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Generalized linear models (GLMs) are used in high-dimensional
machine learning, statistics, communications, and signal process-
ing. In this paper we analyze GLMs when the data matrix is
random, as relevant in problems such as compressed sensing,
error-correcting codes, or benchmark models in neural networks.
We evaluate the mutual information (or “free entropy”) from
which we deduce the Bayes-optimal estimation and generaliza-
tion errors. Our analysis applies to the high-dimensional limit
where both the number of samples and the dimension are
large and their ratio is fixed. Nonrigorous predictions for the
optimal errors existed for special cases of GLMs, e.g., for the
perceptron, in the field of statistical physics based on the so-
called replica method. Our present paper rigorously establishes
those decades-old conjectures and brings forward their algorith-
mic interpretation in terms of performance of the generalized
approximate message-passing algorithm. Furthermore, we tightly
characterize, for many learning problems, regions of parameters
for which this algorithm achieves the optimal performance and
locate the associated sharp phase transitions separating learnable
and nonlearnable regions. We believe that this random version
of GLMs can serve as a challenging benchmark for multipurpose
algorithms.

high-dimensional inference | generalized linear model | Bayesian
inference | perceptron | approximate message-passing algorithm

As datasets grow larger and more complex, modern data anal-
ysis requires solving high-dimensional estimation problems

with very many parameters. Developing algorithms for this task
and understanding their limitations have become a major chal-
lenge in computer science, machine learning, statistics, signal
processing, communications, and related fields.

In the present contribution, we address this challenge in the
case of generalized linear estimation models (GLMs) (1, 2)
where data are generated as follows: Given an n-dimensional
vector X∗, hidden to statisticians, they observe instead an
m-dimensional vector Y where each component reads

Yµ =ϕ

(
1√
n

[ΦX∗]µ,Aµ

)
, 1≤µ≤m, [1]

where Φ is an m ×n “measurement” or “data” matrix, and
the random variables (Aµ)

iid∼ PA account for noise/randomness
of the model. The model is “linear” because the output Yµ
depends on a linear combination of the data zµ = 1√

n
[ΦX∗]µ =

1√
n

∑n
i=1 ΦµiX

∗
i . The GLM generalizes the ordinary linear

regression by allowing the output function ϕ(z ,A) to be non-
linear and/or stochastic; in the case of a deterministic model we
simply write ϕ(z ). Explicit examples are given below.

GLMs belong to the realm of supervised learning and arise
in a wide variety of scientific fields. In signal processing one
usually observes Yµ given as a linear combination of the sig-

nal elements X∗. In a range of applications these observations
are obtained via a nonlinear function ϕ. In optics or X-ray crys-
tallography one often measures only the amplitude of [ΦX∗]µ,
leading to the phase retrieval problem (3). A real-valued analog
is the problem of sign retrieval when we observe only |[ΦX∗]µ|
(4, 5). Observations are sometimes quantized to reduce the stor-
age, leading for instance to the problem of 1-bit compressed
sensing (6). In statistics and machine learning, classification is
often described via a GLM where the output function ϕ is dis-
crete and corresponds to the labels that classify the data points
Φµ (1, 2, 7). GLMs with nonlinear output functions are also
the basic building blocks of each layer of neural networks (8):
ϕ corresponds to the activation, the rows of the matrix Φ are
different data samples, and X∗ is the set of synaptic weights to
be learned.

There are two main learning problems in GLMs: (i) The esti-
mation task requires, knowing the measured vector Y and the
matrix Φ, inference of the unknown vector X∗; (ii) the prediction
or generalization task instead requires, again knowing Y and Φ,
accurate prediction of new values Ynew when new rows (i.e., data
points) are added to the matrix Φ.
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In the present paper we build a rigorous theory for both
of these tasks for random instances of the GLM. In this set-
ting each element Φµi of the matrix is sampled independently
from a probability distribution of zero mean and unit variance,
and the unknown vector X∗ has been also created randomly
from a probability distribution P0, with each of its components
X ∗1 , . . . ,X ∗n

iid∼ P0. Since our main aim is to study the intrinsic
information-theoretic and algorithmic limitations caused by the
lack of samples and/or the amplitude of the noise, we assume
throughout this paper that P0 and ϕ are known to the statisti-
cian (if they are not, the task can only be harder). Our results are
derived in the challenging and interesting high-dimensional limit
where m,n→∞ and m/n→α a constant. Random instances
of GLMs are both practically and theoretically relevant in many
different contexts:

i) In signal processing, GLM estimation with a random matrix
Φ has been studied with considerable attention in the con-
text of compressed sensing (9–11), where an n-dimensional
sparse signal is recovered from m <n noisy measurements.
While standard compressed sensing focused on the linear
case—where ϕ(z ,A) = z +A with a Gaussian noise A—the
generalized case was also widely studied (12, 13), especially
for quantized output (14) and 1-bit compressed sensing (6,
15) where ϕ(z ,A) = sign(z +A), as well as for compressive
phase retrieval when ϕ(z ,A) = |z +A| (16).

ii) In statistical learning, a substantial amount of activity is ded-
icated to understanding the limitation of learning with data
generated by GLMs, both in the linear case, e.g., in the
context of ridge regression or least absolute shrinkage and
selection operator (LASSO) (17), or with nonlinear prob-
abilistic output, e.g., logistic regression. Random instances
were studied in particular in the context of so-called M
estimators (18–21).

iii) In studies of artificial neural networks there has been a large
amount of work using random instances of GLMs, with ϕ
playing the role of a nonlinear activation function. In this
context the random GLM was introduced as the teacher–
student setting for the perceptron in the pioneering work of
Gardner and Derrida (22). A large volume of work followed
and is reviewed, e.g., in refs. 23–25. While initial works con-
centrated on a simple activation function ϕ(z ) = sign(z −K )
(K is the threshold constant), many other functions were
considered, e.g., in refs. 26–28. Recently, the study of random
instances of neural networks has emerged as a key ingredient
in understanding the performance of deep-learning algo-
rithms (29, 30). Computing mutual information in GLMs is
also a critical issue in confirming the information bottleneck
scenario of refs. 31 and 32.

iv) In communications, error-correcting codes that use random
constructions are particularly efficient, as discussed by Shan-
non in his seminal paper (33). Random instances of GLMs
describe both the setting of code-division multiple access—a
multiuser access method used in communication technolo-
gies (34, 35)—and an error correction scheme called sparse
superposition codes, which have been shown to achieve the
Shannon capacity for any type of noisy channel (36–40).

