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Abstract
Objective: Due	to	limited	immunological	profiles	of	high-grade	serous	ovarian	cancer	
(HGSOC),	we	aimed	to	characterize	 its	molecular	features	to	determine	whether	a	
specific	subset	that	can	respond	to	immunotherapy	exists.
Materials and Methods: A	training	cohort	of	418	HGSOC	samples	from	TCGA	was	
analysed	by	consensus	non-negative	matrix	factorization.	We	correlated	the	expres-
sion	patterns	with	the	presence	of	immune	cell	infiltrates,	immune	regulatory	mole-
cules	and	other	genomic	or	epigenetic	features.	Two	independent	cohorts	containing	
482	HGSOCs	and	in	vitro	experiments	were	used	for	validation.
Results: We	identified	immune	and	non-immune	groups	where	the	former	was	en-
riched	 in	 signatures	 that	 reflect	 immune	 cells,	 infiltration	 and	 PD-1	 signalling	 (all,	
P <	0.001),	and	presented	with	a	lower	chromosomal	aberrations	but	increased	neo-
antigens,	tumour	mutation	burden,	and	microsatellite	 instability	 (all,	P <	0.05);	this	
group	was	further	refined	into	two	microenvironment-based	subtypes	characterized	
by	either	immunoactivation	or	carcinoma-associated	fibroblasts	(CAFs)	and	distinct	
prognosis.	CAFs-immune	 subtype	was	 enriched	 for	 factors	 that	mediate	 immuno-
suppression	 and	 promote	 tumour	 progression,	 including	 highly	 expressed	 stromal	
signature,	TGF-β	signalling,	epithelial-mesenchymal	transition	and	tumour-associated	
M2-polarized	macrophages	 (all,	 P <	 0.001).	 Robustness	 of	 these	 immune-specific	
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1  | INTRODUC TION

Ovarian	 cancer	 is	 the	 fifth	 leading	 cause	 of	 cancer-related	 death	
among	 gynaecologic	 cancers	 in	 the	 United	 States.	 In	 2019,	 ap-
proximately	22	530	new	ovarian	 cancer	 cases	 and	13	980	deaths	
are estimated to occur.1	 Ovarian	 cancer	 is	 highly	 heterogeneous	
in	nature	and	 includes	different	histological	subtypes	with	distinct	
clinicopathological	 and	genetic	 features;	 thus,	 it	 is	often	 classified	
into	type	I	and	II	tumours.2	Among	them,	high-grade	serous	ovarian	
carcinoma	 (HGSOC;	a	major	Type	 II	 tumour)	 is	 the	most	prevalent	
and	the	most	aggressive	subtype,	accounting	for	three	quarters	of	
all ovarian cancer cases.3-6	For	now,	surgery	and	traditional	chemo-
therapy	 remains	 the	 most	 common	 treatment,	 but	 unfortunately,	
HGSOC	is	often	diagnosed	in	the	advanced	stage,	and	some	patients	
develop	chemoresistance.	Therefore,	there	is	a	clear	need	to	expand	
the	therapeutic	arsenal	for	HGSOC.

Immunotherapy	 of	 anti-programmed	 cell	 death	 (PD)-1	 ther-
apy	 has	 recently	 become	 a	 pillar	 of	 modern	 treatments	 against	
advanced	 stage	 malignancies.	 However,	 only	 limited	 objective	
responses were observed.7	 Identifying	 potential	 therapeutic	
markers associated with treatment response or resistance would 
allow	tailoring	of	appropriate	immunotherapy	for	different	patient	
subgroups.	Nevertheless,	little	is	known	about	the	immune	milieu	
of	HGSOC	and	how	to	utilize	this	 information	to	aid	 in	the	deci-
sion-making	of	immunotherapy.

Utilizing	 consensus	 non-negative	 matrix	 factorization	 (cNMF),	
we	 dissected	 the	 mRNA	 profile	 of	 HGSOC	 and	 identified	 an	 im-
mune-specific	class	with	specific	biological	 traits.	This	class	exhib-
ited	markedly	 activated	 immune	 cells,	 enhanced	 cytolytic	 activity	
and	enrichment	of	 immunotherapy-predictive	gene	signatures.	We	
further	 refined	this	class	 into	 two	robust	microenvironment-based	
subtypes	 characterized	 by	 either	 immunoactivation	 or	 carcino-
ma-associated	 fibroblasts	 (CAFs).	 Our	 findings	 shed	 light	 on	 the	
immunogenomic	 landscape	of	HGSOC,	offering	 insights	 to	further	
personalized	and	precise	treatments.

2  | MATERIAL S AND METHODS

2.1 | Patients and samples

For	 the	 purpose	 of	 the	 study,	 we	 analysed	 the	 gene	 expression	
profiles	 from	 a	 total	 of	 900	 HGSOC	 human	 tumour	 samples,	 in-
cluding	a	training	cohort	of	418	samples	from	The	Cancer	Genome	

Atlas	 (TCGA),	 profiled	by	RNA-Seq,	 and	 two	public	 data	 sets	pro-
filed	by	microarray	 that	 included	482	HGSOC	samples	 for	 further	
validation	(GSE9891:	Tothill	cohort8;	GSE32062:	Yoshihara	cohort9).	
Methylation	data	were	downloaded	from	UCSC	Xena	(https://xena.
ucsc.edu/)	which	contains	DNA	methylation	β	values	of	431	HGSOC	
samples	with	417	tumour	samples	and	14	adjacent-normal	samples	
assessed	by	TCGA	using	the	Illumina	Infinium	HumanMethylation27	
platform	 (Illumina,	 San	 Diego,	 CA).	 Mutation	 data	 (mc3.
v0.2.8.PUBLIC.maf.gz)	were	downloaded	from	PanCanAtlas	and	fil-
tered	for	the	HGSOC	tumour	type,	which	provided	411	samples;	275	
samples	were	 intersected	with	 the	mRNA	profile	and	selected	 for	
downstream	analysis.	Copy	number	alteration	(CNA)	analysis	results	
for	HGSOC	were	downloaded	from	the	FIREBROWSE	(http://fireb	
rowse.org)	 standard	 analyses	 procedure	 under	 the	 archive	 gdac.
broadinstitute.org_OV-TP.CopyNumber_Gistic2.Level_4.

