
Cell Proliferation. 2021;54:e12979.	 ﻿	   |  1 of 13
https://doi.org/10.1111/cpr.12979

wileyonlinelibrary.com/journal/cpr

 

Received: 26 May 2020  |  Revised: 8 September 2020  |  Accepted: 21 December 2020
DOI: 10.1111/cpr.12979  

O R I G I N A L  A R T I C L E

Tumour microenvironment-based molecular profiling reveals 
ideal candidates for high-grade serous ovarian cancer 
immunotherapy

Xiaofan Lu1,2 |   Caoyu Ji1,2 |   Liyun Jiang1,2,3 |   Yue Zhu1,2 |   Yujie Zhou4 |   
Jialin Meng5,6,7 |   Jun Gao1,2 |   Tao Lu1 |   Junmei Ye1 |   Fangrong Yan1,2

1State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
2Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
3Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Texas, USA
4Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, 
Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
5Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
6Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
7Department of Urology, University of Rochester Medical Center, Rochester, NY, USA

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.

Xiaofan Lu, Caoyu Ji and Liyun Jiang contributed equally to this work.  

Correspondence
Tao Lu, State Key Laboratory of Natural 
Medicine, China Pharmaceutical University, 
Nanjing 210009, China.
Email: lut163@163.com

Junmei Ye, State Key laboratory of Natural 
Medicines, China Pharmaceutical University, 
Nanjing 210009, China.
Email: junmeiye@cpu.edu.cn

Fangrong Yan, State Key Laboratory of 
Natural Medicine, Research Center of 
Biostatistics and Computational Pharmacy, 
China Pharmaceutical University, Nanjing 
210009, China.
Email: f.r.yan@outlook.com

Funding information
National Key R&D Program of China, Grant/
Award Number: 2019YFC1711000; Key 
R&D Program of Jiangsu Province [Social 
Development], Grant/Award Number: 
BE2020694; National Natural Science 
Foundation of China, Grant/Award Number: 
81973145

Abstract
Objective: Due to limited immunological profiles of high-grade serous ovarian cancer 
(HGSOC), we aimed to characterize its molecular features to determine whether a 
specific subset that can respond to immunotherapy exists.
Materials and Methods: A training cohort of 418 HGSOC samples from TCGA was 
analysed by consensus non-negative matrix factorization. We correlated the expres-
sion patterns with the presence of immune cell infiltrates, immune regulatory mole-
cules and other genomic or epigenetic features. Two independent cohorts containing 
482 HGSOCs and in vitro experiments were used for validation.
Results: We identified immune and non-immune groups where the former was en-
riched in signatures that reflect immune cells, infiltration and PD-1 signalling (all, 
P < 0.001), and presented with a lower chromosomal aberrations but increased neo-
antigens, tumour mutation burden, and microsatellite instability (all, P < 0.05); this 
group was further refined into two microenvironment-based subtypes characterized 
by either immunoactivation or carcinoma-associated fibroblasts (CAFs) and distinct 
prognosis. CAFs-immune subtype was enriched for factors that mediate immuno-
suppression and promote tumour progression, including highly expressed stromal 
signature, TGF-β signalling, epithelial-mesenchymal transition and tumour-associated 
M2-polarized macrophages (all, P  <  0.001). Robustness of these immune-specific 
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1  | INTRODUC TION

Ovarian cancer is the fifth leading cause of cancer-related death 
among gynaecologic cancers in the United States. In 2019, ap-
proximately 22 530 new ovarian cancer cases and 13 980 deaths 
are estimated to occur.1 Ovarian cancer is highly heterogeneous 
in nature and includes different histological subtypes with distinct 
clinicopathological and genetic features; thus, it is often classified 
into type I and II tumours.2 Among them, high-grade serous ovarian 
carcinoma (HGSOC; a major Type II tumour) is the most prevalent 
and the most aggressive subtype, accounting for three quarters of 
all ovarian cancer cases.3-6 For now, surgery and traditional chemo-
therapy remains the most common treatment, but unfortunately, 
HGSOC is often diagnosed in the advanced stage, and some patients 
develop chemoresistance. Therefore, there is a clear need to expand 
the therapeutic arsenal for HGSOC.

