive dissonance theory in CIPC, it has been debated when

the preference change occurs, during the choice phase or during the post-choice subjective rat-

ing phase. Lee and Daunizeau [26] indicated that the process of restoring cognitive consistency

occurs during the decision process rather than during the post-ratings. In addition, Nakao

et al. [22] reported a link between CIPC and brain activity around 400 ms after choice. The

present study also provides evidence that the CIPC occurs during decision choice since our

model-based analysis involved applied choice behavior data.

Vinckier et al. [44] used a computational model to examine the cognitive dissonance the-

ory. However, they used an effort task in which participants required effort to get a reward

(i.e., foods) and experienced success or failure, and examined the preference change for the

foods. The task was closer to EDM than IDM. Although the types of decision-making they

addressed were different to those of the present study, it was obvious that preference change

did not occur only through simple IDM. Besides, daily decision-making was not simple IDM

as focused on in this study, but involved complex factors such as effort, which had been treated

in EDM. Future research could consider integrating our model with the models considered by

Vinckier et al. [44] and others for an integrated understanding of the human decision-making

process.

Limitations and further directions

Although our study confirmed the validity of CBL model in IDM, the following limitations

must be considered. First, the present study showed that the CBL model could describe CIPC

by assuming the values of chosen and rejected items are updated as if own choice were the cor-

rect answer. However, we did not compare the CBL model with cognitive dissonance theory.

To clarify the best model to illustrate CIPC, it would be necessary to compare the CBL model

with a computational model that reflected the impact of cognitive dissonance in a future study.

Second, the present study could not test the possibility that the learning rates of the chosen

and rejected items differed by comparing models by fitting to behavioral data. Since some
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participants had a best fit with Models 1 and 2, it was suggested that Model 4 might be appro-

priate for an individual’s parameter estimation. However, it would be necessary to explore an

experimental paradigm that can demonstrate the validity of using Model 4 in a model compar-

ison. Third, as we discussed in Study 2, to examine the validity of the modified CBL model

(i.e., TB-CBL and F-CBL), it is desirable to conduct experiments with appropriate task design

to test those models.

Conclusion

In this study, we carried out the preference judgment task with novel contour shapes to apply

computational modeling to IDM. From simulations and a behavioral experiment with compu-

tational modeling as with EDM, we showed that the CBL model could describe CIPC, and we

confirmed that the value of both the chosen and rejected items change without using subjective

ratings. The computational modeling allowed us to estimate trial-by-trial preference change

and model parameters (e.g., learning rate). Those parameters could apply for further analyses,

such as for neural bases of IDM, as had been done in EDM research. That would lead to an

increase in an integrated understanding of EDM and IDM; for example, whether learning

rates, which have common psychological meanings for EDM and IDM, are common in the

neural substrates.
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