Interestingly there is an important gap in the above volume
of work. On the one hand there are studies that rely on the
algorithmic performance of the so-called generalized approxi-
mate message-passing (GAMP) algorithm (11, 12, 41). GAMP
is remarkable in that its asymptotic (n,m→∞, m/n→α) per-
formance can be analyzed rigorously using the so-called state
evolution (42–45). However, GAMP is not expected to be always
information-theoretically optimal. On the other hand, other
results are concerned with the linear case of the GLM with
additive Gaussian noise for which the information-theoretically

optimal performance was established in refs. 46–48 (the method-
ology of these works unfortunately does not generalize straight-
forwardly to the important nonlinear case or to other types
of additive noise). All of the other works, which provide
information-theoretic results for the nonlinear case, are based
on powerful and sophisticated but nonrigorous techniques orig-
inating in statistical physics of disordered systems, such as the
cavity and replica methods (49). Historically, the first of these
nonrigorous, yet correct, results on information-theoretic limi-
tations of learning was for the perceptron with binary weights
and was established using the replica method in refs. 22, 50, and
51, including a discontinuous phase transition to perfect learning
that appears as the ratio between the number of samples and the
dimension exceeds α≈ 1.249.

In the present paper we close the above gap between mathe-
matically rigorous work and conjectures (some of them several
decades old) from statistical mechanics. In particular, we prove
that the results for GLMs stemming from the replica method
are indeed correct and imply the optimal value of both the esti-
mation and generalization error. These results are summarized
in Main Results. The proof is based on the adaptive interpola-
tion method recently developed in ref. 52 and is of independent
interest as it is applicable to a range of other models. We
present it in Methods and Proofs and in SI Appendix. We com-
pare our information-theoretic results to the performance of the
GAMP algorithm and its state evolution (reviewed briefly in
Main Results). We determine regions of parameters where this
algorithm is or is not information-theoretically optimal. Up to
technical assumptions (specified below), our results apply to all
activation functions ϕ and priors P0, thus unifying a large volume
of previous work where many particular functions have been ana-
lyzed on a case-by-case basis. This generality allows us to provide
a unifying understanding of the types of phase transitions and
phase diagrams that we can encounter in GLMs, which is as well
of independent interest and we devote Application to Learning
and Inference to its presentation.

Main Results
This section summarizes our main results. Their formal state-
ment and all technical assumptions and full proofs are provided
in Methods and Proofs and in SI Appendix.

For the random GLM problem as defined in the Introduction,
the optimal way to estimate the ground-truth signal/weights X∗

relies on its posterior probability distribution

P(x|Y,Φ) =
1

Z(Y,Φ)

n∏
i=1

P0(xi)

m∏
µ=1

Pout

(
Yµ

∣∣∣ [Φx]µ√
n

)
, [2]

where we used the prior P0 of X∗ and introduced the likelihood
Pout that an output Yµ is observed given 1√

n
[Φx]µ. Pout(· | z )

is the probability density function of ϕ(z ,A) [where again the
random variable (r.v.) A∼PA accounts for noise]. We are con-
cerned with the so-called Bayes-optimal setting where the prior
P0 and the likelihood Pout that appear in the posterior 2 were
also used to generate the ground-truth signal X∗ and the labels
Y, with a known random matrix Φ.

A first quantity of interest is the free entropy (which is the
free energy up to a sign) defined as fn(Y,Φ)≡ 1

n
lnZ(Y,Φ). The

expectation of the free entropy is equal to minus the conditional
entropy density of the observation − 1

n
H (Y|Φ), as well as (up to

an additive constant) to the mutual information density between
the signal and the observations 1

n
I (X∗; Y|Φ).

The Free Entropy. Our first result is the rigorous determination
of the free entropy, in the high-dimensional asymptotic regime
n,m→∞, m/n→α. For a random matrix Φ with independent
entries of zero mean and unit variance, for output Y that was
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generated using [1], and under appropriate technical assump-
tions stated precisely in Methods and Proofs, the free entropy
converges in probability to

fn(Y,Φ)≡ 1

n
lnZ(Y,Φ)

P−−−−→
n→∞

sup
q∈[0,ρ]

inf
r≥0

fRS(q , r ; ρ), [3]

where ρ≡EP0 [(X ∗)2] and where the potential fRS(q , r ; ρ) is

fRS(q , r ; ρ)≡ψP0(r) +αΨPout (q ; ρ)− rq/2 , [4]

with ψP0(r)≡ E
[Z0,X0]

ln

∫
dP0(x ) erxX0+

√
rxZ0−rx2/2 , [5]

ΨPout (q ; ρ)≡ E
[V ,W ,Ỹ0]

ln

∫
DwPout(Ỹ0|

√
q V+

√
ρ− q w) ,

[6]

where Dw = dw exp(−w2/2)/
√

2π is a standard Gaussian mea-
sure and the scalar r.v. are independently sampled from X0∼P0,
then V ,W ,Z0

iid∼N (0, 1) and Ỹ0∼Pout(·|
√
q V +

√
ρ− q W ).

Only the special linear case with Gaussian Pout is known rigor-
ously so far (46–48). Convergence of the averaged free entropy is
precisely stated in Theorem 1; the one in probability follows from
concentration results in SI Appendix.

One can check by explicit comparison that for specific choices
of P0 and Pout the expression 4 is the replica-symmetric
free entropy derived in numerous statistical physics papers
(thus the RS in fRS) and in particular in refs. 22, 41, 50,
and 51 for ϕ(z ) = sign(z ). The formula for general P0 and
Pout was conjectured based on the statistical physics deriva-
tion in ref. 13. Establishing [3] closes these old conjectures
and yields an important step toward vindication of the cav-
ity and replica methods for inference, along with, e.g., refs.
43 and 53. We now discuss the main consequences of this
formula.

Overlap and Optimal Estimation Error. Our second result concerns
the overlap between a sample x from the posterior 2 and the
ground truth. We obtain that as n,m→∞, n/m→α,

1

n

∣∣x ·X∗∣∣ P−−−−→
n→∞

q∗ [7]

whenever q∗= q∗(α) the maximizer in formula 3 is unique. This
is the case for almost every α (SI Appendix).

It is a simple fact of Bayesian inference that, given the mea-
surements Y and the measurement matrix Φ, the estimator X̂
that minimizes the mean-square error with the ground-truth X∗

is the mean of the posterior distribution 2; i.e., X̂ =EP(x|Y,Φ)[x].
The minimum mean-square error (MMSE) that is achieved by
such a “Bayes-optimal” estimator is deduced, again in the limit
n→∞,m/n→α, as follows:

MMSE =
1

n
E[‖X∗− X̂‖2]→ ρ− q∗. [8]

We refer to Theorem 2 in Methods and Proofs for rigorous state-
ments. Again the value of the MMSE is known rigorously so
far only for the linear case with Gaussian noise (46–48) (and
conjectured for the nonlinear case, e.g., in ref. 13).