Immunotherapy of anti-programmed cell death (PD)-1 ther-
apy has recently become a pillar of modern treatments against 
advanced stage malignancies. However, only limited objective 
responses were observed.7 Identifying potential therapeutic 
markers associated with treatment response or resistance would 
allow tailoring of appropriate immunotherapy for different patient 
subgroups. Nevertheless, little is known about the immune milieu 
of HGSOC and how to utilize this information to aid in the deci-
sion-making of immunotherapy.

Utilizing consensus non-negative matrix factorization (cNMF), 
we dissected the mRNA profile of HGSOC and identified an im-
mune-specific class with specific biological traits. This class exhib-
ited markedly activated immune cells, enhanced cytolytic activity 
and enrichment of immunotherapy-predictive gene signatures. We 
further refined this class into two robust microenvironment-based 
subtypes characterized by either immunoactivation or carcino-
ma-associated fibroblasts (CAFs). Our findings shed light on the 
immunogenomic landscape of HGSOC, offering insights to further 
personalized and precise treatments.

2  | MATERIAL S AND METHODS

2.1 | Patients and samples

For the purpose of the study, we analysed the gene expression 
profiles from a total of 900 HGSOC human tumour samples, in-
cluding a training cohort of 418 samples from The Cancer Genome 

Atlas (TCGA), profiled by RNA-Seq, and two public data sets pro-
filed by microarray that included 482 HGSOC samples for further 
validation (GSE9891: Tothill cohort8; GSE32062: Yoshihara cohort9). 
Methylation data were downloaded from UCSC Xena (https://xena.
ucsc.edu/) which contains DNA methylation β values of 431 HGSOC 
samples with 417 tumour samples and 14 adjacent-normal samples 
assessed by TCGA using the Illumina Infinium HumanMethylation27 
platform (Illumina, San Diego, CA). Mutation data (mc3.
v0.2.8.PUBLIC.maf.gz) were downloaded from PanCanAtlas and fil-
tered for the HGSOC tumour type, which provided 411 samples; 275 
samples were intersected with the mRNA profile and selected for 
downstream analysis. Copy number alteration (CNA) analysis results 
for HGSOC were downloaded from the FIREBROWSE (http://fireb​
rowse.org) standard analyses procedure under the archive gdac.
broadinstitute.org_OV-TP.CopyNumber_Gistic2.Level_4.

2.2 | Bioinformatics

We profiled the mRNA expression matrix from the raw, paired-end 
reads in FASTQ format for 418 HGSOC samples first. Raw counts of 
mRNAs were transformed to fragments per kilobase of non-over-
lapped exons per million mapped reads (FPKM) and low expressions 
were further removed to reduce noise. Tumour, stromal and immune 
cell transcriptome profiling data in the training TCGA set were mi-
crodissected virtually using unsupervised cNMF. Immune-related 
gene signatures representing different immune statuses or immune 
cells were used to characterize immune-specific subtypes by single-
sample gene set enrichment analysis (ssGSEA) and Nearest Template 
Prediction (NTP). Tumour Immune Dysfunction and Exclusion 
(TIDE), subclass mapping and pRRophetic algorithm were harnessed 
to predict the clinical response to immune checkpoint blockade and 
chemotherapeutic drugs. For detailed descriptions of data acquisi-
tion and methods, see the Supplementary Materials, available at Cell 
Proliferation.

2.3 | Benchmarking of cell lines

2.3.1 | Cell culture

SKOV3 cells were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA) and grown in DMEM supple-
mented with ampicillin (0.069 g/L)-streptomycin (0.11 g/L) and 10% 

subtypes was verified in validation cohorts, and in vitro experiments indicated that 
activated-immune subtype may benefit from anti-PD1 antibody therapy (P < 0.05).
Conclusion: Our findings revealed two immune subtypes with different responses 
to immunotherapy and indicated that some HGSOCs may be susceptible to immuno-
therapies or combination therapies.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
https://xena.ucsc.edu/
https://xena.ucsc.edu/
http://firebrowse.org
http://firebrowse.org
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FBS. Cells were incubated in a humidified 5% (v/v) CO2 atmosphere 
at 37°C. For in vitro experiments, we treated SKOV3 cells with PTX 
at a concentration of 2.5 nM, 5 nM, and 10 nM.

2.3.2 | Cell transfection with siDIRAS3

DIRAS3 siRNA (Guangzhou RiboBio Co., Ltd., Guangzhou, P. 
R. China) was transfected using Exfect Transfection reagent 
(Guangzhou RiboBio Co., Ltd.) according to manufacturer's 
instructions.