2.2 | Bioinformatics

We	profiled	the	mRNA	expression	matrix	from	the	raw,	paired-end	
reads	in	FASTQ	format	for	418	HGSOC	samples	first.	Raw	counts	of	
mRNAs	were	 transformed	 to	 fragments	 per	 kilobase	of	 non-over-
lapped	exons	per	million	mapped	reads	(FPKM)	and	low	expressions	
were	further	removed	to	reduce	noise.	Tumour,	stromal	and	immune	
cell	transcriptome	profiling	data	in	the	training	TCGA	set	were	mi-
crodissected	 virtually	 using	 unsupervised	 cNMF.	 Immune-related	
gene	signatures	representing	different	immune	statuses	or	immune	
cells	were	used	to	characterize	immune-specific	subtypes	by	single-
sample	gene	set	enrichment	analysis	(ssGSEA)	and	Nearest	Template	
Prediction	 (NTP).	 Tumour	 Immune	 Dysfunction	 and	 Exclusion	
(TIDE),	subclass	mapping	and	pRRophetic	algorithm	were	harnessed	
to predict the clinical response to immune checkpoint blockade and 
chemotherapeutic	drugs.	For	detailed	descriptions	of	data	acquisi-
tion	and	methods,	see	the	Supplementary	Materials,	available	at	Cell 
Proliferation.

2.3 | Benchmarking of cell lines

2.3.1 | Cell	culture

SKOV3	 cells	 were	 obtained	 from	 the	 American	 Type	 Culture	
Collection	 (ATCC,	 Manassas,	 VA)	 and	 grown	 in	 DMEM	 supple-
mented	with	ampicillin	(0.069	g/L)-streptomycin	(0.11	g/L)	and	10%	

subtypes	was	verified	in	validation	cohorts,	and	in	vitro	experiments	indicated	that	
activated-immune	subtype	may	benefit	from	anti-PD1	antibody	therapy	(P <	0.05).
Conclusion: Our	 findings	 revealed	 two	 immune	 subtypes	with	different	 responses	
to	immunotherapy	and	indicated	that	some	HGSOCs	may	be	susceptible	to	immuno-
therapies or combination therapies.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
https://xena.ucsc.edu/
https://xena.ucsc.edu/
http://firebrowse.org
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FBS.	Cells	were	incubated	in	a	humidified	5%	(v/v)	CO2 atmosphere 
at	37°C.	For	in	vitro	experiments,	we	treated	SKOV3	cells	with	PTX	
at	a	concentration	of	2.5	nM,	5	nM,	and	10	nM.

2.3.2 | Cell	transfection	with	siDIRAS3

DIRAS3	 siRNA	 (Guangzhou	 RiboBio	 Co.,	 Ltd.,	 Guangzhou,	 P.	
R.	 China)	 was	 transfected	 using	 Exfect	 Transfection	 reagent	
(Guangzhou	 RiboBio	 Co.,	 Ltd.)	 according	 to	 manufacturer's	
instructions.

2.3.3 | CCK8	assay

SKOV3	cells	were	cultured	 in	96-well	plates	for	24	hours	and	 in-
cubated	with	siRNA	and/or	PTX	for	24	hours.	To	evaluate	cell	sur-
vival,	CCK-8	solution	was	added	to	SKOV3	cells	and	incubated	for	
1	hour	at	37°C.	The	absorbance	at	450	nm	was	then	determined	
using	a	microplate	reader	(iMark;	Bio-Rad	Laboratories,	Hercules,	
CA).

2.3.4 | Protein	extraction	and	western	blotting

Cell	 lysates	 were	 obtained	 by	 incubating	 cells	 in	 protein	 lysis	
buffer	 (125	 mmol/L	 Tris	 and	 2%	 SDS;	 pH	 6.8).	 Proteins	 were	
then	 separated	 by	 10%	 SDS-PAGE	 and	 transferred	 to	 PVDF	
membranes	 (Millipore,	 Burlington,	 MA).	 The	 membranes	 were	
blocked	with	2%	bovine	serum	albumin	in	TBST	(50	mmol/L	Tris,	
150	mmol/L	 NaCl,	 0.5	 mmol/L	 tris-buffered	 saline,	 and	 Tween-
20;	pH	7.5)	and	incubated	with	specific	STAT1	(1:1,000;	10144-2-
AP;	Proteintech,	Rosemont,	 IL)	and	p-STAT1	 (1:1,000;	7649;	Cell	
Signaling	Technology,	Danvers,	MA)	antibodies	at	4°C	overnight.	
After	washing,	the	blots	were	incubated	with	HPR-conjugated	sec-
ondary	antibodies	for	1	hour	at	37°C.	An	enhanced	chemilumines-
cence	kit	 (36222ES60;	Yeasen,	Shanghai,	PR	China)	was	used	 to	
detect	the	immunoreactive	proteins.	Finally,	the	membranes	were	
stained	with	 Naphtol	 blue	 (030H0125;	 Sigma-Aldrich,	 St.	 Louis,	
MO)	as	control,	after	which	protein	signals	were	semi-quantified	
by	 analysing	 the	 signals	 of	 different	 groups	 using	 Image	 J	 (NIH,	
Bethesda,	MD).

2.3.5 | RNA	extraction	and	real-time	quantitative	
PCR	(qPCR)

Total	RNA	from	SKOV3	cells	was	isolated	using	TRIzol	reagent,	after	
which	RNA	was	reverse	transcribed	to	cDNA	using	a	reverse	tran-
scription	 system	 kit	 (G490;	 abmGood,	 Vancouver,	 Canada).	 Then,	
qPCR	was	performed	using	a	StepOnePlus	Real-Time	PCR	System	
(Applied	 Biosystems,	 Foster	 City,	 CA)	 with	 cDNA	 templates	 and	
SYBR	Green	qPCR	Master	Mix	(B21202;	Bimake,	Houston,	TX);	the	

reaction	mix	consisted	of	5	μL	Master	Mix,	0.3	μL	forward	primer,	
0.3 μL	reverse	primer,	3.9	μL	RNase-free	H2O,	and	0.5	μL	cDNA	in	
a	total	volume	of	10	μL.	Primer	sequences	are	listed	in	Supporting	
Information	Table	 S1.	 qPCR	was	performed	 in	 triplicate,	 and	each	
experiment	was	repeated	at	least	three	times.

