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Epilepsy is a chronic noninfectious disease caused by sudden abnormal discharge of brain neurons, which leads to intermittent
brain dysfunction. It is also one of the most common neurological diseases in the world. The automatic detection of epilepsy
based on electroencephalogram through machine learning, correlation analysis, and temporal-frequency analysis plays an
important role in epilepsy early warning and automatic recognition. In this study, we propose a method to realize EEG
epilepsy recognition by means of triple genetic antagonism network (GAN). TripleGAN is used for EEG temporal domain,
frequency domain, and temporal-frequency domain, respectively. The experiment was conducted through CHB-MIT datasets,
which operated at the latest level in the same industry in the world. In the CHB-MIT dataset, the classification accuracy,
sensitivity, and specificity exceeded 1.19%, 1.36%, and 0.27%, respectively. The crossobject ratio exceeded 0.53%, 2.2%, and
0.37%, respectively. It shows that the established deep learning model of TripleGAN has a good effect on EEG epilepsy

classification through simulation and classification optimization of real signals.

1. Introduction

Epilepsy is a chronic disease in which the sudden abnormal
discharge of brain neurons leads to transient brain dysfunc-
tion. At present, there are about 50million epilepsy patients
in the world. In all epilepsy patients, about 2/3 of the
patients can control seizures through anticonvulsant drugs,
8-10% of the patients can control seizures through surgical
resection of the focus, and another 25% of the patients can-
not get effective treatment at present [1]. Timely and accu-
rate detection of epilepsy plays an important role in the
use of antiepileptic drugs; so, it is of great significance to
design automatic detection methods for epilepsy. Epileptic
EEG signal analysis technology involves interdisciplinary
knowledge such as neuroscience, information science, and
medicine. Many scholars have studied epileptic EEG from
different perspectives. Common researches include epilepsy
feature extraction and classification [2, 3], epilepsy predic-
tion [4, 5], and focus localization [6, 7]. In the analysis of
epileptic EEG, people hope that the computer can automat-

ically find the distribution of EEG characteristics from a
large number of EEG samples.

Typical methods for epilepsy feature extraction include
cumulative energy [8], correlation dimension [9], spectral
energy [10], and maximum Lyapunov exponent [11] and
then use pattern recognition methods such as support vector
machine and decision tree to classify EEG patterns over a
period of time. Great progress has been made in the field
of artificial neural networks [12]. The traditional feature
extraction in image recognition has been replaced by the
features learned by end-to-end neural networks, while the
relevant research on epileptic EEG prediction still focuses
on feature extraction and traditional pattern recognition
methods [2, 13]. However, most traditional methods extract
information from single channel or between two channels,
ignoring the implicit spatial-temporal relationship between
multiple channels, and lack of extraction of epileptic EEG
synchronous pattern change features.

The prediction of epileptic seizures has always been one
of the hot issues in clinical research. In clinical diagnosis,
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doctors often take spike wave, sharp wave, spike slow com-
plex wave, and other paroxysmal EEG abnormalities as the
characteristics of epileptic signals [14]. Some clinical studies
have shown that some precursors that predict seizures can
be found before seizures [14]. Epilepsy is a process in which
epileptic foci cause excessive synchronous discharge of other
neurons. Therefore, the abnormal synchronous pattern
reflects the evolution of epilepsy. Many clinical studies have
found that there are differences in synchronization and
desynchronization patterns between preseizure and interic-
tal periods [15]. It is very important to study the diffusion
law of abnormal discharge activity in the brain for the
prediction of epilepsy.

EEG source localization is the problem of estimating the
source of EEG activity from a given scalp EEG distribution,
which is usually called the inverse problem of EEG. At present,
the methods used to locate EEG activity sources mainly
include equivalent current dipole (ECD) [16], sparse and
Bayesian framework [17], beamforming and scanning algo-
rithms [18], minimize L2 normal family [19], and nonlinear
post hoc normalization [20]. In recent years, more researches
have been made on introducing the timing pattern of the sig-
nal in the process of determining the position of the source
signal [16-18]. After introducing the time information, the
adjacent temporal signals can provide more observation data
for the underdetermined EEG inverse problem, thus compres-
sing the solution space and making the inverse problem easier
to solve. On the other hand, the temporal pattern of EEG
signals also plays an important role in the reconstruction of
source activity. Based on the above analysis, this work extracts
recognition features from the correlation between the ampli-
tude of scalp EEG signals and the location of EEG signals
caused by epileptic lesions and conducts in-depth learning of
EEG epilepsy based on the dual GAN model. The main inno-
vations and contributions are as follows:

(i) According to the local signal characteristics of epi-
leptic EEG such as spike wave, sharp wave, and
spike slow complex wave, the local virtual repre-
sentation of epileptic EEG signal is studied. This
paper proposes that GAN machine learning
approach the real data to improve the robustness
of data recognition

(ii) The local feature enhancement of EEG signals can
effectively solve the expression of epileptic EEG fea-
ture clustering and make the feature clustering of
EEG signals more accurate

(iii) GAN is used to perform arithmetic operation in the
potential space (vector space) to convert the EEG
clustering features into operations in the corre-
sponding feature space. The generated data is no
different from the real samples. Finally, the discrim-
inator cannot correctly distinguish the generated
data from the real data, so as to obtain more
strengthened classification features

In a word, this paper puts forward new ideas on feature
clustering, reinforcement and end-to-end classification, and
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recognition of epileptic EEG, which provides a new tool for
automatic diagnosis.