2.3.3 | CCK8 assay

SKOV3 cells were cultured in 96-well plates for 24 hours and in-
cubated with siRNA and/or PTX for 24 hours. To evaluate cell sur-
vival, CCK-8 solution was added to SKOV3 cells and incubated for 
1 hour at 37°C. The absorbance at 450 nm was then determined 
using a microplate reader (iMark; Bio-Rad Laboratories, Hercules, 
CA).

2.3.4 | Protein extraction and western blotting

Cell lysates were obtained by incubating cells in protein lysis 
buffer (125  mmol/L Tris and 2% SDS; pH 6.8). Proteins were 
then separated by 10% SDS-PAGE and transferred to PVDF 
membranes (Millipore, Burlington, MA). The membranes were 
blocked with 2% bovine serum albumin in TBST (50 mmol/L Tris, 
150 mmol/L NaCl, 0.5  mmol/L tris-buffered saline, and Tween-
20; pH 7.5) and incubated with specific STAT1 (1:1,000; 10144-2-
AP; Proteintech, Rosemont, IL) and p-STAT1 (1:1,000; 7649; Cell 
Signaling Technology, Danvers, MA) antibodies at 4°C overnight. 
After washing, the blots were incubated with HPR-conjugated sec-
ondary antibodies for 1 hour at 37°C. An enhanced chemilumines-
cence kit (36222ES60; Yeasen, Shanghai, PR China) was used to 
detect the immunoreactive proteins. Finally, the membranes were 
stained with Naphtol blue (030H0125; Sigma-Aldrich, St. Louis, 
MO) as control, after which protein signals were semi-quantified 
by analysing the signals of different groups using Image J (NIH, 
Bethesda, MD).

2.3.5 | RNA extraction and real-time quantitative 
PCR (qPCR)

Total RNA from SKOV3 cells was isolated using TRIzol reagent, after 
which RNA was reverse transcribed to cDNA using a reverse tran-
scription system kit (G490; abmGood, Vancouver, Canada). Then, 
qPCR was performed using a StepOnePlus Real-Time PCR System 
(Applied Biosystems, Foster City, CA) with cDNA templates and 
SYBR Green qPCR Master Mix (B21202; Bimake, Houston, TX); the 

reaction mix consisted of 5 μL Master Mix, 0.3 μL forward primer, 
0.3 μL reverse primer, 3.9 μL RNase-free H2O, and 0.5 μL cDNA in 
a total volume of 10 μL. Primer sequences are listed in Supporting 
Information Table S1. qPCR was performed in triplicate, and each 
experiment was repeated at least three times.

2.4 | Statistical analyses

All statistical tests were executed by R v3.5.2 with Fisher's exact test 
for categorical data, a two-sample Mann-Whitney U test for continu-
ous data, one-sided Fisher's exact test for over-representation, and 
a log-rank test Kaplan-Meier curve and Cox regression for obtain-
ing the hazard ratio (HR). Differences in immune-estimated scores 
between the immune and non-immune group were evaluated by a 
one-tailed Mann-Whitney U test. Differences in continuous data 
among multiple groups were evaluated by the Kruskal-Wallis test. 
For all statistical analyses, a P  <  0.05 was considered statistically 
significant.