Optimal Generalization Error. Our third result concerns the
prediction error, also called generalization error. Consider again
the statistical model 1. To define the Bayes-optimal gener-
alization error, one is given a new row of the matrix/data
point, denoted Φnew ∈Rn (in addition to the data Φ and
associated outputs Y used for the learning), and is asked

to estimate the corresponding output value Ynew. We seek
for an estimator Ŷnew = Ŷnew(Y,Φ,Φnew) that achieves Egen≡
minŶnew

E[(Ynew− Ŷnew)2], i.e., that minimizes the MSE with
the true Ynew obtained using the ground-truth weights X∗.
Such an estimator is again obtained from the posterior: Ŷnew =
EPA(a)EP(x|Y,Φ)ϕ( 1√

n
Φnew · x, a). Note that this is different from

the plug-in estimator Ỹnew =ϕ( 1√
n
Φnew · X̂), which leads to a

worse MSE than Ŷnew. Yet it is often used in practice for deter-
ministic models since most algorithms for generalized linear
regression do not provide the full posterior distribution.

Our result states that the optimal generalization error follows
from the I-MMSE theorem (54) applied to the free entropy 3
(see SI Appendix for details). The optimal generalization error
reads as n→∞, m/n→α (q∗ is the maximizer in [3]),

Egen→ E
V ,a

[
ϕ(
√
ρV ,a)2

]
−E

V

[
E
w ,a

[
ϕ(
√
q∗V+

√
ρ−q∗w ,a)

]2],
[9]

where V ,w
iid∼N (0, 1) and a ∼PA. See again Theorem 2 in

Methods and Proofs for the precise statement (and SI Appendix,
Theorems 3 and 4).

Note that for labels Y belonging to a discrete set the MSE
might not be a suitable loss and we are more often interested in
maximizing the so-called overlap, i.e., the probability of obtain-
ing the correct label. In this case the Bayes-optimal estimator
is computed as the argmax of the posterior marginals, rather
than as their mean; i.e., for discrete labels Ȳnew = argmaxyP(y =

ϕ( 1√
n
Φnew · x, a)) where again x is distributed according to [2],

a ∼PA. The replica method has been used to compute the
optimal generalization error for the perceptron where ϕ(x ) =
sign(z ) in the pioneering works of refs. 23, 50, and 55. We note
that in this special case the plug-in estimator Ỹnew is actually
equal to the optimal one Ȳnew.

A final note concerns the issue of overfitting. In optimization-
based approaches to learning overfitting may lead to a general-
ization error which is too large compared with the training error.
In the Bayes-optimal setting the estimators are constructed to
not overfit. This is related to general properties of Bayes-optimal
inference and learning that are called “Nishimori conditions” in
the physics literature (13) and that turn out to be crucial in our
proofs.

Optimality of Approximate Message Passing. Although the three
results stated above are of an information-theoretic nature, our
fourth one concerns the performance of an algorithm for solv-
ing random instances of GLMs called GAMP (11–13), which
is closely related to the Thouless–Anderson–Palmer (TAP)
equations developed in statistical physics (41, 56, 57).

The GAMP algorithm can be summarized as follows (11–13):
Given initial estimates x̂0, v0 for the marginal posterior means
and variances of the unknown signal vector X∗ entries, GAMP
iterates the following equations, with g0

µ = 0:

V t= vt−1

ωt =Φx̂t−1/
√
n −V tgt−1

g t
µ = gPout(Yµ,ωt

µ,V t) ∀ µ= 1, . . .m

λt =α g2
Pout

(Y,ωt ,V t)

Rt = x̂t−1 + (λt)−1Φᵀgt/
√
n

x̂ t
i = gP0(Rt

i ,λ
t) ∀ i = 1, . . .n

vt
i = (λt)−1 ∂RgP0(R,λt)|R=Rt

i
∀ i = 1, . . .n

(here we denote by u the average over all of the com-
ponents of a vector u). The so-called thresholding function
gP0(R,λ) is defined as the mean of the normalized distri-
bution ∝P0(x ) exp(−λ(R− x )2/2) and the output function
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gPout(Y ,ω,V ) is similarly the mean of the normalized distribu-
tion (of x ) ∝Pout(Y |ω+

√
Vx ) exp(−x2/2).

The heuristic derivation of GAMP in statistical physics (13)
suggests via the definition of the function gPout that ω and V
are the estimates of the means and average variance of the com-
ponents of the variable z =Φx. This, in turn, suggests a GAMP
prediction of labels of new data points,

Ŷ GAMP,t
new =

∫
y Pout(y |ωt

new + z
√
V t) dyDz ,

where ωt
new≡ 1√

n
Φnew · x̂t−1. Comparing it with the test-set

labels, this serves to compute GAMP’s generalization error.
One of the strongest assets of GAMP is that its performance

can be tracked via a closed-form procedure known as state evolu-
tion (SE), again in the asymptotic limit when n,m→∞, m/n→
α. For proofs of SE see refs. 43 and 44 for the linear case and
ref. 45 for the generalized one. In our notations, SE tracks the
correlation (or “overlap”) between the true weights X∗ and their
estimate x̂t defined as q t ≡ lim

n→∞
1
n

X∗ · x̂t via

q t = 2ψ′P0
(r t) , r t = 2αΨ′Pout (q

t−1; ρ) . [10]

The derivatives are with respect to (w.r.t.) the first argument.
Similarly for the evolution of GAMP’s generalization error
EGAMP,t
gen (SI Appendix) we obtain that it is asymptotically, and

with high probability, given by the right-hand side (r.h.s.) of
formula 9 but with q∗ replaced by q t .

It is a simple algebraic fact that the fixed points of the SE
Eqs. 10 correspond to the critical points of the potential 4.
The question of GAMP achieving asymptotically optimal MMSE
or generalization error therefore reduces to the study of the
extrema of the two-scalar-variables potential 4. If the SE 10 con-
verges to the same couple (q , r) as the extremizer (q∗, r∗) of [3],
then GAMP is optimal, and if it does not, then GAMP is sub-
optimal. In the next section we illustrate this result on several
examples, delimiting regions where GAMP reaches optimality.
We note that optimality of AMP-based algorithms in terms of
the MMSE on the ground-truth vector X∗ was proved for sev-
eral cases where the extremizer q∗ in [3] is unique, e.g., ref.
58, or in the linear case of GLM in ref. 47. Our results allow
us to complete the characterization of regions of parameters
where the algorithm reaches optimal performance in terms of
the estimation and generalization errors. While the asymptotic
value of the Bayes-optimal generalization error was predicted
for some cases of Pout and P0 (55), and TAP-based algorithms
were argued to reach this performance in refs. 59 and 60, it was
not known whether this error can be achieved provably or for
what exact regions of parameters the algorithm is suboptimal.
Our present work settles this question due to the state evolution
of the GAMP algorithm. Interestingly, heuristic arguments based
on the glassy nature of the corresponding probability measure
were used to argue that direct sampling or optimization-based
approaches will not be able to match this performance (51).
Whether this statement is correct goes beyond the scope of the
present paper.

Application to Learning and Inference
In this section, we report what our results imply for the
information-theoretically optimal errors and those reached by
the GAMP algorithm for several interesting cases of output
functions ϕ and prior distributions P0. We do not seek to be
exhaustive in any way; we simply aim to illustrate the kind of
insights about the GLM that can be obtained from our results.
We focus on determination of phase transitions in performance
as we vary parameters of the model, e.g., the number of samples
or the sparsity of the signal. We use careful numerical procedures

to compute the expectations required in formula 4 and check
that the reported results are stable toward the choice of various
precision parameters. In this section we, however, do not seek
rigor in bounding formally the corresponding numerical errors.
Many of the codes used in this section are given online in a github
repository (62).

