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We previously showed that lymphocytes and erythrocytes of HIV-1–infected patients, 
prior to antiretroviral therapy, presented significant changes in intracellular calcium 
concentration ([Ca2+]int) and membrane fluidity. The present study evaluates the same 
parameters after response to highly active antiretroviral therapy (HAART). Blood samples 
were collected from patients prior to and after antiretroviral therapy, and from control 
subjects. Membrane fluidity and [Ca2+]int were assessed by fluorescence spectroscopy 
measurements, using three different probes: TMA-DPH and DPH for membrane fluidity, 
and fura-2 for Ca2+. When compared with the control group, both untreated and treated 
patients presented increased lymphocyte [Ca2+]int and decreased lymphocyte membrane 
fluidity, without significant differences between the two groups of patients. On the 
contrary, the therapy reversed the membrane fluidity variations observed in erythrocytes. 
The decreased erythrocyte [Ca2+]int of untreated patients was not reversed by HAART. 
AIDS patients present changes in lymphocyte (mostly noninfected) and erythrocyte 
properties, partially reversed by HAART, consistent with a process of facilitated 
propagation of the infection to new cells, stimulation of virion production, and 
maintenance of a reservoir of erythrocyte-bound infectious virus. These observations 
can be related with the action of the HIV Nef protein in the cell’s proteins and lipid 
composition, as well as with the recently observed cell infection by HIV-1 via 
endocytosis. 
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BACKGROUND 

Despite the success of highly active antiretroviral therapy (HAART), it is still unable to eliminate human 

immunodeficiency virus type 1 (HIV-1) from several cellular and anatomical reservoirs. HIV-1 is not able 

to replicate in erythrocytes. Nevertheless, infectious virus can be found bound to erythrocyte membranes 
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in the vast majority of HIV-infected patients, creating a reservoir of infective virus and, simultaneously, 

using them as a “shuttle” to circulate within the organism[1]. When compared with an erythrocyte, there 

is a larger probability of finding virus attached to a single leukocyte. However, the larger number of 

erythrocytes in the blood makes them a major reservoir of infectious virus. The lipid composition of the 

HIV viral membrane (of cellular origin) is similar to the composition of erythrocyte membranes, with a 

cholesterol-to-phospholipid ratio considerably higher than that observed in other cells of healthy 

subjects[2]. A recent publication about the HIV-1 lipidome[3] demonstrated that this viral lipid 

composition results from the cell membrane lipid microdomains richer in cholesterol and sphingolipids, 

termed lipid rafts, which are preferentially incorporated in the viral membrane during the process of 

assembly and release from the host cell[4]. Lipid rafts are also involved in the entry of HIV into a target 

cell (such as T-lymphocytes), mediated by the viral membrane glycoprotein complex formed by gp41 and 

gp120, which interact with CD4 and a coreceptor (usually CCR5 or CXCR4)[5]. Adding to their 

particular lipid composition, lipid rafts are also enriched in glycosylphosphatidylinositol (GPI)-anchored 

proteins, such as acetylcholinesterase (AChE), which can be used as a marker of membrane integrity[6]. 

After CXCR4 binding to SDF-1α (its physiological ligand), the internalization of the receptor is 

mediated by Ca
2+

 stimulation[7]. Studies with HIV-infected cultured T-lymphocytic cells have shown that 

the mobilization of calcium ions from intracellular storage pools (elevating cytosol Ca
2+

 concentration) is 

a key component for cell activation, a process that could stimulate virus replication[8]. Subsequent studies 

in cell culture indicated that this calcium signaling, involved in the control of HIV Tat protein activity[9], 

is modulated by gp120 and chemokines through CCR5 and CXCR4 stimulation[10], and by HIV Nef 

protein[11]. Nef also induces an increase in cholesterol biosynthesis and changes in its 

transport[12,13,14,15]. 

