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Abstract

Summary: Multiplex immunofluorescence (mIF) staining combined with quantitative digital image analysis is a
novel and increasingly used technique that allows for the characterization of the tumor immune microenvironment
(TIME). Generally, mIF data is used to examine the abundance of immune cells in the TIME; however, this does not
capture spatial patterns of immune cells throughout the TIME, a metric increasingly recognized as important for
prognosis. To address this gap, we developed an R package spatialTIME that enables spatial analysis of mIF data, as
well as the iTIME web application that provides a robust but simplified user interface for describing both abundance
and spatial architecture of the TIME. The spatialTIME package calculates univariate and bivariate spatial statistics
(e.g. Ripley’s K, Besag’s L, Macron’s M and G or nearest neighbor distance) and creates publication quality plots for
spatial organization of the cells in each tissue sample. The iTIME web application allows users to statistically com-
pare the abundance measures with patient clinical features along with visualization of the TIME for one tissue sam-
ple at a time.

Availability and implementation: spatialTIME is implemented in R and can be downloaded from GitHub (https://
github.com/FridleyLab/spatialTIME) or CRAN. An extensive vignette for using spatialTIME can also be found at
https://cran.r-project.org/web/packages/spatialTIME/index.html. iTIME is implemented within a R Shiny application
and can be accessed online (http://itime.moffitt.org/), with code available on GitHub (https://github.com/FridleyLab/
iTIME).

Contact: fridley.lab@moffitt.org or brooke.fridley@moffitt.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiplex immunofluorescence (mIF) staining combined with quan-
titative digital image analysis is a novel and increasingly used tech-
nique that allows for the assessment and visualization of distinct
immune cell populations in the tumor immune microenvironment
(TIME), as well as discrimination between tumor and stroma com-
partments. mIF has been recently applied to the study of many

cancer types, including oropharyngeal squamous cell carcinoma
(Tsakiroglou et al., 2020), gastric cancer (Huang et al., 2019) and
pancreatic cancer (Vayrynen et al., 2021). An article was also re-
cently published outlining the opportunities and challenges in the
analysis of mIF data, including approaches for spatial analysis of
mIF (Wilson et al., 2021b).

Generally, mIF data has been used to examine the presence and
abundance of immune cells in the TIME; however, this aggregate
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measure assumes uniform spatial patterns of immune cells through-
out the tissue sample and overlooks potential spatial heterogeneity
of immune marker-positive cell populations. mIF technologies also
provide position data for immune cells in the TIME, thus allowing
for the assessment of the spatial architecture of the TIME.
Therefore, to facilitate the spatial analysis and visualization of mIF
data following the preprocessing of the image data, we have devel-
oped an R package, spatialTIME and a Shiny application, iTIME.

One commonly used technology for mIF data generation is the
Vectra 3.0TM/PolarisTM system. Images of immune marker-stained
tissues are processed within InForm (Gorris et al., 2018;
Mezheyeuski et al., 2018; Mori et al., 2020; Shakya et al., 2020) fol-
lowed by analysis with the HALO Image Analysis Platform (Indica
Labs, NM). In HALO, a supervised classifier is trained to classify
tissue as tumor, stroma and glass (no tissue) regions (Amancio et al.,
2014; Breiman, 2001; Horai et al., 2019). Cell segmentation and
marker quantitation is performed by compartmental examination of
fluorescent intensity thresholds, with each immune marker assigned
a distinct fluorescence value (Mezheyeuski et al., 2018; Mori et al.,
2020). The output from this preprocessing of the mIF data is a file
for each tissue sample with the locations of all detected cells and in-
formation on whether the cell is positive or negative for each of the
assayed markers. In addition to the sample specific file, a summary
file is also produced with the descriptive summary for each tissue
sample, including the number of cells detected, the number of posi-
tive cells for each marker, percentage positive for each marker and
density estimates. These summary measures can also be computed
across all cells and by tumor/stroma if a tumor-associated marker is
included in the assayed panel of markers. The file inputs for the
spatialTIME and iTIME package follow the formats of the HALO
output; however, the required file formats are general in format (i.e.
cell location, indicator variable for positivity for each of the markers
or prespecified combinations or ‘phenotypes’) with output from
other commonly used technologies able to be easily reformatted into
this general format for input into the software tools. Future updates
to the package will allow for inputs directly from a variety of other
technologies used in mIF studies.

In spatialTIME, we have implemented a number of spatial meas-
ures of clustering including Ripley’s K (Ripley, 1976), Besag’s
Lcon’s M (Marcon et al., 2015) and G statistic (nearest neighbor
distance) using spatstat R package (Baddeley et al., 2016). To ad-
dress a unique challenge presented in mIF data generated on tissue
microarrays (TMAs) whereby cores often have areas where meas-
urements are not able to be acquired (i.e. areas with tears, folded tis-
sue or fibrous tissue) we have implemented a permutation approach
for estimating the null distribution of no clustering for which the
observed clustering statistic is compared (i.e. complete spatial ran-
domness or CSR) (Wilson et al., 2021a). That is, the measure to be
use in downstream visualization and statistical association with clin-
ical outcome is the degree of spatial clustering as defined as the
observed value of measure—measure under assumption of CSR.
Additional information on the various spatial measures can be found
in Supplemental Materials.