2. Method

2.1. EEG Epilepsy Signal Generator. The generative counter-
measure network (GAN) is mainly used to generate images.
Great progress has been made in the stability and quality of
generated images through different regularization methods
[21, 22] and gradually increasing image resolution in train-
ing [23]. However, there are not many researches on time
series. [24] designed temporal-spatial-frequency with
mean-squared-error (TSF-MSE-based) loss function that
reconstructs signals by computing the MSE from time-
series features, common spatial pattern features, and power
spectral density features.

In this study, parameters were migrated from the origi-
nal signal, and the required source activation was repeated
many times to generate a simulated model of EEG epilepsy.
Firstly, the samples of source data are randomly selected as
the initial epilepsy prediction samples, and a set of time
series datasets with 4s temporal window are quickly gener-
ated by using seed-g toolbox. Then, the TripleGAN model
is used to selectively fine-tune the input-output paired in
the target dataset to make it approach the real target.

2.2. Clustering Feature Extraction Methods. In the analysis
and processing of epileptic EEG signals, there are many
unsupervised dimensionality reduction feature extraction
methods, such as model of PCA [25], ICA [26], and AR
[27]. The method of unsupervised clustering is to mine the
characteristics of samples according to the distribution of
samples from the perspective of data-driven. Clustering
models are mainly divided into partition-based clustering,
density-based clustering, and signal self-coding-based clus-
tering [28]. The clustering algorithm of EEG signals can
mine the distribution rules between time series samples
and find key sample patterns. Although the features
extracted by the clustering algorithm cannot correspond to
clear physical meaning, they can be used as a key component
in feature extraction and play an important role in many
EEG studies [29].

This paper extracts features from three dimensions: tem-
poral, frequency, and temporal-frequency.

The specific methods are as follows:

(i) Temporal feature is the most basic feature in EEG
signal processing, which is extracted by directly
observing and calculating the original signal. We
use a previous achievement [30] for the extracting
the temporal model, see Figure 1

(ii) The frequency domain feature is filtered by the
method, which can distinguish the obvious change
of EEG energy during seizures, see Equation (1)
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FIGURE 1: Temporal feature extraction structure of each layer.

Wavelet analysis is used in the temporal-frequency
domain to transform the one-dimensional signal in the
temporal into the two-dimensional space of one scale in
the temporal, and the frequency bands are divided at mul-
tiple levels for more precise feature decomposition, see
Equation (2), which ¥*(n —b/a) is the conjugate function
of ¥(n - bla).

s (52 () o

Each of the three characteristics perform its own
duties. In particular, wavelet packet analysis further

decomposes the high-frequency part of multiresolution
analysis that is not subdivided, and it has the excellent
property of further dividing and thinning the spectrum
window that widens with the increase of scale. Therefore,
it has better temporal-frequency characteristics and
improves the accuracy of EEG signal analysis [31].

2.3. TripleGAN Model. Inspired by the dual learning of natural
language translation [31], we have developed a novel Triple-
GAN mechanism. DualGAN ([32] trains the image converter
with two sets of unlabeled images from two domains. In the
experiment of this paper, the original GAN learns the charac-
teristics of EEG from the three dimensions of temporal,
frequency domain, and FFT temporal-frequency domain,
carries out closed-loop training of original signals and analog
generated signals, and allows EEG features from any domain
to be translated and then reconstructed, see Figure 2. There-
fore, the recognition weight can be reasonably constructed
from the three-dimensional features of EEG epilepsy recogni-
tion to improve the recognition performance.

In the process of learning, the optimization goal of the
generation model is to generate fake EEG epilepsy data as
much as possible, so as to obtain the statistical distribution
law of the real data. The discriminant model is used to judge
whether the given input data comes from the real data or the
generated model. Finally, when a discriminant model cannot
accurately distinguish whether the data generated by the
generated model is forged, we think that both the discrimi-
nant model and the generated model have been raised to a
higher level, and the data generated by the generated model
is enough to imitate the data in the real world.

3. Experiments and Results

3.1. Experimental Setup. This paper implements the pro-
posed framework consisting of TripleGAN and three feature
methods and stacked EEG epilepsy emulation using Keras
2.4.3 machine learning. We used a machine equipped with
12th Gen Intel(R) Core(TM) i9-12900K CPU®@3.20GHz,
32GB RAM, 1TB HDD, and GeForce RTX 3090 GPU
under 64-bit Ubuntu operating system for conducting
experiments for solving classification problems as described
in Tables 1 and 2 using an open EEG epilepsy dataset of
CHB-MIT.