2.4 | Statistical analyses

All	statistical	tests	were	executed	by	R	v3.5.2	with	Fisher's	exact	test	
for	categorical	data,	a	two-sample	Mann-Whitney	U	test	for	continu-
ous	data,	one-sided	Fisher's	exact	test	for	over-representation,	and	
a	 log-rank	test	Kaplan-Meier	curve	and	Cox	regression	for	obtain-
ing	the	hazard	ratio	 (HR).	Differences	 in	 immune-estimated	scores	
between	the	 immune	and	non-immune	group	were	evaluated	by	a	
one-tailed	 Mann-Whitney	 U	 test.	 Differences	 in	 continuous	 data	
among	multiple	groups	were	evaluated	by	 the	Kruskal-Wallis	 test.	
For	 all	 statistical	 analyses,	 a	P < 0.05 was considered statistically 
significant.

3  | RESULTS

3.1 | Identification of a novel immune class in 
HGSOC

We	performed	cNMF	in	the	training	cohort	of	418	HGSOC	sam-
ples	from	TCGA	with	factorization	rank	of	5	due	to	the	Bayesian	
information	 criterion	 (BIC;	 Supporting	 Information	 Figure	 S1).	
Immune	 enrichment	 score	 (IES)	 was	 estimated	 for	 each	 sam-
ple	 in	each	cNMF	 factor	 (Supporting	 Information	Figure	S2A),	
and	the	factors	were	grouped	as	immune	(252	samples)	or	non-
immune	 (166	 samples)	 classes	with	 a	 significantly	 higher	 IESs	
in immune class (P <	.001;	Supporting	Information	Figure	S2B).	
Patients	belonging	to	the	immune	class	showed	significant	en-
richment	of	immune	cells	signatures,	that is	T	cells,	B	cells,	cyto-
toxic	cells,	tertiary	lymphoid	structures	(TLS),	macrophages,	as	
well	as	T.NK	metagene	and	PD-1	signalling	signatures	(Figure	1).	
NTP	using	a	51-gene	signature	indicated	that	the	immune	group	
was	 highly	 associated	 with	 stem-like	 samples	 (P <	 0.001),	
which was consistent with a previous study.10	 Differential	
expression	 analysis	 identified	 250	 genes	 as	 significantly	 dys-
regulated	 (DEGs)	 (Supplementary	 Supporting	 Information	
Figure	 S2C,	 Supporting	 Information	 Table	 S2).	 Among	 which,	
61	 immune-related	 genes	 that	 were	 overexpressed	 compared	
with	the	non-immune	group	were	identified,	including	adaptive	
immune	 response	 genes,	 such	 as	 granzyme	 B	 (GZMB),	 CD8A,	
and	 CXCL11.	 Additionally,	 univariate	 Cox	 regression	 picked	
21	 survival-related	 genes	 such	 as	 GZMB	 (HR	=	 0.86,	 95%	 CI	
=	 [0.76,	0.98],	P =	0.02),	SH2D1A	(HR	=	0.67,	95%	CI	=	 [0.48,	
0.94],	P =	0.02)	and	CTLA4	(HR	=	0.73,	95%	CI	=	 [0.53,	0.99],	
P =	 0.04;	 Supporting	 Information	Figure	 S3A).	Gene	ontology	
analysis	 indicated	enrichment	of	 immune-related	functions	for	
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the	deregulated	genes	(all,	FDR	<	0.001;	Supporting	Information	
Figure	 S3B).	 However,	 no	 difference	 was	 observed	 in	 over-
all	 survival	 (OS)	 nor	 disease-free	 survival	 (DFS)	 between	 two	
groups	 (Supporting	 Information	 Figure	 S3C,	D).	We	 theorized	
that	there	are	other	factors	in	the	immune	group	that	affect	the	
prognosis	of	HGSOC	patients.

3.2 | The Immune group can be refined into two 
microenvironment-based subtypes

The	 intricate	 interactions	 between	 cancer	 cells	 and	 the	 tumour	
microenvironment can drive host immune responses to produce 
growth	 factors	 that	promote	cancer	progression	and	metastasis.11 
Thus,	we	analysed	the	type	of	immune	modulation	occurring	in	re-
sponse	to	the	tumour	microenvironment	of	HGSOC	patients	within	
the	 immune	 group.	We	 estimated	 stromal	 enrichment	 score	 (SES)	
for	 each	 sample	 in	 each	 cNMF	 factor	 (Figure	1A)	 and	 refined	 the	
immune	 group	 into	 two	 subtypes	 termed	 pink-	 and	 red-immune	
subtypes	(Figure	1B,	see	more	details	in	METHODS),	while	the	non-
immune	 group	was	 termed	 blue-immune	 for	 lack	 of	 both	 IES	 and	
SES.	Both	IES	and	SES	were	significantly	different	among	the	three	
immune-specific	subtypes	 (all,	P <	0.001).	Moreover,	we	observed	
significant	 difference	 in	 OS	 and	 DFS	 among	 three	 subtypes	 (all,	
P <	0.05;	Figure	1C,	D).	The	red-immune	subtype	showed	more	fa-
vourable	prognosis	compared	with	the	other	two	subtypes,	whereas	
the	pink-immune	subtype	showed	the	worst	(red	vs.	pink:	P = 0.014 
for	OS,	P =	0.035	for	DFS;	red	vs.	blue:	P =	0.036	for	DFS).	NTP	using	
a	31-gene	signature	also	demonstrated	a	poor	prognosis	for	the	pink-
immune subtype (P <	0.001;	Figure	1E).

