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Abstract 

Background:  The microbial β-mannanases have been increasingly exploited for bioconversion of biomass materi-
als and various potential industrial applications, such as bleaching of softwood pulps, scouring and desizing, food 
and feed additive, and oil and textile industries. In this paper, a β-mannanase was characterization from the bacteria, 
Bacillus licheniformis HDYM-04, which was a high β-mannanase-producing strain (576.16 ± 2.12 U/mL at 48 h during 
fermentation).

Methods:  The michaelis constant (Km) and maximum velocity (Vmax) of β-mannanase were determined. The effect 
of organic solvents, inhibitors, detergents, chelating agents, oxidizing agents and reducing agents on the stability of 
enzyme were determined. The degradation of twenty-two structurally different dyes by the purified β-mannanase 
produced by HDYM-04 was determined by full spectrum scan among 200–1000 nm at 0 min and 10 min, respectively.

Results:  β-Mannanase produced by HDYM-04 was highly specific towards glucomannan, where as exhibited low 
activity towards guar gum. Michaelis constant (Km) and maximum velocity (Vmax) of glucomannan substrate were 
2.69 mg/ml and 251.41 U/mg, respectively. The activity of different organic solvents showed significantly difference 
(p < 0.05). It retained > 80 % activity in dimethyl sulfoxide, acetone, chloroform, benzene, hexane. In the presence 
of solvents, citric acid, ethylene diamine teraacetic acid and potassium iodide, it retained > 80 % residual activity. 
Twenty-two structurally different dyes could be effectively decolourised by β-mannanase within 12 h, in which methyl 
orange (99.89 ± 2.87 %), aniline blue (90.23 ± 2.87 %) and alizalin (83.63 ± 2.89 %) had high decolorization rate.

Conlusion:  The obtained results displayed that the β-mannanase produced by HDYM-04 showed high stability 
under different chemical reagents and was found to be capable of decolorizing synthetic dyes with different struc-
tures. So, the reported biochemical properties of the purified β-mannanase and its rapid decolorizations of dyes sug-
gested that it might be suitable for industrial wastewater bioremediation.
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Background
β-Mannanase (endo-1,4-β-D-mannanase, EC 3.2.1.78) 
is a hydrolase that catalyzes the random hydroly-
sis of β-1,4-mannosidic linkages in the main chain of 

β-1,4-D-mannan and releases linear/branched oligosac-
charides of various lengths, and it could be classed to 
the glycosyl hydrolase (GH) families 5 and 26 based on 
amino acid sequence similarities (Van Zyl et  al. 2010; 
Cantarel et  al. 2009). β-mannanases have been charac-
terized from a wide range of organisms, including inver-
tebrate, plants, filamentous fungi, yeasts and bacteria. 
There has been growing interest over the years in the 
industrial potential of β-mannanase degrading enzymes, 
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especially microbial β-mannanase (Wang et al. 2010a, b; 
Chauhan et  al. 2012). Microbial β-mannanases are the 
primary endo-type enzymes responsible for degradation 
of mannan polysaccharides (Liepman et al. 2007; Schel-
ler and Ulvskov 2010). The microbial β-mannanases have 
been increasingly exploited for bioconversion of biomass 
materials and various potential industrial applications, 
such as bleaching of softwood pulps, scouring and desiz-
ing, food and feed additive, and oil and textile industries 
due to the various advantages it can act in a wide range of 
pH and temperature because of which they play impor-
tant roles in basic research (Dhawan and Kaur 2007; 
Zhou et al. 2012). So far, various microbial β-mannanases 
from Streptomyces sp. (Takahash et  al. 1984), Bacillus 
subtilis (Jiang et al. 2006), Aplysia kurodai (Zahura et al. 
2011), Bacillus licheniformis (Songsiriritthigul et al. 2010) 
and Trichoderma harzianum (Ferreira and Ferreira 2004) 
have been purified and characterized.