3  | RESULTS

3.1 | Identification of a novel immune class in 
HGSOC

We performed cNMF in the training cohort of 418 HGSOC sam-
ples from TCGA with factorization rank of 5 due to the Bayesian 
information criterion (BIC; Supporting Information Figure S1). 
Immune enrichment score (IES) was estimated for each sam-
ple in each cNMF factor (Supporting Information Figure S2A), 
and the factors were grouped as immune (252 samples) or non-
immune (166 samples) classes with a significantly higher IESs 
in immune class (P < .001; Supporting Information Figure S2B). 
Patients belonging to the immune class showed significant en-
richment of immune cells signatures, that is T cells, B cells, cyto-
toxic cells, tertiary lymphoid structures (TLS), macrophages, as 
well as T.NK metagene and PD-1 signalling signatures (Figure 1). 
NTP using a 51-gene signature indicated that the immune group 
was highly associated with stem-like samples (P  <  0.001), 
which was consistent with a previous study.10 Differential 
expression analysis identified 250 genes as significantly dys-
regulated (DEGs) (Supplementary Supporting Information 
Figure S2C, Supporting Information Table S2). Among which, 
61 immune-related genes that were overexpressed compared 
with the non-immune group were identified, including adaptive 
immune response genes, such as granzyme B (GZMB), CD8A, 
and CXCL11. Additionally, univariate Cox regression picked 
21 survival-related genes such as GZMB (HR =  0.86, 95% CI 
= [0.76, 0.98], P = 0.02), SH2D1A (HR = 0.67, 95% CI =  [0.48, 
0.94], P = 0.02) and CTLA4 (HR = 0.73, 95% CI =  [0.53, 0.99], 
P  =  0.04; Supporting Information Figure S3A). Gene ontology 
analysis indicated enrichment of immune-related functions for 
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the deregulated genes (all, FDR < 0.001; Supporting Information 
Figure S3B). However, no difference was observed in over-
all survival (OS) nor disease-free survival (DFS) between two 
groups (Supporting Information Figure S3C, D). We theorized 
that there are other factors in the immune group that affect the 
prognosis of HGSOC patients.

3.2 | The Immune group can be refined into two 
microenvironment-based subtypes

The intricate interactions between cancer cells and the tumour 
microenvironment can drive host immune responses to produce 
growth factors that promote cancer progression and metastasis.11 
Thus, we analysed the type of immune modulation occurring in re-
sponse to the tumour microenvironment of HGSOC patients within 
the immune group. We estimated stromal enrichment score (SES) 
for each sample in each cNMF factor (Figure 1A) and refined the 
immune group into two subtypes termed pink- and red-immune 
subtypes (Figure 1B, see more details in METHODS), while the non-
immune group was termed blue-immune for lack of both IES and 
SES. Both IES and SES were significantly different among the three 
immune-specific subtypes (all, P < 0.001). Moreover, we observed 
significant difference in OS and DFS among three subtypes (all, 
P < 0.05; Figure 1C, D). The red-immune subtype showed more fa-
vourable prognosis compared with the other two subtypes, whereas 
the pink-immune subtype showed the worst (red vs. pink: P = 0.014 
for OS, P = 0.035 for DFS; red vs. blue: P = 0.036 for DFS). NTP using 
a 31-gene signature also demonstrated a poor prognosis for the pink-
immune subtype (P < 0.001; Figure 1E).

Red-immune subtype demonstrated significant enrichment of 
immune cell signals, immune-related pathways, and DNA methyla-
tion-based immune infiltration scores; IFN signatures that were as-
sociated with pembrolizumab response were also enriched in this 
subtype (Figure  2, Supporting Information Figure S4A). Although 
the pink-immune subtype was associated with immune-related 
pathways, it was also significantly characterized by immunosuppres-
sive components, such as TGF-β signalling, CAFs, and a frequent 
occurrence of epithelial-mesenchymal transition (EMT) (Figure  2, 
Supporting Information Figure S4B). We used MCPcounter algo-
rithm to compare tumour immune microenvironments (TIMEs) 
among three immune-specific subtypes. Likewise, we found signif-
icant elevations in the proportion of cells involved in immune infil-
tration (eg T cells, CD8 T cells, Natural killer cells) in both red- and 
pink-immune subtypes (all, P < .001), whereas the proportion of fi-
broblasts was significantly higher in pink-immune subtype than that 
of in red-immune subtype (Supporting Information Figure S4C).

Furthermore, red-immune subtype was associated with the high-
est abundance of M1 macrophages (Supporting Information Figure 
S5A). Early studies in mouse tumour models indicated IFN-α produc-
tion would generate a long-lasting antitumor response and IFN-γ is a 
promising marker of response to immune checkpoint blockage in some 
solid tumours.12,13 Consistently, most patients within red-immune 
subtype were positively predicted to respond to immune checkpoint 
blockade by TIDE algorithm (P < 0.001); thus, we renamed this group 
‘activated-immune subtype’ (n  =  166). Nevertheless, pink-immune 
subtype was dominated by pro-tumour M2-polarized macrophages 
(Supporting Information Figure S5B) and a significantly higher M1 to 
M2 ratio compared with red-immune subtype (Supporting Information 
Figure S5C). This subtype exhibited highly expressed CTNNB1 signal-
ling (Figure 2), which suggests resistance to immunotherapies.14 TIDE 
algorithm demonstrated few samples within this subtype (11%, 10/86) 
can respond to immunotherapy and a 16-gene signature of immune 
escape from immune attack was enriched in this group (all, P < 0.001, 
Figure  2); therefore, we designated this subtype as ‘CAFs-immune’ 
(n = 86) and renamed the remaining blue-immune subtype as ‘inacti-
vated-immune’ (n = 166).