Red-immune	 subtype	 demonstrated	 significant	 enrichment	 of	
immune	cell	 signals,	 immune-related	pathways,	and	DNA	methyla-
tion-based	immune	infiltration	scores;	IFN	signatures	that	were	as-
sociated	with	 pembrolizumab	 response	were	 also	 enriched	 in	 this	
subtype	 (Figure	 2,	 Supporting	 Information	 Figure	 S4A).	 Although	
the	 pink-immune	 subtype	 was	 associated	 with	 immune-related	
pathways,	it	was	also	significantly	characterized	by	immunosuppres-
sive	 components,	 such	 as	 TGF-β	 signalling,	 CAFs,	 and	 a	 frequent	
occurrence	 of	 epithelial-mesenchymal	 transition	 (EMT)	 (Figure	 2,	
Supporting	 Information	 Figure	 S4B).	 We	 used	 MCPcounter	 algo-
rithm	 to	 compare	 tumour	 immune	 microenvironments	 (TIMEs)	
among	three	immune-specific	subtypes.	Likewise,	we	found	signif-
icant	elevations	in	the	proportion	of	cells	involved	in	immune	infil-
tration	(eg	T	cells,	CD8	T	cells,	Natural	killer	cells)	in	both	red-	and	
pink-immune	subtypes	(all,	P <	.001),	whereas	the	proportion	of	fi-
broblasts	was	significantly	higher	in	pink-immune	subtype	than	that	
of	in	red-immune	subtype	(Supporting	Information	Figure	S4C).

Furthermore,	red-immune	subtype	was	associated	with	the	high-
est	 abundance	 of	 M1	 macrophages	 (Supporting	 Information	 Figure	
S5A).	Early	studies	in	mouse	tumour	models	indicated	IFN-α produc-
tion	would	generate	a	long-lasting	antitumor	response	and	IFN-γ is a 
promising	marker	of	response	to	immune	checkpoint	blockage	in	some	
solid tumours.12,13	 Consistently,	 most	 patients	 within	 red-immune	
subtype were positively predicted to respond to immune checkpoint 
blockade	by	TIDE	algorithm	(P <	0.001);	thus,	we	renamed	this	group	
‘activated-immune	 subtype’	 (n	 =	 166).	 Nevertheless,	 pink-immune	
subtype	 was	 dominated	 by	 pro-tumour	 M2-polarized	 macrophages	
(Supporting	Information	Figure	S5B)	and	a	significantly	higher	M1	to	
M2	ratio	compared	with	red-immune	subtype	(Supporting	Information	
Figure	S5C).	This	subtype	exhibited	highly	expressed	CTNNB1	signal-
ling	(Figure	2),	which	suggests	resistance	to	immunotherapies.14	TIDE	
algorithm	demonstrated	few	samples	within	this	subtype	(11%,	10/86)	
can	 respond	 to	 immunotherapy	and	a	16-gene	signature	of	 immune	
escape	from	immune	attack	was	enriched	in	this	group	(all,	P <	0.001,	
Figure	 2);	 therefore,	 we	 designated	 this	 subtype	 as	 ‘CAFs-immune’	
(n =	86)	and	renamed	the	remaining	blue-immune	subtype	as	‘inacti-
vated-immune’	(n	=	166).

Because	 immune	 checkpoint	 inhibitors	 have	 not	 yet	 been	 ap-
proved	 as	 a	 routine	 drug	 for	HGSOC,	we	 used	 subclass	mapping,	
in	addition	 to	TIDE	prediction,	 to	compare	 the	expression	profiles	
of	 our	 defined	 immunophenotypes	 with	 another	 published	 data	
set containing 47 patients with melanomas that responded to im-
munotherapies.15	 Interestingly,	 the	 immune	 class,	 especially	 the	
activated-immune	subtype,	was	more	promising	to	anti-PD-1	ther-
apy	(Bonferroni-corrected	P <	0.05;	Supporting	Information	Figure	
S6A,B,	Supporting	Information	Table	S3).

3.3 | Validation of the immune-specific subtypes 
using two independent cohorts

We	 identified	5,156	unique	 significantly	 overexpressed	 genes	 as	 im-
mune	 subtype-specific	 classifier	 by	 subtype	 pairwise	 comparison	
(Figure	1E,	Supporting	Information	Table	S4).	The	robustness	of	these	
immune-specific	 subtypes	 was	 evaluated	 in	 two	 independent	 co-
horts.	First,	we	applied	the	250	DEGs	to	the	Tothill	cohort	containing	
HGSOC	samples	from	the	Australian	ovarian	cancer	study	and	identi-
fied	two	groups	with	significantly	different	IESs	(P <	0.001;	Supporting	
Information	Figure	S7A,B).	Similar	to	TCGA	training	cohort,	222	sam-
ples	 were	 supervised	 divided	 into	 three	 immune-specific	 subtypes	
with	 40	 samples	 in	 activated-immune,	 97	 samples	 in	 CAFs-immune,	
and	 85	 samples	 in	 inactivated-immune	 based	 on	 immune	 subtype-
specific	classifier.	These	three	subtypes	also	presented	distinct	IES	and	
SES	 (all,	P <	0.001;	Supporting	 Information	Figure	S8A,B).	Molecular	