Synthetic dyes are classified as anthraquinone, azo, 
heterocyclic, triphenylmethane (TPM) dyes, and exten-
sively used in several industries including textile, cos-
metic, paper, printing, leather-dyeing, pharmaceutical 
and food industries (Chauhan et  al. 2014a, b), but they 
have caused a serious environmental pollution. Moreo-
ver, the exiting dyes usually come from synthetic origin 
and contribute to more complicate molecular structures 
making them difficult to biodegrade which most of them 
are toxic, mutagenic and carcinogenic (Brown and De 
Vito 1993). The process of dye decolorization based on 
enzyme is an efficient method and is attracting increas-
ing interest (Erkurt et  al. 2007). By means of enzymatic 
catalyzed oxidative reactions, β-mannanase can detoxify 
phenolic contaminants (Asgher et  al. 2008). At present, 
a lot of studies have focused on microbial enzymes. 
Certain fungal laccases combined with synthetic or nat-
ural mediators have been reported to proved to be suit-
able tools for textile effluent and dye removal treatments 
(Kaushik and Malik 2009). Although the β-mannanases 
from Bacillus have been already well characterized, there 
is still absence of information on the enzyme’s kinetic 
properties and factors that influence stability and the use 
of β-mannanases is still restricted due to high-produc-
tion costs and low yields (Zhang et al. 2000; Zakaria et al. 
1998). Surprisingly, no studies have been implemented to 
estimate β-mannanases from Bacillus licheniformis that 
may take part in the decolorize and biodegrade dyes.

In our previous studies, a β-mannanase from 
B.licheniformis HDYM-04 was purified (Ge et  al. 2016). 
However, the stability of chemical reagents and applica-
tion performances of β-mannanase have not been stud-
ied. The aim of this study was to carry out preliminary 
investigation of biocatalytic kinetic properties, stabil-
ity of organic solvents, including inhibitors, detergents, 

chelating agents and oxidizing agents and decolorization 
of multifarious dyes of β-mannanase from B.licheniformis 
HDYM-04. Investigation of the application performance 
of β-mannanase would enhance the potential usability in 
industrial processing.

Methods
Microorganism and cultivation
B.licheniformis HDYM-04 was isolated from flax-ret-
ting water in Bayan County, Heilongjiang Province, P.R. 
China. This strain was preserved in Key Laboratory of 
Microbiology, College of Life Science, Heilongjiang Uni-
versity. For the seed culture, one colony was inoculated 
into 200/250 mL liquid medium (1 % peptone, 0.5 % yeast 
extract and 1 % NaCl; w/v) and incubated at 37 °C over-
night. 2  mL seed liquid of strain HDYM-04 was inocu-
lated into the liquid KGM medium which contained (1 % 
konjac powder, 1 % peptone, 0.5 % K2HPO4·3H20, 0.02 % 
MgSO4·7H2O, pH 8.0; w/v). The incubation lasted 48  h 
under the conditions at 37 °C with agitation speed of 160 
r/min.

Protein and enzyme assays
Protein concentration was determined according to the 
method of Bradford using bovine serum albumin (BSA) 
as the standard (Bradford 1976). The protein eluted 
with column chromatography was monitored by taking 
absorbance at 595 nm. Briefly, 0.1 mL sample was added 
to 5 mL Comassie Brilliant blue solution (0.1 %, w/v) con-
taining phosphoric acid (85 %, w/v) and mixed. Then, it 
was allowed to stand at room temperature for 2 min and 
the absorbance was measured at 595  nm against blind 
sample which was formed by using pure water instead 
of enzyme. The β-mannanase activity of HDYM-04 
was assayed by measuring the amount of reducing sug-
ars released by the enzyme using dinitrosalicylic (DNS) 
method (Miller 1959). The enzyme assay mixture con-
tained 0.9  ml of 0.5  % (w/v) konjac powder without 
reducing sugar substrate buffer (0.5 % konjac powder in 
citric acid-Na2HPO4 buffer, pH 4.0) and 0.1 mL of appro-
priately diluted enzyme. The reaction mixture was main-
tained at 55 °C for 30 min, and then, 3 mL of DNS reagent 
was added and boiled for 5 min and constanted volume 
to 25 mL. After cooling to room temperature, the absorb-
ance at 550 nm was measured. One unit of enzyme activ-
ity was defined as the amount of enzyme that produced 
1  μmol of reducing sugar as a d-mannose standard per 
minute by 1 mL of enzyme. The crude β-mannanase pro-
duced by HDYM-04 was obtained according to “Micro-
organism and cultivation”. The precipitated enzyme was 
dialysed and monitored at 550  nm followed by activity 
assay. The crude enzyme was purified to homogeneity by 
using combination of acetone precipitation, ion-exchange 
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chromatography (DEAE-Cellulose, D3764, Sigma, USA) 
and gel filtration (Sephadex G-75, Sigma, USA) (Ge et al. 
2016).