General Observations About Fixed Points and Terminology.
Noninformative fixed point and its stability. It is instrumental to
analyze under what conditions q∗= 0 is the optimizer in [3]. Our
result 8 about the MMSE implies that if q∗= 0, then the MMSE
is as large as if we had no samples/measurements at our dispo-
sition. A necessary condition for q∗= 0 is that it is a fixed point
of the state evolution. In turn, a sufficient condition for the state
evolution 10 to have such a fixed point is that (i) the output den-
sity Pout(y |z ) is even in the argument z and that (ii) the prior
P0 has zero mean. A proof of this is given in SI Appendix. For
q∗= 0 to be a fixed point to which the state evolution 10 con-
verges, it needs to be stable. We detail in SI Appendix that under
properties i and ii this fixed point is stable when

α

∫
dy

(∫
Dz (z 2− 1)Pout(y |

√
ρz )
)
2∫

DzPout(y |
√
ρz )

< 1. [11]

In what follows we denote αc the largest value of α for which
the above condition holds. Consequently the error reachable by
the GAMP algorithm is as bad as random guessing for both the
estimation and generalization errors as long as α<αc . For α>
αc , starting with infinitesimal positive q the state evolution will
move toward larger q as in ref. 63. Note that condition 11 also
appears in a recent work (61) as a barrier for performance of
spectral algorithms.

Concerning the information-theoretically optimal error, we
call the phase where MMSE = ρ, i.e., q∗= 0 is the extremizer
of [4], the noninformative phase. Existing literature sometimes
refers to such behavior as the retarded learning phase (64), in the
sense that in this case a critical number of samples is required
for the generalization error to be better than random guessing.
Below we evaluate condition 11 explicitly for several examples.
Almost exact recovery fixed point. Another fixed point of [10]
that is worth our particular attention is the one correspond-
ing to almost exact recovery, meaning with average error per
coordinate going to 0 as n→∞, where q∗= ρ. A sufficient
and necessary condition for this to be a fixed point is that
limq→ρ Ψ′Pout

(q ; ρ) = +∞. This means that the integral of the
Fisher information of the output channel diverges,

∫
dydω

e
−ω

2

2ρ

√
2πρ

P ′out(y |ω)2

Pout(y |ω)
= +∞ ,

where P ′out(y |ω) denotes the partial derivative w.r.t. ω. This typ-
ically means that the output channel should be noiseless. For
example, for the Gaussian channel with noise variance ∆, the
above expression equals 1/∆. For the probit channel where
Pout(y |z ) = erfc(−yz/

√
2∆)/2 the above expression at small ∆

is proportional to 1/
√

∆.
Stability of the almost exact recovery fixed point depends non-

trivially on the properties of both the output channel and the
prior. Below we give several examples where almost exact recov-
ery either is or is not possible. In what follows we call the region
of parameters for which MMSE = 0, i.e., q∗= ρ is the extremizer
in [3], the almost exact recovery phase.
Hard phase. As can be anticipated from the statement of our
main algorithmic result, there are regions of parameters for
which the error reached by GAMP is asymptotically equal to
the optimal error and regions where it is not. We call the hard
phase the region of parameters where MMSE<MSEAMP with
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a strict inequality. Focusing on the ratio α between the num-
ber of samples and the dimensionality, we denote αIT the ratio
for which the hard phase appears and αAMP>αIT the ratio for
which it disappears. In other words, the hard phase is an interval
(αIT,αAMP) and is associated to a first-order phase transition in
the Bayes-optimal posterior probability distribution.

It remains a formidable open question of average computa-
tional complexity whether in the setting of this paper (and for
problems that are NP complete in the worst case) there exists
an efficient algorithm that achieves better performance than
GAMP in the hard phase. We are not aware of any and tend
to conjecture that there is not.

Sensing Compressively with Nonlinear Outputs. Existing literature
covers in detail the case of noiseless compressed sensing, i.e.,
when the output function ϕ(z ) = z . The representative sparse
prior distribution is the Gauss–Bernoulli (GB) distribution P0 =
ρN (0, 1) + (1− ρ)δ0, where ρ is the average fraction of nonze-
ros, which are in this case standard Gaussians. The phase dia-
gram of this case is well known (67, 68). In noiseless compressed
sensing with random i.i.d. matrices and GB prior, almost exact
recovery of the signal is possible for α>αIT = ρ and GAMP
recovers the signal for α>αAMP,CS where αAMP,CS is plotted in
Fig. 1 (Left) with a dotted red line, thus delimiting the hard phase
of compressed sensing. We note that the Donoho–Tanner phase
transition (9) known as the performance limit of the LASSO `1
regularization is slightly higher than αAMP,CS.
Signless output channel. The phase diagram of noiseless com-
pressed sensing changes intriguingly when only the absolute
value of the output is measured, i.e., when ϕ(z ) = |z | instead of
ϕ(z ) = z . Such an output channel is reminiscent of the widely
studied phase retrieval problem (3) where the signal is complex
valued and only the amplitude is observed. The generalization
of our results for the complex case would require extensions, as
done for the algorithmic aspects in ref. 69. The real-valued case
was studied under the name “sparse recovery from quadratic
measurements” in the literature, e.g., ref. 70 and references
therein, when the number of nonzero variables grows slower
than linearly with the dimension n . Our results give access to the

phase diagram of sparse recovery from quadratic (or equivalently
signless) measurements that is presented in Fig. 1 (Left) for the
GB prior.