F I G U R E  1  Quantification	of	the	stromal	enrichment	levels	of	each	cNMF	factor	and	identification	of	the	three	immune-specific	
subtypes	of	HGSOC.	A,	Boxplot	of	the	stromal	enrichment	score	of	each	cNMF	factor.	B,	Boxplot	of	the	stromal	enrichment	score	of	the	
three	immune-specific	subtypes.	C,	Kaplan-Meier	curves	of	overall	survival	of	the	three	immune-specific	subtypes.	D,	Kaplan-Meier	curves	
of	recurrence	time	of	the	three	immune-specific	subtypes.	E,	Heatmap	of	the	gene	expression	profiles	derived	from	unique	significantly	
overexpressed	genes	based	on	pairwise	comparison.	P	values	was	adjusted	by	Benjamini-Hochberg	in	pairwise	comparison	of	survival
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F I G U R E  2  Characterization	of	the	molecular	landscape	of	the	immune-specific	subtypes	of	HGSOC.	A	total	of	418	HGSOC	samples	
from	TCGA	training	cohort	were	separated	into	immune	(n	=	252)	and	non-immune	groups	(n	=	166)	by	consensus	non-negative	matrix	
factorization;	the	immune	nature	of	the	former	was	supported	by	gene	signatures	that	reflect	immune	cells,	infiltration	and	PD-1	signalling.	
Immune	group	contains	two	microenvironment-based	subtypes,	the	activated-immune	(n	=	166)	and	CAFs-immune	(n	=	86)	subtypes.	The	
CAFs-immune	subtype	was	enriched	for	transforming	growth	factor	beta	1	signalling,	carcinoma-associated	fibroblasts	and	vasculature	
development	that	mediate	immunosuppression.	In	the	comprehensive	heatmap,	IES	and	SES	were	estimated	by	‘estimator’	approach,	
continuous	scores	for	molecular	pathways	were	calculated	by	single-sample	gene	set	enrichment	analysis,	continuous	expression	level	
for	genes	was	represented	by	log2-transformed	FPKM	values,	and	binary	classification	of	molecular	phenotype	was	predicted	by	NTP	
algorithm;	continuous	values	were	further	z-scored	and	presented	in	the	heatmap.	High	and	low	estimated	IES	and	SES	are	presented	in	
yellow	and	blue,	respectively;	high	and	low	single-sample	enrichment	scores	as	well	as	DNA	methylation-based	immune	infiltration	scores	
are	represented	in	red	and	blue,	respectively;	gene	expression	level	was	mapped	to	red	and	green	colour	range;	the	presence	of	feature	
predicted	by	NTP	was	indicated	in	purple.	Opportunities	for	personalized	therapy	of	each	subtype	are	portrayed	below	in	grey	round	
box,	and	the	single-sample	enrichment	score	of	immune	subtype-specific	classifier	was	drawn	in	the	bottom	of	this	heatmap.	DMI,	DNA	
methylation-based	immune	infiltration;	TLS,	tertiary	lymphoid	structure;	IFN:	interferon;	TIDE:	tumour	immune	dysfunction	and	exclusion;	
TEIA:	tumour	escape	from	immune	attack;	CAFs:	carcinoma-associated	fibroblasts;	EMT:	epithelial-mesenchymal	transition;	TNFA:	tumour	
necrosis	factor-alpha
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characterization	 of	 these	 three	 immune-specific	 subtypes	 confirmed	
significant	enrichment	of	immune	cell	signatures	in	both	activated	and	
CAFs-immune	 subtypes	 (Supporting	 Information	 Figure	 S8C);	 both	
subtypes	also	had	highly	enriched	stem-like	samples	(P <	0.001).	The	
CAFs-immune	 subtype	 showed	enriched	TGF-β	 signalling,	CAFs,	 and	
vasculature	development	 (all,	P <	0.001).	TIDE	showed	that	 the	acti-
vated-immune	subtype	may	be	more	sensitive	to	immunotherapy,	while	
the	CAFs-immune	subtype	may	fail	(P <	0.001).

Next,	we	interrogated	the	Yoshihara	cohort	(n	=	260)	of	Japanese	
population	 with	 serous	 ovarian	 cancer.	 Supervised	 analysis	 identi-
fied	 immune	 and	 non-immune	 groups	with	 distinct	 IESs	 (P < 0.001; 
Supporting	 Information	 Figure	 S9A,B),	 and	 three	 immune-specific	
subtypes	 which	 comprised	 54	 samples	 in	 the	 activated-immune,	 98	
samples	 in	 CAFs-immune	 and	 108	 samples	 in	 inactivated-immune	
subtype;	 a	 significantly	 different	 IES	 and	 SES	were	observed	 among	
these	subtypes	(all,	P <	0.001;	Supporting	Information	Figure	S10A,B).	
Similar	molecular	 enrichment	 and	 immunotherapeutic	 sensitivity	 (all,	
P <	 0.001)	 to	 those	 derived	 from	TCGA	were	 observed	 (Supporting	
Information	Figure	S10C).	We	then	analysed	the	predicted	poor	survival	
in	both	cohorts	and	again	confirmed	that	CAFs-immune	subtype	may	
be	more	fatal	(both,	P <	0.001).	Therefore,	our	findings	indicate	that	the	
molecular	characteristics	of	the	three	immune-specific	subtypes	were	
recapitulated	in	two	independent	data	sets	regardless	of	platform	used	
(RNA-Seq	or	microarray)	or	race.

3.4 | Clinicopathologic characteristics of immune-
specific subtypes

We	then	explored	the	clinicopathologic	characteristics	of	the	three	
subtypes	(Table	1).	Consistent	with	the	enrichment	of	vascular	de-
velopment	 pathways,	most	 samples	within	CAFs-immune	 subtype	
suffered	from	vascular	invasion	(P =	0.03).	Macroscopic	disease	was	
observed	in	a	few	CAFs-immune	samples	(P =	0.03).	Univariate	anal-
yses	were	 performed	 to	 assess	 the	 association	 between	 immune-
specific	 subtypes	and	OS	 for	all	patients	and	within	each	subtype	
of	patients	defined	by	the	demographic	or	clinical	factor	sub-cate-
gories	(Table	2).	The	data	suggested	that	activated-immune	subtype	
had	a	better	OS	than	other	two	subtypes.

3.5 | Immune-specific subtypes are associated 
with potentially targetable oncogenes or tumour 
suppressors

We	investigated	the	relationship	between	the	three	subtypes	and	vari-
ous	well-known	oncogenic	genes	and	tumour	suppressors	in	ovarian	
cancer	from	cBioPortal	and	found	EIF5A2	(P <	0.001),	FGF1	(P <	0.001)	
and	EGFR	(P =	0.002)	were	highly	expressed	in	the	CAFs-immune	sub-
type.	 SPARC,	 a	 putative	 tumour	 suppressor	whose	 high	 expression	
levels	 were	 found	 associated	 with	 advanced	 stage,	 low	 differentia-
tion,	 lymph	node	metastasis	and	poor	prognosis	of	ovarian	cancer,16 
was	 also	 significantly	 overexpressed	 in	 the	 CAFs-immune	 subtype	

(P <	0.001).	Downregulated	tumour	suppressors	DIRAS3,	DLEC1	and	
PEG3	(all,	P <	0.001)	were	frequently	observed	in	the	immune	group.