Determination of kinetic properties
The michaelis constant (Km) and maximum velocity 
(Vmax) of β-mannanase produced by HDYM-04 were 
determined in 0.1  mol/L Tris–HCl buffer (pH 8.0) con-
taining 0.2  −  1  mg/mL substrates (amorophophallus 
konjac and guar gum), after incubation with 3 mL puri-
fied β-mannanase produced by HDYM-04 at 60  °C for 
10 min, and then, 3 mL of DNS reagent was added and 
boiled for 5 min and constanted volume to 25 mL. After 
cooling to room temperature, the absorbance at 550 nm 
was measured. The data were plotted according to the 
Lineweaver–Burk method (Zeilinger et  al. 1993). Each 
data was an average of three independent experiments, 
and every test included three samples.

Effect of organic solvents on the stability of β‑mannanase 
produced by HDYM‑04
To determine the effect of organic solvents (dimethyl sulfox-
ide, ethanol, formaldehyde, acetone, chloroform, benzene, 
xylene, hexane, petroleum ether) at 50 % concentration on 
the stability of β-mannanase produced by HDYM-04, 1 mL 
of suitably diluted purified enzyme was mixed with 1 mL of 
different organic solvents and then incubated at 37  °C for 
3 h with constant shaking (150 r/min).

Effect of inhibitors, detergents, chelating agents, oxidizing 
agents and reducing agents on β‑mannanase activity
To study the effects of inhibitors (citric acid, oxalic acid, 
phenylmethyl sulfonyl fluoride (PMSF), sodium thiogly-
colate, hydrogen), detergents (cetyl trimethyl ammonium 
bromide, polyethylene glycol), chelating agents (sodium 
citrate, ethylene diamine teraacetic acid, sodium azide), 
oxidizing agents (hydrogen peroxide, ammonium persul-
fate, potassium iodide), reducing agents (ascorbic acid, 
dithiothreitol (DTT)) at 1  mM concentrations on the 
enzyme activity, suitably diluted purified enzyme was 
preincubated with reagents for 1 h at 37 °C with constant 
shaking (150 r/min).

Decolorization of synthetic dyes by the β‑mannanase 
produced by HDYM‑04
All the tested dyes were purchased from Sigma Com-
pany, detailed information was shown in Table  1. The 
degradation of twenty-two structurally different dyes by 
the purified β-mannanase produced by HDYM-04 was 
determined by full spectrum scan among 200–1000 nm 
at 0 min and 10 min, respectively. The decolorization of 
test dyes were calculated at 37 °C for 6 and 12 h on rotary 
(160 r/min), respectively. The reaction mixture for the 

standard assay contained respective dye (0.05  mg/mL) 
in disodium hydrogen phosphate-citric acid buffer at pH 
6.0 and the enzyme solution (5896.4 U/mL) in a total vol-
ume of 6  mL. The decolorization rate of dye, expressed 
as dye decolorization (%), was calculated as the formula: 
decolorization (%) = (1-A/A0) × 100 %, where A0: initial 
absorbance of the dye, A: absorbance of the dye along the 
time. All experiments were performed in triplicate.

Statistical analysis
All tests were performed in three replications. Aver-
age ± standard errors of all obtained date were defined. 
The average standard errors of the data were expressed. 
SPSS version 10.0 software (SPSS Inc., Chicago, IL., USA) 
was used for the statistical analysis; and Tukey test was 
performed for determining the significant differences at 
95 % confidence interval (p < 0.05).