Because immune checkpoint inhibitors have not yet been ap-
proved as a routine drug for HGSOC, we used subclass mapping, 
in addition to TIDE prediction, to compare the expression profiles 
of our defined immunophenotypes with another published data 
set containing 47 patients with melanomas that responded to im-
munotherapies.15 Interestingly, the immune class, especially the 
activated-immune subtype, was more promising to anti-PD-1 ther-
apy (Bonferroni-corrected P < 0.05; Supporting Information Figure 
S6A,B, Supporting Information Table S3).

3.3 | Validation of the immune-specific subtypes 
using two independent cohorts

We identified 5,156 unique significantly overexpressed genes as im-
mune subtype-specific classifier by subtype pairwise comparison 
(Figure 1E, Supporting Information Table S4). The robustness of these 
immune-specific subtypes was evaluated in two independent co-
horts. First, we applied the 250 DEGs to the Tothill cohort containing 
HGSOC samples from the Australian ovarian cancer study and identi-
fied two groups with significantly different IESs (P < 0.001; Supporting 
Information Figure S7A,B). Similar to TCGA training cohort, 222 sam-
ples were supervised divided into three immune-specific subtypes 
with 40 samples in activated-immune, 97 samples in CAFs-immune, 
and 85 samples in inactivated-immune based on immune subtype-
specific classifier. These three subtypes also presented distinct IES and 
SES (all, P < 0.001; Supporting Information Figure S8A,B). Molecular 

F I G U R E  1  Quantification of the stromal enrichment levels of each cNMF factor and identification of the three immune-specific 
subtypes of HGSOC. A, Boxplot of the stromal enrichment score of each cNMF factor. B, Boxplot of the stromal enrichment score of the 
three immune-specific subtypes. C, Kaplan-Meier curves of overall survival of the three immune-specific subtypes. D, Kaplan-Meier curves 
of recurrence time of the three immune-specific subtypes. E, Heatmap of the gene expression profiles derived from unique significantly 
overexpressed genes based on pairwise comparison. P values was adjusted by Benjamini-Hochberg in pairwise comparison of survival
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F I G U R E  2  Characterization of the molecular landscape of the immune-specific subtypes of HGSOC. A total of 418 HGSOC samples 
from TCGA training cohort were separated into immune (n = 252) and non-immune groups (n = 166) by consensus non-negative matrix 
factorization; the immune nature of the former was supported by gene signatures that reflect immune cells, infiltration and PD-1 signalling. 
Immune group contains two microenvironment-based subtypes, the activated-immune (n = 166) and CAFs-immune (n = 86) subtypes. The 
CAFs-immune subtype was enriched for transforming growth factor beta 1 signalling, carcinoma-associated fibroblasts and vasculature 
development that mediate immunosuppression. In the comprehensive heatmap, IES and SES were estimated by ‘estimator’ approach, 
continuous scores for molecular pathways were calculated by single-sample gene set enrichment analysis, continuous expression level 
for genes was represented by log2-transformed FPKM values, and binary classification of molecular phenotype was predicted by NTP 
algorithm; continuous values were further z-scored and presented in the heatmap. High and low estimated IES and SES are presented in 
yellow and blue, respectively; high and low single-sample enrichment scores as well as DNA methylation-based immune infiltration scores 
are represented in red and blue, respectively; gene expression level was mapped to red and green colour range; the presence of feature 
predicted by NTP was indicated in purple. Opportunities for personalized therapy of each subtype are portrayed below in grey round 
box, and the single-sample enrichment score of immune subtype-specific classifier was drawn in the bottom of this heatmap. DMI, DNA 
methylation-based immune infiltration; TLS, tertiary lymphoid structure; IFN: interferon; TIDE: tumour immune dysfunction and exclusion; 
TEIA: tumour escape from immune attack; CAFs: carcinoma-associated fibroblasts; EMT: epithelial-mesenchymal transition; TNFA: tumour 
necrosis factor-alpha



     |  7 of 13LU et al.

characterization of these three immune-specific subtypes confirmed 
significant enrichment of immune cell signatures in both activated and 
CAFs-immune subtypes (Supporting Information Figure S8C); both 
subtypes also had highly enriched stem-like samples (P < 0.001). The 
CAFs-immune subtype showed enriched TGF-β signalling, CAFs, and 
vasculature development (all, P < 0.001). TIDE showed that the acti-
vated-immune subtype may be more sensitive to immunotherapy, while 
the CAFs-immune subtype may fail (P < 0.001).