3.6 | Immune group exhibits a low burden of 
chromosomal aberrations but significantly increased 
neoantigens, tumour mutation burden and 
microsatellite instability

Besides	molecular	features,	the	genomic	 landscape	is	also	inextrica-
bly	associated	with	anti-tumour	immunity;	for	example,	TMB,	MSI	and	
neoantigen	presence	can	 trigger	T-cell	 responses,17-19 whereas ane-
uploidy may be correlated with immune evasion and reduced response 
to immunotherapy.20	 The	 immune	 group	 showed	 a	 low	 burden	 of	
broad	gains	and	losses	(Supporting	Information	Tables	S5	and	S6).	We	
observed	 significantly	more	neoantigens	 in	 the	 immune	group	 than	
non-immune	group	(P =	0.038),	as	well	as	TMB	(P =	0.006).	The	im-
mune	group,	especially	the	activated-immune	subtype,	presented	with	
a	significantly	higher	MSI	predictor	score	than	that	of	the	non-immune	
group	or	other	subtypes	(all,	P <	0.001).	Additionally,	the	local	immune	
cytolytic	activity	shows	strong	correlation	with	cytotoxic	T	cells	and	
IFN-stimulated	chemokines	that	attract	T	cells.17	Interestingly,	we	ob-
served	a	strong	enrichment	of	the	cytolytic	activity	score	in	immune	
group (P <	0.001).

3.7 | Association between mutation signatures and 
immune group

We	 identified	 four	 significantly	mutated	genes	 (SMGs)	 for	 the	 im-
mune	group,	including	NF1,	TOP2A	and	CDK12,	and	TOP2A	has	not	
been	reported	previously,	and	RB1	was	the	SMGs	for	non-immune	
group	(all,	q <	0.05;	Supporting	Information	Figure	S11A).	Tumours	
that show high correlation with contributor signature.3 tended to 
represent the immune group (P =	 0.038;	 Supporting	 Information	
Figure	 S11B–E).	 Regardless	 of	 OS	 or	 DFS,	 tumours	 characterized	
by	 signature.3	 showed	 better	 prognosis	 (OS,	 P =	 0.0012;	 DFS,	
P =	0.0022;	Supporting	Information	Figure	S12A,B).

3.8 | Recognition of the immune group by 
epigenetically regulated genes

In	view	of	 the	general	upregulation	of	 immune-related	genes	 in	 the	
immune	 group,	 we	 further	 investigated	whether	 such	 immunologic	
dysregulation	 could	 mirror	 epigenetic	 alterations.	 Using	 methyla-
tion	27k	data,	 a	 total	of	13,625	probes	 (9,987	genes)	were	mapped	
to	 promoter	 CpG	 islands.	 We	 identified	 288	 (18	 immune-related)	
epigenetically	 silenced	 genes	 and	 375	 (13	 immune-related)	 epige-
netically	activated	genes	(Supporting	Information	Tables	S7	and	S8).	
Separate	supervised	clustering	of	these	genes	could	well	distinguish	
the	immune	group	from	the	non-immune	counterpart	(all,	P < 0.001; 
Supporting	 Information	 Figure	 S13A–C).	 Additionally,	 we	 jointly	
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TA B L E  1  Demographic	and	clinicopathologic	characteristics	of	the	HGSOC	patients	(TCGA;	n	=	411)

Clinicopathologic parameters Frequency (%)

Immune-specific subtypes

PActivated CAFs Inactivated

Age	(y) .10

> 60 183	(45) 64 45 74

≤	60 228	(55) 99 39 90

Ethnicity .06

Hispanic	or	Latino 9	(2) 7 0 2

Non-Hispanic	or	Latino 237	(58) 93 55 89

Missing 165	(40) 63 29 73

Race .66

White 362	(88) 143 76 143

Asian 13	(3) 7 1 5

Others 24	(6) 8 4 12

Missing 12	(3) 5 3 4

Neoplasm	grade .23

G1	+	G2 48	(12) 15 14 19

G3	+	G4 355	(86) 144 69 142

Missing 5	(2) 1 1 3

Stage .919

I	+	III 347	(84) 136 72 139

IV 61	(15) 25 11 25

Missing 3	(1) 2 1 0

Lymphovascular	invasion .07

No 55	(13) 20 7 28

Yes 104	(25) 48 22 34

Missing 252	(62) 95 55 102

Vascular	invasion .03a 

No 47	(11) 19 4 24

Yes 64	(16) 28 16 20

Missing 300	(73) 116 64 120

Residual disease .03a 

No	macroscopic	disease 73	(18) 27 7 39

1-20	mm 220	(54) 82 52 86

>20 mm 74	(18) 30 19 25

Missing 44	(10) 24 6 14

Treatment	outcome .18

Complete	remission/response 233	(57) 98 39 96

Partial	remission/response 46	(11) 14 15 17

Progressive	disease 31	(7) 15 7 9

Stable	disease 23	(6) 7 5 11

Missing 78	(19) 29 18 31

Disease-free	status .75

Disease-free 87	(21) 34 15 38

Recurred/progressed 260	(63) 102 54 104

Missing 64	(16) 27 15 22

Primary	tumour	site .14

(Continues)
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analysed	differentially	methylated	probes/genes	and	DEGs,	and	306	
genes	 were	 explored	 to	 be	 simultaneously	 differentially	 expressed	
and	 methylated	 (Supporting	 Information	 Figure	 S14,	 Supporting	
Information	Table	S9).	Supervised	clustering	of	these	306	genes	also	
isolated	the	immune	and	non-immune	groups	(P <	0.001;	Supporting	
Information	Figure	S13D),	suggesting	that	epigenetic	alteration	play	a	
critical	role	in	the	immunophenotype	of	HGSOC.