Results
Kinetic parameters of β‑mannanase produced by HDYM‑04
The β-mannanase produced by HDYM-04, which was a 
high β-mannanase-producing strain, and the maximal 
β-mannanase activity was 576.16 ±  2.12 U/mL at 48  h 
during fermentation (Fig.  1). Michaelis constant could 
reflect the strength of enzyme substrate affinity. The 
kinetics (Vmax and Km) of low viscosity amorophophal-
lus konjac and guar gum hydrolysis by the purified 
β-mannanase produced by HDYM-04 were calculated 
from Lineweaver–Burk double reciprocal plots (Fig.  2). 
The Km and Vmax values for the purified β-mannanase 
produced by HDYM-04 on amorophophallus konjac and 
guar gum were 2.69 and 19.26  mg/mL, and 251.41 and 
588.24 umol/min mL, respectively. Higher Km value of 
guar gum than amorophophallus konjac suggested the 
higher affinity of amorophophallus konjac to the purified 
β-mannanase produced by HDYM-04, which was highly 
in accordance with the result of substrate specificity.

Effect of organic solvents on the stability of β‑mannanase
The effects of organic solvents on the β-mannanase activ-
ity produced by HDYM-04 are shown in Fig.  3. In the 
present study, β-mannanase produced by HDYM-04 
remined stable after 3 h of preincubation with most of the 
tested organic solvents. The activity of different organic 
solvents showed significantly difference (p  <  0.05). It 
retained  >  80  % activity in dimethyl sulfoxide, acetone, 
chloroform, benzene, hexane. The enzyme activity sig-
nificantly higher in dimethyl sulfoxide (93.4  ±  1.74  %) 
and hexane (94.34 ±  1.19 %) compared to that in other 
organic solvents (p < 0.05). Furthermore, ethanol induced 
decrease of the enzyme activity to 63.21 ±  2.05  %, and 
xylene, which is a strong reducing agent on disulphide 
bonds, strongly inhibited the enzyme to 43.33 ± 1.53 %.
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Effect of inhibitors, detergents, chelating agents, oxidizing 
agents and reducing agents on β‑mannanase activity
The β-mannanase produced by HDYM-04 was found to 
be stable with most of the tested agents (Table  2). The 
inhibition of different reagents showed significantly dif-
ference (p < 0.05). In the presence of solvents; citric acid, 

ethylene diamine teraacetic acid and potassium iodide, 
it retained  >  80  % residual activity. Furthermore, phe-
nylmethyl sulfonyl fluoride and dithiothreitol induced 
decrease of the β-mannanase activity to 26.98  ±  2.44 
and 27.63 ± 2.41 %, and cetyl trimethyl ammonium bro-
mide, which is a strong detergents on disulphide bonds, 
strongly inhibited the enzyme to 14.15 ±  1.21  %. How-
ever, in the presence of solvents polyethylene glycol 
and sodium citrate, β-mannanase activity decreased to 
79.62 ± 2.47 and 78.87 ± 3.23 %, respectively.

Decolorization of synthetic dyes
The decolorization of various dyes with different struc-
tural patterns were investigated by using purified 
β-mannanase produced by HDYM-04. Our system was 
able to efficiently degrade a number of commercial tex-
tile dyes. Table 3 showed the degradation of twenty-two 
structures of different dyes including azo, anthraquinone, 
arylmethyl and other structures of dyes by the purified 
β-mannanase from HDYM-04. The best decolorization 
overall (80-100  %) were obtained with reactive methyl 
orange, aniline blue and alizalin within 12 h (Fig. 4). The 
remaining nineteen dyes were degraded on different 
extend within 12 h as revealed. Somewhat lower decolor-
ization (30–70 %) was obtained with basic violet 3, pon-
ceau S, water-soluble melanin, coomassie brilliant blue 