We observe that the information-theoretical phase transition
αIT is the same in the signless sparse recovery as in the canon-
ical linear case; i.e., almost exact recovery is possible whenever
α>ρ. However, the algorithmic phase transition αAMP above
which GAMP is able to find the sparse signal is strikingly larger
for the signless case (solid red line in Fig. 1, Left). (We note
that to break the symmetry that prevents GAMP from finding
the signal in a constant number of iteration steps, we mismatch
infinitesimally the output function ϕ used in the algorithm from
the symmetric one used to generate the data. Another way to
deal with this issue is related to a spectral initialization as dis-
cussed recently in ref. 61.) We note that even for a dense signal
ρ= 1 almost exact recovery is algorithmically possible only for
α>αAMP(ρ= 1)≈ 1.128. For very sparse signals, small ρ, the
situation is even more striking because the measurement rate
of at least α>αc = 1/2 is needed for algorithmically tractable
almost exact recovery for every ρ. This is in sharp contrast with
the canonical compressed sensing where αAMP,CS→ 0 as ρ→ 0.
The nature of this algorithmic difficulty of GAMP is related to
the symmetry of the output channel due to which the noninfor-
mative fixed point is stable for α<αc = 1/2. Summarizing this
result in one sentence, tractable compressive sensing is impossi-
ble (for α< 1/2) if we have lost the signs. We reiterate that this
result holds in the setting of the present paper, i.e., in particu-
lar when the sparsity ρ is of constant order. For signals where
ρ=O(1) the situation is expected to be different (70).
Rectified linear unit output channel. Another case of output
channel that attracted our interest is the rectified linear unit
(ReLU), ϕ(z ) = max(0, z ), as widely used in multilayer feedfor-
ward neural networks. In the present single-layer case recon-
struction with the ReLU output is interesting mathematically.
With GB signals, roughly half of the measurements are given
without noise, but the only information we have about the
other half is its sign. A straightforward upper bound for both
information-theoretic and tractable almost exact recovery is sim-
ply twice as many measurements than needed in the canonical
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Fig. 1. Phase diagrams showing boundaries of the region where almost exact recovery is possible (in absence of noise). (Left) The case of signless sparse
recovery, ϕ(x) = |x|with a Gauss–Bernoulli signal, as a function of the ratio between number of samples/measurements and the dimension α= m/n, and the
fraction of nonzero components ρ. Evaluating [4] for this case, we find that a recovery of the signal is information-theoretically impossible for α<αIT = ρ.
Recovery becomes possible starting from α>ρ, just as in the canonical compressed sensing. Algorithmically the signless case is much harder. Evaluating [11],
we conclude that GAMP is not able to perform better than a random guess as long as α<αc = 1/2, and the same is true for spectral algorithms (61). For
larger values of α, the inference using GAMP leads to better results than a purely random guess. GAMP can recover the signal and generalize perfectly only
for values of α larger than αAMP (solid red line). The dotted red line shows for comparison the algorithmic phase transition of the canonical compressed
sensing. (Center) Analogous to Left, for the ReLU output function, ϕ(x) = max(0, x). Here it is always possible to perform better than random guessing using
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the symmetric door output function ϕ(z) = sign(|z| −K) for a Rademacher signal, as a function of α and K. The stability line αc is depicted as a dashed blue
line, the information-theoretic phase transition to almost exact recovery αIT is a solid black line, and the algorithmic one αAMP is a solid red line.
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noiseless compressed sensing. It is interesting to ask whether this
bound is tight. Results in the present paper imply that for the
information-theoretic performance this bound indeed is tight.
However, the phase transition αAMP above which almost exact
recovery is possible with the GAMP algorithm is strictly lower
than twice the phase transition of compressed sensing; both are
depicted in Fig. 1, Center. This implies that while the negative
outputs are not useful information theoretically, they do help to
achieve better performance algorithmically.

Perceptron and Similar Problems.
Binary and Gauss–Bernoulli perceptron. One of the most stud-
ied problems that fits in the setting of the present paper is the
problem of the perceptron (71), where ϕ(z ) = sign(z ), that has
been analyzed for random patterns Φ in the statistical physics
literature; see refs. 23–25 for reviews. We plot in Fig. 2 the
optimal generalization error 9 as follows from our results for
the binary perceptron, i.e., weights taken from the Rademacher
distribution P0 = 1

2
δ+1 + 1

2
δ−1 (Fig. 2, Left) and for the GB per-

ceptron where P0 = ρN (0, 1) + (1− ρ)δ0 (Fig. 2, Center). The
information-theoretically optimal value of the generalization
error that we report and prove agrees with existing predictions
obtained by the nonrigorous replica method from refs. 50, 51,
and 55. Notably, we see that for the GB case the optimal gen-
eralization error decreases smoothly as α increases, while for
the binary case the generalization error has a first-order (i.e.,
discontinuous) phase transition toward perfect generalization at
αIT≈ 1.249 as predicted already in ref. 50. Our results provide
rigorous validation for these old conjectures.

Furthermore, our results together with recent literature on
GAMP provide a refreshing clarification of the algorithmic ques-
tions. It is natural to ask for what region of parameters the
optimal generalization error can be provably achieved with effi-
cient algorithms. This question remained unanswered until now.
Indeed, for the spherical perceptron the optimal generalization
error was computed in ref. 55 and argued empirically in small
instances to be achievable with a TAP-like algorithm (59). The
state evolution of GAMP together with our formulas for the gen-
eralization error ([9] for the average optimal one and with q t

replacing q∗ in this formula for GAMP) imply that the optimal
generalization error is indeed achievable asymptotically for all α
in the GB perceptron.

For the binary perceptron the optimal generalization error
was computed in refs. 50 and 51. By comparing with the state
evolution of GAMP we obtain that it can also be asymptot-

ically achieved by GAMP, but this time only outside of the
hard phase (αIT,αAMP) with αAMP≈ 1.493. The literature was
unclear on the algorithmic question; ref. 50 identified the spin-
odal of the replica-symmetric solution to be at α≈ 1.493, but did
not attribute it to any algorithmic or physical meaning. Ref. 51
argues that metastable states exist at least up to αRSB≈ 1.628
and speculates that Gibbs sampling-based algorithms will not be
able to reach perfect generalization before that point (23). Tak-
ing our results into account, the main algorithmic question that
remains open is whether efficient algorithms can reach perfect
generalization for αIT<α<αAMP.
Symmetric door. Out of interest we explored an example of a
binary output channel for which Pout(y |z ) is even in the argu-
ment z , so that the noninformative fixed point q∗= 0 exists.
Specifically we analyzed the symmetric door channel with ϕ(z ) =
sign(|z | −K ) and Rademacher prior P0. In literature such a
perceptron is studied with the replica method in the context
of lossy data compression (28). In Fig. 1, Right we report the
phase diagram in terms of the stability line of the noninformative
fixed point αc (below which GAMP is not better than random
guesses), the information-theoretic phase transition toward per-
fect generalization αIT, and the phase transition of GAMP to
perfect generalization αAMP.

A simple-counting lower bound states that for binary outputs
and weights X ∗i perfect generalization is not possible for α< 1.
Thus it is interesting to note that the symmetric door channel is
able to saturate this lower bound for K ≈ 0.6745 for which the
probability of yµ = 1 is 1/2. This saturation was already stated in
ref. 28. Our results also, however, imply that in that case the per-
fect generalization will not be achievable with the GAMP (and
we conjecture no other efficient) algorithm unless α>αAMP≈
1.566. The generalization error that GAMP provides for this case
is depicted in Fig. 2, Right.