3.9 | Differential chemotherapeutic responses 
among immune-specific subtypes

To	assess	the	response	of	the	three	immune-specific	subtypes	to	
traditional	 chemotherapy,	we	 estimated	 the	 IC50	 values	 of	 each	
sample	 in	 TCGA	 data	 set	 for	 five	 chemotherapy	 drugs	 (ie	 cispl-
atin,	PTX,	etoposide,	vinorelbine	and	gemcitabine),	and	significant	
response	differences	were	observed	 (all,	P <	0.05;	Figure	3A-E).	
Notably,	the	CAFs-immune	subtype	was	predicted	to	be	resistant	
to	all	five	chemotherapy	drugs,	whereas	activated-immune	system	
was	sensitive	to	at	least	three	drugs.	This	finding	is	consistent	with	
a	 recent	 study	 that	 reported	 how	 fibroblasts	 can	 block	 chemo-
therapy and immune cells can help reverse chemoresistance in 
ovarian cancer.21

3.10 | Evaluation of the human ovarian cancer cell 
line SKOV3

We	 analysed	 the	 expression	 of	 frequently	 downregulated	 tumour	
suppressor	genes	 in	 immune	subtype	 (ie	DIRAS3,	PEG3,	and	DLEC1)	
in	the	human	ovarian	cancer	cell	 line	SKOV3	and	found	DIRAS3	was	
most	highly	expressed	(Figure	4A).	Therefore,	DIRAS3	was	chosen	for	
further	verification.	PTX,	which	the	activated-	and	inactivated-immune	
subtypes	were	predicted	to	be	sensitive	to,	whereas	resistant	to	CAFs-
immune	subtype,	was	used	to	treat	SKOV3	cells	at	1.25	mM	to	20	mM	
for	24	and	48	hours,	respectively,	and	no	difference	in	cell	viability	at	
different	PTX	concentrations	at	either	24	or	48	hours	 (Figure	4B,	C).	

However,	24	and	48	hours	 treatment	of	PTX	 induced	cell	death	at	a	
rate	of	20%	and	50%,	respectively,	which	suggested	SKOV3	cells	were	
susceptible	to	PTX,	 indicating	this	cell	 line	has	similar	features	to	the	
activated-	and	inactivated-immune	subtypes.	We	then	knocked	down	
DIRAS3	by	using	small	 interference	RNA	 (siRNA;	Figure	4D).	Cell	vi-
ability	of	siDIRAS3	or/and	PTX-treated	SKOV3	cells	was	evaluated	at	
different	time	points,	and	we	found	knockdown	of	DIRAS3	promoted	
cell	death	in	PTX-treated	SKOV3	cells	compared	with	negative	control	
(NC)	or	PTX	alone-treated	cells	(Figure	4E,	F).

3.11 | Activation of IFN-γ signalling in DIRAS3-
knockdown SKOV3 cells

To	 further	 evaluate	 whether	 the	 characteristics	 of	 DIRAS3-
knockdown	SKOV3	 cells	 are	 similar	 to	 the	 activated-immune	 sub-
type,	 the	 activity	 of	 STAT1	 was	 analysed	 in	 SKOV3	 cells	 treated	
with	 siDIRAS3,	 which	 mimics	 the	 activated-immune	 subtype	 in	
vitro.	 STAT1	was	 proven	 to	 be	 a	 direct	 target	 of	 IFN-γ,22 and we 
found	 enhanced	 STAT1	 phosphorylation	 (p-STAT1)	 and	 increased	
p-STAT1/STAT1	ratio	in	siDIRAS3-transfected	SKOV3	cells	(SKOV3-
siDIRAS3;	Figure	4G,	H),	indicating	activated	IFN-γ	signalling,	which	
supported	that	SKOV3-siDIRAS3	cells	exhibited	the	characteristics	
of	activated-immune	subtype.

3.12 | Upregulation of PD-L1 expression in DIRAS3-
knockdown SKOV3 cells

We	 then	 evaluated	 the	 levels	 of	 PD-L1	 in	 DIRAS3-knockdown	
SKOV3	cells	and	found	that	there	was	an	approximate	40%	increase	
in	PD-L1	levels	in	SKOV3-siDIRAS3	cells	compared	with	NC-treated	
cells	 (Figure	 4I),	 indicating	 that	 DIRAS3-knockdown	 SKOV3	 cells	
are	more	immunoreactive	and	may	be	more	sensitive	to	an	anti-PD-
L1	 approach;	 such	 verification	 reinforced	 our	 prediction	 that	 the	
activated-immune	subtype	of	ovarian	cancer	was	more	sensitive	to	
immunotherapy.

Clinicopathologic parameters Frequency (%)

Immune-specific subtypes

PActivated CAFs Inactivated

Left 55	(13) 30 8 17

Right 45	(11) 18 6 21

Bilateral 286	(70) 107 62 117

Missing 25	(6) 8 8 9

Platinum	status .66

Too	early 50	(12) 24 6 20

Resistant 70	(17) 25 14 31

Sensitive 164	(40) 66 31 67

Missing 127	(31) 48 33 46

aFisher's	exact	test	P < 0.05. 

TA B L E  1   (Continued)
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4  | DISCUSSION

Although	there	have	been	reports	of	substantial	response	and	increased	
survival	after	being	 treated	with	 immune	checkpoint	 inhibitors,	FDA	
has	not	approved	anti-PD-L1	immunotherapy	specifically	for	HGSOC.	
Despite	considerable	efforts	on	ovarian	cancer	regarding	these	thera-
pies,	limited	evidence	of	clinical	utility	has	been	reported.12	One	study	
reported	only	one	out	of	17	ovarian	cancer	patients	treated	with	anti-
PD-L1	antibody	BMS-936559	achieved	an	objective	response.23	In	a	
single	phase	II	trial	that	focused	on	ovarian	cancer	patients	reported	an	
overall	response	rate	of	15%	and	a	median	progression-free	survival	of	
3.5	following	treatment	with	anti-PD-1	antibody	nivolumab.24	A	similar	
response	was	achieved	in	a	preliminary	report	of	pembrolizumab	ad-
ministration	in	a	phase	Ib	study	to	patients	with	PD-L1-positive	ovar-
ian cancer.25	The	response	rate	 in	these	trials	 is	 far	from	impressive,	
which	drives	the	unmet	need	for	identifying	ideal	candidates	for	ovar-
ian	cancer,	and	of	course,	HGSOC	immunotherapy.