Table 1  Characteristics of dyes tested in this work

Dyes Type λmax (nm) Chemical formular

Orange G6 Azo 469 C16H10N2Na2O7S2

Orange I Azo 467 C16H12N2O4S·Na

Methyl orange Azo 461 C14H15N3NaO3S

Ponceau S Azo 501 C13H9N3NaO5

Alizarin yellow R Azo 373 C22H14N6Na2O9S2

Solvent red 24 Azo 232 C24H20N4O

Amaranth Azo 508 C34H32ClN3NaO6S2

Chromotrope 2R Azo 504 C16H10N2Na2O8S2

Alizarin Anthraquinone 417 C14H7NaO7S

Methylene blue Anthraquinone 682 C16H18N3ClS

Fast green3 Triaromatic methane 618 C37H34N2O10S3Na2

Aniline blue Triaromatic methane 582 C32H25N3Na2O9S3

Coomassie brilliant blue Triaromatic methane 595 C45H44N3O7S2Na

Brilliant green Triaromatic methane 623 C27H34N2O4S

Eosin  Triaromatic methane 522 C20H6Br4Na2O5

Water-soluble melanin Cyanine 533 C24H19N4

Eosin Y Three aryl methyl 523 C36H27N3O5Br4S

Bromothmol blue Three aryl methyl 420 C27H28Br2O5S

Bromophenol blue Three aryl methyl 422 C19H10Br4O5S

5,5′-Dibromo-o-cresolsulfonphthalein Three aryl methyl 648 C21H16Br2O5S

Safranine T Heterocyclic 530 C20H19N4Cl

Neutral red Heterocyclic 440 C15H17ClN4

Fig. 1  Konjac gum to determine the incubation time of fermenta-
tion. Different letters represent significant differences (p < 0.05) relative 
to the control
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and brilliant green. This could be due to enzyme inhibi-
tion (by some products generated in the decolorization 
process) or substrate inhibition. However, the eosin, 
amaranth, chromotrope 2R, alizarin yellow R, meth-
ylene blue, fast green 3 and neutral red were nearly not 
decolorized by the purified β-mannanase from HDYM-
04, which was probably due to the complexity of dye 
structures.

Discussion
In conclusion, this study reported the some characteriza-
tion of a β-mannanase produced by HDYM-04. The prop-
erty of enzyme to maintain a high production at a short 
time was interesting from the point of view of industry. 
To the best of our knowledge, this was the first report 

about the production of β-mannanase from HDYM-04 
at 37 °C. Similarly, Paenibacillus sp. DZ23 and B.subtilis 
NM-39 produced enzyme at 37  °C with glucomannan 
and locust bean gum as the substrate (Chandra et  al. 
2011; Mendoza et al. 1994). Other B.subtilis strains sepa-
rated so far from producing maximum enzyme at below 
50 °C (Zhou et al. 2012). Some B.subtilis strains can pro-
duced enzyme at up to 45 °C (Khanongnuch et al. 1998). 
The purified β-mannanase produced by HDYM-04 shows 
higher affinity toward glucomannan substrate (Km and 
Vmax were 2.69  mg/mL and 251.41 U/mg, respectively) 
than that of other mannans like guar gum. But, the 
result was higher than that β-mannanase of Paenibacil-
lus sp. DZ3 (Km 1.05 mg/mL) to amorophophallus konjac 
(Mendoza et  al. 1994), and β-mannanase of B.nealsonii 
PN-11 (Km 11.59  mg/mL) to guar gum (Chauhan et  al. 
2014a, b). Kinetic studies revealed that the enzyme had 
more affinity toward natural glucomannan, and hence it 
was applicable in the food industry for the production of 
oligosaccharides. In the present study, the β-mannanase 
retained  >  80  % activity in dimethyl sulfoxide, acetone, 
chloroform, benzene, hexane. This could be due to well-
known fact that hydrophilic solvents are usually superior 
to hydrophobic solvents for the better enzyme activ-
ity, as the earlier have a greater tendency to bind water 
tightly, which is essential for catalytic activity. Similar 
results were observed with mannanase from B. subtilis 
G1 which showed 11–53  % reduction in enzyme activ-
ity by the addition of organic solvents (Vu et  al. 2012). 
In the presence of solvents; citric acid, ethylene diamine 
teracetic acid and potassium iodide, it retained  >  80  % 
residual activity. The strong inhibitory effect of cetyl tri-
methyl ammonium bromide, a potent cation surfactant, 
could be due to the destruction of the conformation of 
mannanase.