Next, we interrogated the Yoshihara cohort (n = 260) of Japanese 
population with serous ovarian cancer. Supervised analysis identi-
fied immune and non-immune groups with distinct IESs (P  <  0.001; 
Supporting Information Figure S9A,B), and three immune-specific 
subtypes which comprised 54 samples in the activated-immune, 98 
samples in CAFs-immune and 108 samples in inactivated-immune 
subtype; a significantly different IES and SES were observed among 
these subtypes (all, P < 0.001; Supporting Information Figure S10A,B). 
Similar molecular enrichment and immunotherapeutic sensitivity (all, 
P  <  0.001) to those derived from TCGA were observed (Supporting 
Information Figure S10C). We then analysed the predicted poor survival 
in both cohorts and again confirmed that CAFs-immune subtype may 
be more fatal (both, P < 0.001). Therefore, our findings indicate that the 
molecular characteristics of the three immune-specific subtypes were 
recapitulated in two independent data sets regardless of platform used 
(RNA-Seq or microarray) or race.

3.4 | Clinicopathologic characteristics of immune-
specific subtypes

We then explored the clinicopathologic characteristics of the three 
subtypes (Table 1). Consistent with the enrichment of vascular de-
velopment pathways, most samples within CAFs-immune subtype 
suffered from vascular invasion (P = 0.03). Macroscopic disease was 
observed in a few CAFs-immune samples (P = 0.03). Univariate anal-
yses were performed to assess the association between immune-
specific subtypes and OS for all patients and within each subtype 
of patients defined by the demographic or clinical factor sub-cate-
gories (Table 2). The data suggested that activated-immune subtype 
had a better OS than other two subtypes.

3.5 | Immune-specific subtypes are associated 
with potentially targetable oncogenes or tumour 
suppressors

We investigated the relationship between the three subtypes and vari-
ous well-known oncogenic genes and tumour suppressors in ovarian 
cancer from cBioPortal and found EIF5A2 (P < 0.001), FGF1 (P < 0.001) 
and EGFR (P = 0.002) were highly expressed in the CAFs-immune sub-
type. SPARC, a putative tumour suppressor whose high expression 
levels were found associated with advanced stage, low differentia-
tion, lymph node metastasis and poor prognosis of ovarian cancer,16 
was also significantly overexpressed in the CAFs-immune subtype 

(P < 0.001). Downregulated tumour suppressors DIRAS3, DLEC1 and 
PEG3 (all, P < 0.001) were frequently observed in the immune group.

3.6 | Immune group exhibits a low burden of 
chromosomal aberrations but significantly increased 
neoantigens, tumour mutation burden and 
microsatellite instability

Besides molecular features, the genomic landscape is also inextrica-
bly associated with anti-tumour immunity; for example, TMB, MSI and 
neoantigen presence can trigger T-cell responses,17-19 whereas ane-
uploidy may be correlated with immune evasion and reduced response 
to immunotherapy.20 The immune group showed a low burden of 
broad gains and losses (Supporting Information Tables S5 and S6). We 
observed significantly more neoantigens in the immune group than 
non-immune group (P = 0.038), as well as TMB (P = 0.006). The im-
mune group, especially the activated-immune subtype, presented with 
a significantly higher MSI predictor score than that of the non-immune 
group or other subtypes (all, P < 0.001). Additionally, the local immune 
cytolytic activity shows strong correlation with cytotoxic T cells and 
IFN-stimulated chemokines that attract T cells.17 Interestingly, we ob-
served a strong enrichment of the cytolytic activity score in immune 
group (P < 0.001).