2 Implementation

spatialTIME is available as an R package from either GitHub
(https://github.com/FridleyLab/spatialTIME) or CRAN (CRAN.R-
project.org) and made publicly available under the MIT license. The
package functionality is built upon the tidyverse principals and sev-
eral of its packages along with the spatstat package. mIF experi-
ments return two main datasets—a file with the summary-level
information for the markers and individual files for each tissue sam-
ple with cell-level staining information. To combat potential confu-
sion due to multiple samples per person, functions in spatialTIME
use a custom input object called ‘mif.’ This object can be created by
calling the create_mif function and requires at a minimum for users
to input the summary and clinical datasets. The resulting mif object
is the basis for all other functions within the package.

spatialTIME provides functions for plotting mIF data for indi-
vidual tissue samples and calculating univariate and bivariate

measures of degree of spatial clustering and co-localization of
marker-positive cells. For spatial measures of clustering, we have
implemented a number of spatial measures of clustering including
Ripley’s K (Ripley, 1976), Besag’s L (Besag, 1977), Marcon’s M
(Marcon et al., 2015) and G statistic (nearest neighbor distance)
using spatstat R package (Baddeley et al., 2016). To address a
unique challenge presented in mIF data generated on tissue microar-
rays (TMAs) whereby cores often have areas where measurements
are not able to be acquired (i.e. areas with tears, folded tissue or fi-
brous tissue), we have implemented a permutation approach for esti-
mating the null distribution of no clustering for which the observed
clustering statistic is compared (i.e. complete spatial randomness or
CSR) (Wilson et al., 2021a). That is, the measure to be use in down-
stream visualization and statistical association with clinical outcome
is the degree of spatial clustering as defined as the observed value of
measure—measure under assumption of CSR. The clustering func-
tions return data frames containing spatial clustering estimates for a
range of neighborhood sizes, denoted by r, for each sample. Users
also have the option of obtaining either the full empirical distribu-
tion under CSR or simply the mean of this empirical null distribu-
tion. The choice of the radius (r) to use for estimating the spatial
measures (i.e. size of neighborhood) should be based on the scale of
clustering of interest (i.e. a small value of r will have clustering as-
sess for small neighborhoods while a larger value of r would deter-
mine the level of clustering based on large-sized neighbors). It is
recommended that the association analyses of spatial measure with
endpoint of interested be conducted using a few different r values
(i.e. sensitivity analysis). Future work is planned for conducting the

Fig. 1. mIF data generated from a TMA study of prostate cancer. (A) mIF image

data for CD8 Positive cells measured on a prostate cancer tumor sample. (B) Plots

showing CD8þ cells and locations, with illustrating a tissue sample with ‘holes’ or

regions of unmeasured cells. (C) Empirical distribution of the estimate of Ripley’s K

under CSR (N permutations¼500), with lines indicating the permuted (mean) and

theoretical estimates under CSR. (D) Distribution of observed K, permuted estimate

of K under CSR, and difference in these measurements (i.e. ‘degree of spatial cluster-

ing’) for the 10 core tissue samples included in spatialTIME. The degree of spatial

clustering can be used in downstream association with the phenotype of interest. (E)

Representation of cell locations, using the iTIME application with information in

the box showing the nearest cell for each marker type. (F) Violin plot of the percent

of CD8þ cells by a clinical endpoint (group A versus B) using the iTIME application
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association of the endpoint with the entire spatial curve computed at
several r values using functional data analysis approaches. Finally,
the package allows for the creation of publication quality plots (one
for each spatial sample provided) using ggplot2 which can be direct-
ly exported as a pdf. Detailed information on how to use
spatialTIME can be found in the R package documentation and the
vignette.

The iTIME Shiny application is available at http://itime.moffitt.
org/ and is a point and click version with much of the functionality
found in the spatialTIME package. On the ‘Importing Data’ page,
users upload clinical, summary- and cell-level data in csv files and
specify the variable to use for the data merge (i.e. variable that links
the data across the various files). The ‘Univariate Summary’ page
provides a high-level overview of the summary and clinical data
files, including plots and hypothesis testing based on a beta-
binomial model to compare summary marker data by clinical vari-
able of interest. Users can customize clinical variables, color schemes
and plot type for effective data visualization, including a scatter
plot, boxplot, violin plot or histogram. The ‘Multivariate Summary’
page provides a heatmap and principal component plot for selected
immune cell populations and provides the option to perform a clus-
tering analysis to understand if immune cell composition of the
TIME is related to clinical features. The ‘Spatial’ page displays an
interactive visual of the imported cell-level data for a sample, with
tumor cells displayed as triangles and stromal cells as circles, and a
separate color to represent positivity for each distinct immune mark-
er. When hovering over each cell, a text window will display the
nearest neighbor distance. A plot of the measures of marker-positive
immune cell spatial clustering, such as Ripley’s K, Besag’s L;
Marcon’s M and nearest neighbor distance distribution G, over vari-
ous r values is also generated and can be calculated specific to each
immune marker. These calculations adjust for edge effects with the
isotropic or translational edge (K; L; M) and reduced sample or
Hanisch (G) correction methods (Baddeley et al., 2016), with a
simulation-based envelope presented around the theoretical estimate
under CSR. Currently, the iTIME application provides the theoretic-
al distribution under the CSR assumption; however, future updates
aim to also include the empirical distribution. To demonstrate the
functionality of spatialTIME and iTIME, we examined two prostate
tumor samples with differing TIME architecture, as presented in
Figure 1.

3 Conclusions

The novel technique of mIF provides a cost-effective approach for
studying the TIME in a large number of tissue samples simultan-
eously. This technology also provides the ability to measure not only
the abundance but also the spatial location of multiple cell types
within a tissue sample. The development of methods and
approaches, such as those implemented in spatialTIME, that can

deeply characterize both marker abundance and the spatial hetero-
geneity of marker-positive cells in the TIME can inform treatment
approaches (e.g. immunotherapy) by providing a clearer picture of
therapeutic targets in tumor tissue.
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