3.2. Dataset. CHB-MIT dataset [33] is jointly recorded by
Boston Children’s Hospital and Massachusetts Institute of
Technology. It uses 10-20 international standard lead system
to place electrodes, and 16 bit analog-to-digital converter
samples the input signal at 256 Hz. It trained on 2 or more
seizures per patient and tested on 916 hours of continuous
EEG from 24 patients.

3.3. Experiment Results. For a fair comparison, this paper his
model is further compared with state-of-the-art and baseline
models to show its superior performance.

For subject-dependent classification, the proposed model
is compared with the recently published Bi-GRU [34], which
proposed bidirectional gated recurrent unit (Bi-GRU) neural
network to facilitate the diagnosis and treatment of epilepsy.
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FIGURE 2: TripleGAN model structure.
TaBLE 1: The subject-dependent comparison with the state-of-art methods for CHB-MIT dataset.

o Comparison method .
Criterion Bi-GRU [34] DLEK-GP [35] EEGWaveNet [36] CE-stSENet [37] TripleGAN
Accuracy 98.49 97.42 98.39+2.39 95.96 99.68 £0.32
Sensitivity 93.89 97.57 68.94+21.12 9241 98.93 +£1.07
Specificity 98.49 97.26 99.25+0.85 96.05 99.52+£0.48

TaBLE 2: The subject-independent comparison with the state-of-art methods for CHB-MIT dataset.

_ Comparison method .
Criterion DLWH [38] GDL [39] EEGWaveNet [36] LRCN [40] DB16-DWT [41] TripleGAN
Accuracy 95.06 95.38+0.23 96.17 £2.95 99.00 96.38 99.53 £0.47
Sensitivity 95.06 94.47+0.11 56.83 +24.44 84.00 96.15 97.26 £2.47
Specificity 95.06 94.16 £0.16 96.97 +3.13 99.00 96.76 99.37+£0.23

A comparison with the DLEK-GP [35] method adopts the
classic common spatial pattern (CSP) and discriminative
log-Euclidean kernel-based Gaussian process for distinguish-
ing epileptic EEG signals. A further comparison with the EEG-
WaveNet [36] approach utilizes trainable depth-wise
convolutions as discriminative filters to simultaneously gather
features from each EEG channel and separate the signal into
multiscale resolution. Lastly, the proposed CE-stSENet [37]
proposes channel-embedding spectral-temporal squeeze-
and-excitation network which can capture hierarchical multi-
domain representations in a unified manner with a variant of
squeeze-and-excitation block. In Table 1, the TripleGAN out-
performs the comparison approaches by 1.19 percentage
points regarding mean accuracy, 1.36 percentage points
regarding mean sensitivity, and 0.27 percentage points regard-
ing mean specificity.

For subject-independent classification, also use EEG-
WaveNet [36] as one of the base line methods. A represen-
tative method with the sparse representation-based epileptic
seizure classification based on the dictionary learning with

the homotopy (DLWH) algorithm is proposed [38]. GDL
[39] introduces deep learning-based epileptic seizure pre-
diction models using electroencephalograms (EEGs) that
can anticipate an epileptic seizure by differentiating
between the preictal and interictal stages of the subject’s
brain. Finally, a forward-looking approach of LRCN [40]
construct an 18-layer long-term recurrent convolutional
network (LRCN) to automatic epileptogenic zone recogni-
tion and localization on scalp EEG. [41] implemented the
real-time seizure detection using DB16-DWT in seven
eigenvalues with the RUSBoosted tree Ensemble method.
In Table 2, the TripleGAN outperforms the comparison
approaches by 0.53 percentage points regarding mean accu-
racy, 2.2 percentage points regarding mean sensitivity, and
0.37 percentage points regarding mean specificity.

4. Discussion

This paper naturally extends GAN to TripleGAN to extract
EEG information on three domains about temporal,
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frequency domain, and temporal-frequency and ensures that
the distribution of EEG epilepsy features characterized by
classifiers and generators converges to the data distribution.
As a unified model, TripleGAN can simultaneously obtain
the latest classification results in the in-depth generation
model. In order to jointly to estimate these conditional dis-
tributions characterized by classifier networks and classifica-
tion condition generator networks, this paper defines a joint
discriminator network, whose only function is to distinguish
whether the samples are from the real data distribution or
from the model. In addition, in order to clarify the genera-
tion rules of EEG epileptic focuses, this paper smoothly
transfers the input into three dimensional spaces and uses
the sequential optimization of GAN network to generate
data simulation. Next, we will conduct in-depth research
on this part.

5. Conclusion

This paper proved that the artificial EEG signals are gener-
ated by the generative countermeasure network. This paper
trains GAN step by step to generate artificial signals in a sta-
ble way, and the signals are very similar to single channel
real EEG signals in temporal and frequency domain.
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