OBJECTIVES 

In a previous paper[6], we showed that lymphocytes and erythrocytes of HIV-1–infected patients, prior to 

their engagement in antiretroviral therapy, presented significant changes in membrane fluidity, 

intracellular calcium concentration ([Ca
2+

]int), and AChE activity when compared with a control group of 

healthy subjects. The present study evaluates the same parameters after response to HAART. It is 

important to bear in mind that this study does not intend to evaluate these parameters in infected cells. It 

is conducted with cells from infected patients, but most of these cells are not infected by the virus. 

STUDY DESIGN 

Blood samples were collected with heparin (10 U/ml), with previous informed consent, from patients 

prior to (n = 39–55) and after (n = 39–44) response to antiretroviral therapy, and from healthy subjects (n 

= 39–56) forming a control group with similar characteristics. A decrease of the viral load to values 

below 1000 copies/ml was used as criterion for considering that a patient presents a marked response to 

HAART. All these patients showed CD4
+
 counts above 300/mm

3
. The laboratorial methods were 

previously described[6]. Briefly, membrane fluidity and [Ca
2+

]int were assessed by fluorescence 

spectroscopy measurements, using three different probes: trimethylamino-diphenyl-hexatriene (TMA-

DPH) and diphenyl-hexatriene (DPH) for membrane fluidity (fluorescence anisotropy measurements), 

and fura-2 acetoxymethyl ester for Ca
2+

. DPH reports the membrane fluidity in the interior of the 

membrane, at the level of the acyl chains, and TMA-DPH the fluidity closer to the lipid/water interface. 

AChE activity was measured by a colorimetric method. Statistical analyses were carried out using two-

tailed unpaired samples t-tests and Pearson correlation calculations. 
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RESULTS 

The values determined for the lymphocyte and erythrocyte parameters under evaluation, obtained for the 

three groups studied, are presented in Fig. 1 together with the statistically significant variations obtained 

(p < 0.05). When compared with the control group, both untreated and treated patients presented a 

statistically significant increase in lymphocyte [Ca
2+

]int and decreased lymphocyte membrane fluidity (a 

higher fluorescence anisotropy value indicates a lower membrane fluidity). There are no statistically 

significant differences between the two groups of patients, either with TMA-DPH or with DPH. On the 

contrary, the therapy reversed the membrane fluidity variations observed in erythrocytes, reaching 

anisotropy values identical to those obtained for the control group. The decreased erythrocyte [Ca
2+

]int of 

untreated patients was not reversed by HAART. Regarding AChE activity, the decrease observed for the 

lymphocytes of antiretroviral-naïve patients was reversed by the therapy. A therapy-associated increase of 

the AChE activity values was also observed for erythrocytes, where there were no significant differences 

between the untreated patients and the control group. 

DISCUSSION 

Decreased lymphocyte membrane fluidity can be mainly due to the HIV-1 infection–induced alterations 

in the biomembrane lipid composition; namely, a higher cholesterol-to-phospholipid ratio[3], leading to a 

membrane-ordering effect. This can result in alterations of the membrane heterogeneous distribution of 

components (lipid microdomains or lipid rafts), considered to play an important role on HIV entrance in a 

target cell, and on HIV assembly and release. The less-fluid membrane can be related with the increase of 

the fraction of the membrane surface covered by rafts and/or with the formation of larger rafts. These 

events can be related with the formation of an “activated state” by the clustering of several rafts to form a 

larger platform where the several CD4 and chemokine receptors necessary for HIV binding to the target 

cell and membrane fusion can be associated. This hypothesis is in accordance with the several models 

proposed for the general mechanism of lipid rafts action. The relevance of the increased cholesterol 

content and decreased fluidity of the lymphocyte membranes of HIV-infected patients can also be related 

with the formation of nonlamellar, highly curved, stalk intermediates (necessary to form a local 

membrane bend important for membrane fusion), and with the modulation of the activity of several 

membrane proteins, such as CCR5 and CXCR4[16]. 

Taking into consideration solely the results obtained for the patients prior to therapy, the decrease in 

lymphocyte AChE enzyme activity could be explained by the changes in membrane composition and/or 

lipid microdomain organization (AChE, as other GPI-anchored proteins, locates preferentially in lipid 

rafts). A higher fraction of membrane area covered by rafts, leading to a lower average surface 

concentration of GPI-anchored proteins, could lead to a decreased AChE activity[6]. However, this 

hypothesis is not sustained by the results obtained after therapy, since the increase in lymphocyte AChE 

activity after treatment occurs without statistically significant changes in membrane fluidity. 