3.7 | Association between mutation signatures and 
immune group

We identified four significantly mutated genes (SMGs) for the im-
mune group, including NF1, TOP2A and CDK12, and TOP2A has not 
been reported previously, and RB1 was the SMGs for non-immune 
group (all, q < 0.05; Supporting Information Figure S11A). Tumours 
that show high correlation with contributor signature.3 tended to 
represent the immune group (P  =  0.038; Supporting Information 
Figure S11B–E). Regardless of OS or DFS, tumours characterized 
by signature.3 showed better prognosis (OS, P  =  0.0012; DFS, 
P = 0.0022; Supporting Information Figure S12A,B).

3.8 | Recognition of the immune group by 
epigenetically regulated genes

In view of the general upregulation of immune-related genes in the 
immune group, we further investigated whether such immunologic 
dysregulation could mirror epigenetic alterations. Using methyla-
tion 27k data, a total of 13,625 probes (9,987 genes) were mapped 
to promoter CpG islands. We identified 288 (18 immune-related) 
epigenetically silenced genes and 375 (13 immune-related) epige-
netically activated genes (Supporting Information Tables S7 and S8). 
Separate supervised clustering of these genes could well distinguish 
the immune group from the non-immune counterpart (all, P < 0.001; 
Supporting Information Figure S13A–C). Additionally, we jointly 
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TA B L E  1  Demographic and clinicopathologic characteristics of the HGSOC patients (TCGA; n = 411)

Clinicopathologic parameters Frequency (%)

Immune-specific subtypes

PActivated CAFs Inactivated

Age (y) .10

> 60 183 (45) 64 45 74

≤ 60 228 (55) 99 39 90

Ethnicity .06

Hispanic or Latino 9 (2) 7 0 2

Non-Hispanic or Latino 237 (58) 93 55 89

Missing 165 (40) 63 29 73

Race .66

White 362 (88) 143 76 143

Asian 13 (3) 7 1 5

Others 24 (6) 8 4 12

Missing 12 (3) 5 3 4

Neoplasm grade .23

G1 + G2 48 (12) 15 14 19

G3 + G4 355 (86) 144 69 142

Missing 5 (2) 1 1 3

Stage .919

I + III 347 (84) 136 72 139

IV 61 (15) 25 11 25

Missing 3 (1) 2 1 0

Lymphovascular invasion .07

No 55 (13) 20 7 28

Yes 104 (25) 48 22 34

Missing 252 (62) 95 55 102

Vascular invasion .03a 

No 47 (11) 19 4 24

Yes 64 (16) 28 16 20

Missing 300 (73) 116 64 120

Residual disease .03a 

No macroscopic disease 73 (18) 27 7 39

1-20 mm 220 (54) 82 52 86

>20 mm 74 (18) 30 19 25

Missing 44 (10) 24 6 14

Treatment outcome .18

Complete remission/response 233 (57) 98 39 96

Partial remission/response 46 (11) 14 15 17

Progressive disease 31 (7) 15 7 9

Stable disease 23 (6) 7 5 11

Missing 78 (19) 29 18 31

Disease-free status .75

Disease-free 87 (21) 34 15 38

Recurred/progressed 260 (63) 102 54 104

Missing 64 (16) 27 15 22

Primary tumour site .14

(Continues)
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analysed differentially methylated probes/genes and DEGs, and 306 
genes were explored to be simultaneously differentially expressed 
and methylated (Supporting Information Figure S14, Supporting 
Information Table S9). Supervised clustering of these 306 genes also 
isolated the immune and non-immune groups (P < 0.001; Supporting 
Information Figure S13D), suggesting that epigenetic alteration play a 
critical role in the immunophenotype of HGSOC.

3.9 | Differential chemotherapeutic responses 
among immune-specific subtypes

To assess the response of the three immune-specific subtypes to 
traditional chemotherapy, we estimated the IC50 values of each 
sample in TCGA data set for five chemotherapy drugs (ie cispl-
atin, PTX, etoposide, vinorelbine and gemcitabine), and significant 
response differences were observed (all, P < 0.05; Figure 3A-E). 
Notably, the CAFs-immune subtype was predicted to be resistant 
to all five chemotherapy drugs, whereas activated-immune system 
was sensitive to at least three drugs. This finding is consistent with 
a recent study that reported how fibroblasts can block chemo-
therapy and immune cells can help reverse chemoresistance in 
ovarian cancer.21

3.10 | Evaluation of the human ovarian cancer cell 
line SKOV3

We analysed the expression of frequently downregulated tumour 
suppressor genes in immune subtype (ie DIRAS3, PEG3, and DLEC1) 
in the human ovarian cancer cell line SKOV3 and found DIRAS3 was 
most highly expressed (Figure 4A). Therefore, DIRAS3 was chosen for 
further verification. PTX, which the activated- and inactivated-immune 
subtypes were predicted to be sensitive to, whereas resistant to CAFs-
immune subtype, was used to treat SKOV3 cells at 1.25 mM to 20 mM 
for 24 and 48 hours, respectively, and no difference in cell viability at 
different PTX concentrations at either 24 or 48 hours (Figure 4B, C). 