Fig. 2  Amorophophallus konjac (a) and guar gum (b) as the substrate Lineweaver–Burk double bottom. The data were expressed with 
Lineweaver–Burk plot, and Km and Vmax values were calculated using the nonlinear regression

Fig. 3  Effect of organic solvents on the activity of purified 
β-mannanase. Different letters indicated significant differences among 
samples incubated with different organic solvents (p < 0.05)
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Besides, we have found that the β-mannanase produced 
by HDYM-04 we used show remarkably high activity and 
found to be capable of decolorizing and degrading differ-
ent structures of synthetic dyes. Though lots of papers 
reported the degradation and decolourisation of syn-
thetic dyes by other enzymes, some studies demonstrat-
ing that laccases from Leptomitus lacteus could made 
different dyes decolorization (Svobodová et  al. 2008). 
Such as, B.cereus could decolorize 85 % of an azo dye for 
120  h of incubation (Kanagaraj et  al. 2012) and a novel 
laccase from B.subtilis WD23 could decolorize 50-90  % 
of congo red and methyl orange, which suggested the 
potential application of spore laccase in dyestuff treat-
ment (Wang et al. 2010a, b). Unfortunately, the majority 
of dyes are chemically stable and still resistant to micro-
biological attack. The differences in the decoloriaztion 
efficiencies may be attributed to the various chemical 
structures of different dyes. The most employed dyes 
belong to the azo and triaromatic class which accounts 
for the 80 % of all textile dye produced. The best decol-
orization over was obtained with reactive conge red 
methyl orange and titan yellow. β-mannanase may be 
modify azo dye structures by destroying their chromo-
phoric assemblies, phenoxyl radicals are generated in 

the reaction course (Muralikrishna et  al. 1995). Com-
pared with the β-mannanase produced by HDYM-04, 
these enzyme decolorization efficiency were relatively 
low. The β-mannanases are oxidase that cataluze oxida-
tion reactions and hydrolysis reactions in many phenolic 
and organic substrates coupling with reduction reactions 
that transfer molecular oxygen to water (Murugesan et al. 
2007). Triaromatic methane dyes represent an especially 
recalcitrant class of compounds. The present study con-
firms the ability of methyl orange and aniline blue puri-
fied β-mannanase to decolorize amaranth, chromotrope 
2R, amaranth and eosin with decolorization efficiency of 
more than 90 % in short time. This could be due to the 
presense of electron donating methy and methoxy groups 
on the triaromatic methane dyes. The results obtained 
in this study were in agreement with results reported 
previrously for Pleurotusostreatus laccase (Kumar et  al. 
2012) and P.variabile laccase (Forootanfar et  al. 2011). 
They also demonstrated that different decolorization 
rates were attributed to the specific catalytic properties 
of the individual enzymes and to the structure of dyes. 
To our knowledge, this is the first description of a bac-
terial β-mannanase from HDYM-04 able to degrade 

Table 2  Effect of  inhibitors, detergents, chelating agents, 
oxidizing agents and  reducing agents on  the activity 
of purified β-mannanase

The 100 % activity represented the control enzyme activity without any agents. 
Different letters represent significant differences (p < 0.05) relative to the control

Reagent Relative activity (%)

Control 100a

Inhibitors

 Citric acid 87.53 ± 2.34b

 Oxalic acid 68.76 ± 1.98c

 Sodium thioglycolate 45.34 ± 2.67d

 Hydrogen 37.29 ± 1.34de

 Phenylmethyl sulfonyl fluoride 26.98 ± 2.44e

Detergents

 Polyethylene glycol 79.62 ± 2.47b

 Cetyl trimethyl ammonium bromide 14.15 ± 1.21f

Chelating agents

 Ethylene diamine teraacetic acid 82.43 ± 1.23b

 Sodium citrate 78.87 ± 3.23b

 Sodium azide 65.98 ± 1.34c

Oxidizing agents

 Potassium iodide 83.23 ± 1.23b

 Ammonium persulfate 66.37 ± 1.19c

 Hydrogen peroxide 45.82 ± 2.12d

Reducing agents

 Ascorbic acid 38.81 ± 1.13de

 Dithiothreitol 27.63 ± 2.41e

Table 3  Decolourisation of  dyes by  β-mannanase pro-
duced by HDYM-04

The different letters in the same column of the data indicate the level of 
significant differences at p < 0.05