Empirical comparison with general-purpose algorithms. In this sec-
tion we argue that many cases that fit into the setting of the
present paper could serve as useful benchmarks for existing
machine-learning algorithms. We believe that the situation is
perhaps similar to Shannon coding theorems that have driven
algorithmic developments in error-correcting codes, achieving
the Shannon bound being the primary goal in many works in
communications. In machine learning, classification is a natural
task and algorithms are usually benchmarked using open access
databases. In current state-of-the-art applications of machine
learning we usually have very little insight about what is the
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Fig. 2. Optimal generalization error in three classification problems vs. the sample complexity α, the size of the training set being αn. The solid red line is
the Bayes-optimal generalization error 9 while the solid green line shows the (asymptotic) performances of GAMP as predicted by the state evolution 10.
For comparison, we also show the results of GAMP (black circles) and the performance of a standard out-of-the-box solver (blue squares). (Left) Perceptron,
with ϕ(x) = sign(x) and a binary Rademacher signal. While a perfect generalization is information-theoretically possible starting from αIT≈ 1.249, the
state evolution predicts that GAMP will achieve such perfect prediction only above αAMP≈ 1.493. The results of a logistic regression with fine-tuned
regularizations with the software scikit-learn (65) are shown for comparison. (Center) Perceptron with Gauss–Bernoulli distribution of the weights. No
phase transition is observed in this case, but a smooth decrease of the error with α. The results of a logistic regression are very close to optimal. (Right)
The symmetric door activation rule with parameter K chosen to observe the same number of occurrences of the two classes. In this case there is a sharp
phase transition from as bad as random to perfect generalization at αIT = 1. GAMP identifies the rule perfectly, starting only from αAMP≈ 1.566. The
noninformative fixed point is stable up to αc = 1.36 (dashed gray line). Interestingly, this nonlinear rule seems very hard to learn for standardly used solvers.
Using Keras (66), a neural network with two hidden layers was able to learn only approximately the rule, only for considerably larger training set sizes and
a much larger number of iterations than GAMP.
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sample complexity, i.e., how many samples are truly needed so
that a given generalization error can be achieved. In our set-
ting the situation is different: We can present samples (yµ,Φµ)
to generic out-of-the-box classification algorithms and see how
their performances compare with the information-theoretic opti-
mal performance and to the one of the GAMP algorithm that is
fine-tuned to the problem.

In Fig. 2 we present examples of state-of-the-art classification
algorithms that are compared with our results. In Fig. 2, Left
and Center we compare the optimal and GAMP performances
to a simple logistic regression, fine-tuned by manually optimiz-
ing the ridge penalty (for `2 regularization) and LASSO penalty
(for a sparsity-enhancing `1 regularization) with the software
scikit-learn (65). We observe that for the GB case the logistic
regression is comparable to the performance of GAMP, whereas
for binary weights perfect generalization is not achieved close to
the GAMP phase transition.

In Fig. 2, Right we study classification for labels generated by
the symmetric door channel. A general-purpose algorithm would
not know about the form of the channel. A neural network with
only two hidden units is in principle able to represent the corre-
sponding function (each of the hidden neurons can learn one of
the two planes that separate data in the symmetric door func-
tion). A more intriguing question is whether a more generic
multilayer neural network is indeed able to learn this rule and
how many samples it may need. In the example used in Fig. 2,
using the software Keras (66) with a tensorflow backend, we show
the performance of a network with two hidden layers, ReLU acti-
vation and dropout [the details for this particular run can be
found in the github repository (62)]. The symmetric door func-
tion thus provides a challenging benchmark that could be used
to study how to improve performance of the general-purpose
multilayer neural network classifiers. In SI Appendix we pro-
vide additional examples comparing the optimal performance to
general-purpose algorithms for regression.

Methods and Proofs
In this section we give the main theorem for the free entropy and main
ideas of the proof. An essential tool is the adaptive interpolation method
recently introduced in ref. 52 which is a powerful evolution of the Guerra
and Toninelli (72) interpolation method developed for spin glasses. Ref. 52
analyzed simpler inference problems. In particular, the proof for the upper
bound in ref. 52 does not apply to GLMs and requires nontrivial additional
ingredients. One such additional ingredient is to work with a potential
fRS(q, r; ρ) depending on two parameters (q, r) instead of a single one as
in ref. 52. This allows us to use convexity arguments that are crucial to fin-
ish the proof, discussed in Matching Bounds and End of Proof . We stress
that the present analysis heavily relies on properties of Bayes-optimal infer-
ence that translate into remarkable identities between correlation functions
(called Nishimori identities by physicists; see SI Appendix for their formu-
lation) valid for all values of parameters. These identities are used in the
derivation of [17] and [18] below, which are two essential steps of our proof.
The formula from Theorem 1 relies on the Nishimori identities and does not
hold out of the Bayes-optimal setting.

Main Theorems. For the proof it is necessary to work with a slightly different
model with an additive regularizing Gaussian noise with variance ∆≥ 0,

Yµ =ϕ

(
1
√

n
[ΦX*]µ, Aµ

)
+
√

∆Zµ, 1≤µ≤m, [12]

where (Zµ) iid∼N (0, 1), and (Aµ) iid∼ PA are r.v. that represent the stochas-
tic part of ϕ. It is also instrumental to think of the measurements
as the outputs of a “channel” Yµ∼ Pout(·| 1√

n
[ΦX*]µ) with transition

density Pout(y|z) = (2π∆)−1/2 ∫ dPA(a) exp{− 1
2∆ (y−ϕ(z, a))2} if ∆> 0, or

Pout(y|z) =
∫

dPA(a)1(y =ϕ(z, a)) else, where 1(·) is the indicator function.
Our main theorem holds under the following rather general hypotheses:

h1) The prior distribution P0 admits a finite third moment and has at least
two points in its support.

h2) The sequence (E[|ϕ( 1√
n
[ΦX*]1, A1)|2+γ ])n≥1 is bounded for some γ > 0.

h3) The r.v. (Φµi) are independent with zero mean, unit variance, and finite
third moment bounded with n.

h4) For almost all values of a (w.r.t. the distribution PA), the function
x 7→ ϕ(x, a) is continuous almost everywhere.

h5) (∆> 0) or (∆ = 0 and ϕ takes values in N).

In general, when ϕ is continuous, the condition ∆> 0 (but arbitrarily
small) is necessary for the existence of a finite limit of the free entropy [for
particular choices of (ϕ, PA) this might not be needed, e.g., ϕ(z, A) = z +

A with A∼N (0,σ2)]. We also assume that the kernel Pout is informative;
i.e., there exists y such that Pout(y | ·) is not equal almost everywhere to a
constant. If Pout is not informative, it is not difficult to show that estimation
is then impossible.

We define the set of the critical points of fRS, [4], also called “state
evolution fixed points” (as is clear from [10]):

Γ≡
{

(q, r)∈ [0, ρ]× (R+ ∪{+∞})
∣∣∣ q = 2ψ′P0

(r)
r = 2αΨ′Pout

(q; ρ)

}
.

Define fn≡Efn(Y, Φ) = 1
nE lnZ(Y, Φ). Then the main theorem of this paper

is stated as follows:

Theorem 1 (Replica-Symmetric Free Entropy). Suppose that (h1)–(h2)–(h3)–
(h4)–(h5) hold. Then, for the GLM 12,

lim
n→∞

fn = sup
q∈[0,ρ]

inf
r≥0

fRS(q, r) = sup
(q,r)∈Γ

fRS(q, r) .