Our	 study	 identified	 a	 novel	 immune	 group	of	HGSOC	which	
highly enriched samples with molecular characteristics that highly 

resemble	those	of	cancers	most	responsive	to	immunotherapy,	in-
cluding	 high	 infiltration	 of	 immune	 cells	 and	 enrichment	 of	 PD-1	
signalling.	 However,	 inferring	 the	 response	 to	 immunotherapy	
solely	by	identifying	the	immune	phenotype	is	unreliable.	The	intri-
cate	and	dynamic	interactions	between	tumour	cells,	immune	cells,	
and other immunomodulators embedded in the microenvironment 
may	 either	 strengthen	 or	weaken	 the	 immune	 response,	 thereby	
affecting	the	effectiveness	of	checkpoint	inhibitors.	Therefore,	we	
incorporated	the	tumour	microenvironment	to	further	dissect	the	
immune	group,	and	obtained	two	microenvironment-based	subsets.	
Both	activated-immune	and	CAFs-immune	subtypes	exhibited	high	
expression	of	 immune	molecules;	however,	the	former	one	exhib-
ited	antitumor	immune	features,	such	as	enrichment	of	IFN	signa-
tures,	active	immune	response	genes	and	better	prognosis,	whereas	
the	 other	was	 characterized	 by	 tumour-promoting	 signals	 (eg	 ac-
tivated	stroma,	anti-inflammatory	M2	macrophages).	 In	particular,	
WNT/TGF-β	signalling	pathway	was	activated	in	CAFs-immune	sub-
type;	TGF-β	regulates	tumour-stroma	interactions,	EMT,	angiogen-
esis	and	metastasis	and	can	suppress	the	host	anti-tumour	immune	

F I G U R E  3  Distribution	of	estimated	
IC50	values	of	five	chemotherapy	drugs	
among	the	three	immune-specific	
subtypes.	CAFs-immune	subtype	was	
predicted	to	be	resistant	to	all	five	drugs,	
while	the	activated-immune	subtype	
was sensitive to at least three drugs. 
Differences	in	estimated	IC50 among 
three	immune-specific	subtypes	were	
evaluated	by	the	Kruskal-Wallis	test.	
Pairwise	comparisons	were	assessed	by	
two-sample	Mann-Whitney	U test
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response,	leading	to	a	poor	prognosis.	Such	divergence	was	also	re-
flected	in	the	prediction	of	clinical	response	to	immune	checkpoint	
blockade,	 where	 the	 activated-immune	 subtype	 was	 more	 likely	
than	the	CAFs-immune	subtype	to	respond	to	immunotherapy.

Our	 findings	 have	 potential	 therapeutic	 implications	 for	 the	 ra-
tional	 design	 of	 combination	 therapy.	 For	 CAFs-immune	 subtype,	 a	
combination	therapy	including	TGF-β	inhibition	as	well	as	anti-fibrosis,	
anti-vascular	and	immunotherapy	could	be	beneficial.	This	strategy	is	
promising	as	a	 combination	of	TGF-β inhibition and immunotherapy 
has	 been	 shown	 to	 induce	 complete	 responses	 in	mouse	models,26 
and a phase 1b/2 clinical trial is currently underway to test the com-
bination	 of	 a	 novel	 TGF-β	 inhibitor,	 galunisertib,	with	 nivolumab	 in	
treating	advanced	solid	tumours	(NCT02423343).	Moreover,	anti-vas-
cular	therapies	hold	great	promise	for	targeting	the	tumour	microenvi-
ronment.27	For	activated-immune	subtype,	combining	chemotherapy	
with	 immunotherapy	may	 be	 the	most	 effective	 treatment,21 while 
traditional chemotherapy and radiotherapy may be the current choice 
for	the	non-immune	group	(inactivated-immune	subtype)	because	we	
failed	 to	observe	any	significant	enrichment	 favouring	potential	 tar-
geted	therapies,	including	specific	oncogenes	or	tumour	suppressors.	
Furthermore,	as	we	have	also	predicted	the	enrichment	of	a	stem	cell-
like	phenotype	in	the	immune	group,	perhaps	this	group	would	benefit	
from	a	promising	strategy	that	targets	cancer	stem	cells.28

Robustness	of	the	immune-specific	subtypes	was	supported	by	their	
successful	 replication	 in	 two	 independent	cohorts.	To	 further	 support	
this,	we	analysed	the	characteristics	of	the	ovarian	cancer	cell	line	SKOV3.	
In	vitro	experiments	with	DIRAS3-knockdown	SKOV3	allowed	us	to	al-
most	reproduce	the	activated-immune	subtype,	because	further	investi-
gation	demonstrated	that	the	activity	of	STAT1	was	significantly	induced	
in	DIRAS3-knockdown	SKOV3	cells.	Consistent	with	STAT1	levels,	the	
expression	of	 PD-L1	was	 significantly	 induced	 in	DIRAS3-knockdown	
SKOV3	cells.	Therefore,	in	vitro	verification	confirmed	the	activated-im-
mune subtype is more sensitive to chemotherapy and immunotherapy.

In	conclusion,	we	introduced	a	novel	 immune	group	in	HGSOC	
that	 contains	 two	 robust	 microenvironment-based	 subtypes	 with	
distinct	likelihoods	of	response	to	immunotherapies	and	who	might	
represent	ideal	immunotherapy	candidates.	These	findings	warrant	
further	 investigations	 in	 larger	HGSOC	 cohorts	 receiving	 immune	
checkpoint therapies.
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