Dyes Decolourisation (%)

6 h 12 h

Methyl orange 54.25 ± 2.34b 99.04 ± 0.03a

Aniline blue 41.11 ± 2.01e 90.23 ± 2.87b

Alizarin 23.86 ± 2.12e 83.63 ± 2.89c

Water-soluble melanin 64.83 ± 2.56a 68.13 ± 3.56d

Ponceau S 11.72 ± 1.55f 60.49 ± 3.88d

Brilliant green 6.57 ± 0.56g 34.46 ± 2.32e

Coomassie brilliant blue 16.40 ± 2.31f 30.74 ± 2.37e

Bromophenol blue 11.40 ± 1.76f 27.52 ± 2.34e

Bromothmol blue 5.52 ± 1.22g 27.14 ± 2.87e

Solvent Red 24 11.12 ± 1.87f 23.28 ± 2.23ef

Orange G6 3.08 ± 0.23g 19.63 ± 1.07f

Orange I 5.67 ± 0.78g 18.15 ± 0.11f

Safranine T 4.34 ± 0.76g 17.39 ± 2.82f

5,5′-Dibromo-o- cresolsulfonphthalein 11.11 ± 1.87f 16.33 ± 2.11f

Eosin Y 14.78 ± 2.11f 16.19 ± 1.76f

Neutral red 0 ± 0 h 7.31 ± 0.87g

Methylene blue 4.18 ± 0.23g 4.29 ± 0.28g

Fast Green3 2.94 ± 0.18g 2.94 ± 0.29gh

Amaranth 0.29 ± 0.14h 1.25 ± 0.11h

Chromotrope 2R 0.46 ± 0.04h 0.68 ± 0.09h

Eosin 0.29 ± 0.01h 0.29 ± 0.03h

Alizarin yellow R 0 ± 0h 0 ± 0h
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different dyes. Furthermore, the decolorization of dyes 
by β-mannanase produced by HDYM-04 is simple and 
cheap. So, the broad substrates specificity of enzyme ren-
dered its great potentials in industrial applications, such 
as degradation of dyes from acidic textile effluents and 
the purified β-mannanase produced by HDYM-04 could 
be successfully employed for the treatment of dyes bear-
ing industrial wastewater as it had prominent capacity to 
degrade other different dyes. Some studies found that, 
the degradation of azo dyes could result in the produc-
tion of compounds of increased toxicity. However, most 
studies failed to evaluate the toxicity of either the dyes 
and/or the reaction products (Gottlieb et al. 2003). So, to 
further investigate its effect on the toxicity of dye decol-
orization, the toxicity experiment will be carry out.

Conclusions
To sum up, the purified β-mannanase produced by 
HDYM-04 showed higher affinity toward glucomannan 
substrate (Km and Vmax were 2.69 mg/ml and 251.41 U/
mg, respectively) than that of other mannans like guar 
gum. The enzyme obtained from this research possessed 
much higher stability in inhibitors, detergents, chelat-
ing agents, oxidizing agents and reducing agents. Fur-
thermore, this enzyme could resist citric acid, ethylene 
diamine teraacetic acid and potassium iodide with more 
than 80  % maximum activity remained. Besides, this 
study represented the first attempt to decolorize the mix-
tures of dyes by purified β-mannanase from HDYM-04. 
Thus, the β-mannanase has been successfully identified 
and, from this study, it has good potential in applying to 
decolorize dyes in textile wastewaters, particularly for 
water recycling. Further studies should be attempted to 
evaluate their feasibility in industrial uses.
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