Moreover, as one can see in SI Appendix, the “sup inf” and the supre-
mum over Γ above are achieved over the same couples. Under stronger
assumptions on P0 and Pout, one can show (Theorem 6 in SI Appendix) that
fn(Y, Φ) concentrates around its mean fn and thus obtains convergence in
probability 3.

An immediate corollary of Theorem 1 is the limiting expression
of the mutual information I(X*; Y|Φ)≡E ln P(Y, X*|Φ)−E ln(P(Y|Φ)P(X*))
between the observations and the unknown vector:

Corollary 1 (Mutual Information). Under the same hypotheses as in Theorem
1, the mutual information for the GLM 12 verifies

lim
n→∞

1
n I(X*; Y |Φ) = inf

q∈[0,ρ]
sup
r≥0

iRS(q, r) = inf
(q,r)∈Γ

iRS(q, r) ,

iRS(q, r)≡αΨPout (ρ; ρ)−αΨPout (q; ρ)−ψP0 (r) + rq/2 .

Finally, we gather our main results related to the optimal errors in a sin-
gle theorem (see SI Appendix for more details), including results on the
optimality of the GAMP algorithm:

Theorem 2 (Optimal Errors). Assume the same hypotheses as in Theorem 1.
Then formula 9 for the generalization error is true as n, m→∞, m/n→α

whenever the maximizer q*(α) of [3] is unique, which is the case for almost
every α. If moreover all of the moments of P0 are finite, then formula 7 for
the overlap and the matrix-MMSE formula

1

n2
E[‖X*X*ᵀ−EP(x|Y,Φ)[xxᵀ

]‖2
F]→ ρ

2− q*(α)2 [13]

are true, where ‖−‖F is the Frobenius norm.
There are cases of GLMs (e.g., the signless output channel Y =

|ΦX*|/
√

n + Z) where the sign of X* simply cannot be estimated (thus the
absolute value in [7]). This is why our general theorem is related to an error
metric 13 insensitive to this ± symmetry. Nevertheless formula 8 for the
signal MSE is formally valid when there is no such sign symmetry.

Sketch of Proof by the Adaptive Interpolation Method. We now give the main
ideas behind the proof of Theorem 1. We defer to SI Appendix the details,
as well as those of Corollary 1 and Theorem 2.

We note a clarification about notation. The r.v. Y (and also Φ, X*, A, and
Z) are called quenched because once the measurements are acquired, they
are fixed. The expectation w.r.t. all quenched r.v. is denoted by E without
a subscript. In contrast, expectation of annealed variables w.r.t. a posterior
distribution at fixed quenched variables is denoted by Gibbs brackets 〈−〉.
Two scalar inference channels. An important role in the proof is played by
two simple scalar inference channels. The free entropy is expressed in terms
of the free entropies of these channels. This “decoupling property” stands
at the root of the replica approach in statistical physics.
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The first scalar channel is an additive Gaussian channel. Suppose that
we observe Y0 =

√
r X0 + Z0 where X0∼ P0 and Z0∼N (0, 1) are indepen-

dent. Consider the inference problem consisting of retrieving X0 from the
observation Y0. The free entropy associated with this channel is the expecta-
tion of the logarithm of the normalization factor of the associated posterior
dP(x|Y0) that is given by [5] (up to a constant).

The second scalar channel that appears naturally in the problem is linked
to the channel Pout through the following inference model. Suppose that

V , W* iid∼N (0, 1) where V is known while the inference problem is to recover
the unknown W* from the observation Ỹ0∼ Pout(· |

√
q V +

√
ρ− q W*)

where ρ> 0 and q∈ [0, ρ]. The free entropy for this model, again given by
a normalization factor of the posterior of w given Ỹ0 and V , is exactly [6].
Interpolating the estimation problem. To carry out the proof, we intro-
duce an “interpolating estimation problem” that interpolates between
the original problem Yµ∼ Pout(·| 1√

n
[ΦX*]µ) at t = 0, with t∈ [0, 1] being

the interpolation parameter, and the two scalar problems described above
at t = 1. For t∈ (0, 1) the interpolating estimation problem is a mixture
of the original and the scalar problems. This interpolation scheme is
inspired by the interpolation paths used by Talagrand (73) to study the
perceptron. Due to a novel ingredient specific to the adaptive interpola-
tion method (52), it allows us to obtain in a unified manner a complete
proof of the replica formula for the free entropy and in the whole
phase diagram.

Let q(t) and r(t) be two interpolation functions. Moreover define St,µ =

St,µ(X*, W*µ, Vµ, Φ) as

St,µ≡
√

1−t
n [ΦX*]µ +

√∫ t
0 q(v)dv Vµ +

√∫ t
0 (ρ− q(v))dv W*µ,

where Vµ, W*µ
iid∼N (0, 1). Consider the following observation channels, with

two types of observations obtained through Yt,µ ∼ Pout( · | St,µ) , for 1≤µ≤m,

Y′t,i =
√∫ t

0 r(v)dv X*i + Z′i , for 1≤ i≤ n,
[14]

where (Z′i ) iid∼N (0, 1). We assume that V = (Vµ)m
µ=1 is known and that the

inference problem is to recover both W* = (W*µ )m
µ=1 and X* = (X*i )n

i=1 from
the “t-dependent” observations Yt = (Yt,µ)m

µ=1 and Y′t = (Y′t,i)
n
i=1.

We now understand that the integral of r(t) appearing in the second set
of measurements in [14] and 1− t as well as the two integrals appearing
in the first set all play the role of signal-to-noise ratios (SNRs) in the inter-
polating problem, with t giving more and more “power” (or weight) to the
scalar inference channels when increasing. Here is the first crucial ingredient
of our interpolation scheme. In classical interpolations, these SNRs would
all take a trivial form, i.e., be linear in t, but here, the nontrivial integral
dependency in t of the two latter SNRs allows for much more flexibility
when choosing the interpolation path. This will allow us to actually choose
the “optimal interpolation path” (this will become clear below).

Define uy (x)≡ ln Pout(y|x) and, with a slight abuse of notations, st,µ =

st,µ(x, wµ, Vµ, Φ)≡ St,µ(x, wµ, Vµ, Φ), the expression above with X*, W*µ
replaced by x, wµ. We introduce the interpolating Hamiltonian Ht =

Ht(x, w; Yt , Y′t , Φ, V)

Ht≡−
m∑
µ=1

uYt,µ (st,µ) +
1

2

n∑
i=1

(
Y′t,i −

√
∫ t

0 r(v)dv xi

)2

and the corresponding (t-dependent) Gibbs bracket 〈−〉t which is the expec-
tation w.r.t. the joint posterior distribution of (x, w) given the observations
Yt , Y′t (and Φ, V), defined as

〈L(x, w)〉t≡Zt(Yt , Y′t , Φ, V)−1 ∫ dP0(x)DwL(x, w)e−Ht ,

for every continuous bounded test function L. Here Zt ≡∫
dP0(x)Dw exp{−Ht(x, w; Yt , Y′t , Φ, V)} is the appropriate normalization,

and Dw is the standard Gaussian measure. Finally we introduce

fn(t)≡
1

n
E lnZt(Y, Y′, Φ, V)

which is the interpolating free entropy. One verifies easily that fn(0) = fn− 1
2 ,

fn(1) = ψP0 (
∫ 1

0 r(t)dt)−
1+
∫ 1
0 r(t)dtρ

2 + m
n ΨPout (

∫ 1
0 q(t)dt; ρ) .