It should be stressed that the observations above do not refer exclusively to infected lymphocytes. 

The measurements result in an averaging of the studied cell population. Considering the low percentage 

of infected CD4
+
 T-lymphocytes among the lymphocytes isolated from an HIV-infected patient blood 

sample, it must be reasoned that the observations result mainly from noninfected cells. Thus, the 

modification of the parameters referred, instead of a consequence of cell infection, can result from a 

preconditioning of the noninfected lymphocytes (triggered by patient infection) in order to facilitate the 

propagation of the infection to new CD4
+
 T-lymphocytes. Consequently, this may increase the velocity of 

new virion production. Based on our observations, these purposes are achieved by modulating lipid 

composition and lipid raft organization (facilitating the entrance of the virus in the cell and the release of 

new virus), and by increasing the [Ca
2+

]int (inducing cell activation and stimulating virus replication). We 

can speculate that the mechanism underlying the observed changes can be by the action of the viral 

protein Nef. It has been quantitatively demonstrated that Nef alters not only the proteins, but also the lipid  
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FIGURE 1. Values of TMA-DPH anisotropy (A and B), DPH anisotropy (C and D), AChE enzyme activity (E and 

F), and [Ca2+]int (G and H) determined for the lymphocytes and erythrocytes obtained for the three studied groups: 
healthy subjects (control), antiretroviral treatment–naïve HIV-1–infected patients and antiretroviral-treated patients. 

Data are presented as mean  standard error. The p values obtained by the comparison of two groups using two-tailed 

unpaired samples t tests are presented whenever the variation is statistically significant (p < 0.05). All the other 
pairings yielded nonsignificant variations. 
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composition of HIV target cells[15]. The decreased cell membrane fluidities observed in the present study 

can be the direct result from the Nef-induced increase in cholesterol biosynthesis and conditioning of its 

transport patterns[12,13,14,], eventually even in the noninfected cells of HIV-1–infected patients. 

In a recent paper[17], Miyauchi et al. reported evidences of the entrance of HIV-1 into a target cell 

through an endocytic pathway. This is contrary to the commonly accepted view of an entrance by a 

membrane fusion process occurring directly at the cell membrane. If that is the case, the infection of an 

individual would lead to a change in the lipid composition and ordering of the noninfected lymphocytes, 

leading to a facilitated and faster receptor-mediated endocytosis. 

The results obtained with erythrocytes from HIV-infected patients show that the membrane-ordering 

effects observed near the lipid/water interface (with TMA-DPH) are identical to those observed for 

lymphocytes. However, the changes in lipid organization of the hydrophobic region of the membrane, 

probed by DPH, show a different trend. These observations seem in agreement with a process that leads 

to an increase in erythrocyte-HIV binding, without the need to increase membrane fusion (necessary in 

the lymphocyte-HIV interaction, but not for erythrocytes). The opposite [Ca
2+

]int variation trends observed 

in lymphocytes and erythrocytes can be related with an overall depletion of calcium in noninfectable cells 

and/or to the absence of intracellular compartments in erythrocytes. 

It is worthy of notice that most of the treatment effects occur on the erythrocyte parameters. 

Regarding the restoration of erythrocyte membrane fluidity after treatment, one possibility is that the 

decrease of the number of viruses bound to erythrocyte membranes, as a consequence of the decrease in 

viral load due to the treatment, could restore membrane properties. 

Considering that AIDS patients present changes in lymphocyte (mostly noninfected) and erythrocyte 

properties consistent with a process of facilitated propagation of the infection to new cells, stimulation of 

virion production, and maintenance of a reservoir of erythrocyte-bound infectious virus, the HAART-

associated reversion of some of the variations to values identical to those observed for healthy subjects 

indicates an at least partial inactivation by the therapy of this process of facilitated propagation of the 

infection to new cells. 
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