[15]

Now comes another crucial property of the interpolating model: It is such
that at t = 0 we recover the original problem and thus fn(0) = fn− 1/2 (the
constant 1/2 comes from the purely noisy measurements of the second
channel in [14]), while at t = 1 we have the two scalar inference channels
and thus the associated terms ψP0 and ΨPout appear in fn(1). These are
precisely the terms appearing in the free entropy potential 4.
Entropy variation along the interpolation. From the understanding of the
previous section, it is natural to evaluate the variation of entropy along the
interpolation, which allows us to “compare” the original and purely scalar
models due to the identity

fn = fn(0) + 1
2 = fn(1)−

∫ 1
0 f ′n(t) + 1

2 , [16]

where the first equality follows from [15] (the prime means the derivative).
Then by choosing the optimal interpolation path due to the nontrivial SNR
dependencies in t, we will be able to show the equality between the replica
formula and the true free entropy fn.

We thus compute the t derivative of the free entropy (see SI Appendix
for the details of this calculation). It is given by

f ′n(t) =
r(t)q(t)

2
−

r(t)ρ

2
+On(1)

−
1

2
E
〈 1

n

m∑
µ=1

u′Yt,µ
(St,µ)u′Yt,µ

(st,µ)−r(t)

(Q−q(t))
〉

t
, [17]

where On(1) is a quantity that goes to 0 in the n, m→∞ limit, uniformly in
t, and the overlap is Q = Qn≡ n−1∑n

i=1 X*i xi .
We now state a crucial result in an informal way and refer to SI Appendix

for precise statements. Formally, the overlap concentrates around its mean
(for all t∈ [0, 1]), a behavior called “replica-symmetric” in statistical physics.
To make this statement mathematically rigorous, one has to slightly modify
the interpolating model by adding a “side channel” that brings vanishingly
small additional information about X* without affecting the asymptotic
free entropy density. This perturbation forces the overlap to concentrate.
Effectively, one can use the following formal formula (see SI Appendix,
section 4.3, Lemma 2 for a precise statement):

Vart(Q) =E〈 (Q−E〈Q〉t)2〉t =On(1) . [18]

Canceling the remainder. Note from [15] and [4] that the first two terms
appearing in [17] are precisely the missing ones to obtain the expression
of the potential on the r.h.s. of [16]. Thus, we want to “cancel” the Gibbs
bracket in [17]. This term is called the remainder. To prove the replica
formula, we have to show that this remainder vanishes, which was until
now a difficult task. But due to the freedom of choice of the interpola-
tion path allowed by the interpolating function q, we are able to do so by
“adapting” the interpolation (thus the name of the method). Thus, we want
to choose q(t) =E 〈Q〉t ≈Q because of [18]. However, E 〈Q〉t is a function
of
∫ t

0 q(v)dv. The equation q(t) =E 〈Q〉t ∈ [0, ρ] is therefore an order 1 dif-
ferential equation over t 7→

∫ t
0 q(v)dv. Assume for the moment that this

equation has a solution over [0,1]. Once the solution q(r)
n is selected, the

Cauchy–Schwarz inequality applied to the remainder allows us to show that
its absolute value is upper bounded by C

√
Vart(Q) for some constant C> 0

independent of n and t. Therefore from [17] and [18], for 0≤ t≤ 1 we get

f ′n(t) = r(t)
2 q(r)

n (t)− r(t)ρ
2 +On(1) .

Finally combining this with [15] and [16] leads to

fn =ψP0 (
∫ 1

0 r(t)dt) + m
n ΨPout (

∫ 1
0 q(r)

n (t)dt; ρ)− 1
2

∫ 1
0 r(t)q(r)

n (t)dt +On(1) .

[19]

This important equality is obtained due to the choice of the optimal
interpolation path q(r)

n (t) permitted by the method.
Matching bounds and end of proof. We now possess all of the necessary
tools to finish the sketch of the proof of Theorem 1. We first prove that
limn→∞ fn = supr≥0 infq∈[0,ρ] fRS(q, r). Then in SI Appendix, we show that
(i) this is also equal to supq∈[0,ρ] infr≥0 fRS(q, r), which gives the first equality
of the theorem, and (ii) that this sup inf is attained at the supremum of the
state evolution fixed points, which gives the second equality.
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Lower bound. Choose r(t) = r the constant function. Identity 19 implies
lim infn→∞ fn≥ infq∈[0,ρ] fRS(q, r). This is true for all r≥ 0 and thus

lim inf
n→∞

fn≥ sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) . [20]

Upper bound. We show in SI Appendix that Ψ′Pout
is nonnegative, contin-

uous, and bounded and thus we can define K≡ 2αmaxq∈[0,ρ] Ψ′Pout
(q; ρ)∈

R+. Consequently we can complete the general differential equation sat-
isfied by q(t) by choosing r(t) as the solution of (see SI Appendix for more
details)

r(t) = 2αΨ
′
Pout

(
1
∫
0

q(r)
n (t)dt; ρ)∈ [0, K]

In SI Appendix we show that a solution exists. Moreover from [19] and
convexity of [5] and [6] we can assert

fn≤
∫ 1

0 fRS(q(r)
n (t), r(t))dt +On(1) .

Finally note that if we denote r*n the solution of the ODE

fRS(
∫ 1

0 q(r*n )
n (t)dt, r*n) = inf

q∈[0,ρ]
fRS(q, r*n) .

Indeed, the function g
r*n

: q∈ [0, ρ] 7→ fRS(q, r*n) is convex (SI Appendix) and

its derivative is g′
r*n

(q) =αΨ′Pout
(q)− r*n/2. Since g′

r*n
(
∫ 1

0 q(r*n )
n (t)dt) = 0 by

definition of r*n, the minimum of g
r*n

is necessarily achieved at
∫ 1

0 q(r*n )
n (t)dt.

We thus have
lim sup

n→∞
fn≤ sup

r≥0
inf

q∈[0,ρ]
fRS(q, r)

which, when combined with [20], allows us to deduce the result

lim
n→∞

fn = sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) .
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13. Zdeborová L, Krzakala F (2016) Statistical physics of inference: Thresholds and
algorithms. Adv Phys 65:453–552.

14. Kamilov U, Goyal VK, Rangan S (2011) Optimal quantization for compressive sensing
under message passing reconstruction. IEEE International Symposium on Information
Theory Proceedings (ISIT) (IEEE, Piscataway, NJ), pp 459–463.
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