However, 24 and 48 hours treatment of PTX induced cell death at a 
rate of 20% and 50%, respectively, which suggested SKOV3 cells were 
susceptible to PTX, indicating this cell line has similar features to the 
activated- and inactivated-immune subtypes. We then knocked down 
DIRAS3 by using small interference RNA (siRNA; Figure 4D). Cell vi-
ability of siDIRAS3 or/and PTX-treated SKOV3 cells was evaluated at 
different time points, and we found knockdown of DIRAS3 promoted 
cell death in PTX-treated SKOV3 cells compared with negative control 
(NC) or PTX alone-treated cells (Figure 4E, F).

3.11 | Activation of IFN-γ signalling in DIRAS3-
knockdown SKOV3 cells

To further evaluate whether the characteristics of DIRAS3-
knockdown SKOV3 cells are similar to the activated-immune sub-
type, the activity of STAT1 was analysed in SKOV3 cells treated 
with siDIRAS3, which mimics the activated-immune subtype in 
vitro. STAT1 was proven to be a direct target of IFN-γ,22 and we 
found enhanced STAT1 phosphorylation (p-STAT1) and increased 
p-STAT1/STAT1 ratio in siDIRAS3-transfected SKOV3 cells (SKOV3-
siDIRAS3; Figure 4G, H), indicating activated IFN-γ signalling, which 
supported that SKOV3-siDIRAS3 cells exhibited the characteristics 
of activated-immune subtype.

3.12 | Upregulation of PD-L1 expression in DIRAS3-
knockdown SKOV3 cells

We then evaluated the levels of PD-L1 in DIRAS3-knockdown 
SKOV3 cells and found that there was an approximate 40% increase 
in PD-L1 levels in SKOV3-siDIRAS3 cells compared with NC-treated 
cells (Figure  4I), indicating that DIRAS3-knockdown SKOV3 cells 
are more immunoreactive and may be more sensitive to an anti-PD-
L1 approach; such verification reinforced our prediction that the 
activated-immune subtype of ovarian cancer was more sensitive to 
immunotherapy.

Clinicopathologic parameters Frequency (%)

Immune-specific subtypes

PActivated CAFs Inactivated

Left 55 (13) 30 8 17

Right 45 (11) 18 6 21

Bilateral 286 (70) 107 62 117

Missing 25 (6) 8 8 9

Platinum status .66

Too early 50 (12) 24 6 20

Resistant 70 (17) 25 14 31

Sensitive 164 (40) 66 31 67

Missing 127 (31) 48 33 46

aFisher's exact test P < 0.05. 

TA B L E  1   (Continued)
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4  | DISCUSSION

Although there have been reports of substantial response and increased 
survival after being treated with immune checkpoint inhibitors, FDA 
has not approved anti-PD-L1 immunotherapy specifically for HGSOC. 
Despite considerable efforts on ovarian cancer regarding these thera-
pies, limited evidence of clinical utility has been reported.12 One study 
reported only one out of 17 ovarian cancer patients treated with anti-
PD-L1 antibody BMS-936559 achieved an objective response.23 In a 
single phase II trial that focused on ovarian cancer patients reported an 
overall response rate of 15% and a median progression-free survival of 
3.5 following treatment with anti-PD-1 antibody nivolumab.24 A similar 
response was achieved in a preliminary report of pembrolizumab ad-
ministration in a phase Ib study to patients with PD-L1-positive ovar-
ian cancer.25 The response rate in these trials is far from impressive, 
which drives the unmet need for identifying ideal candidates for ovar-
ian cancer, and of course, HGSOC immunotherapy.

Our study identified a novel immune group of HGSOC which 
highly enriched samples with molecular characteristics that highly 

resemble those of cancers most responsive to immunotherapy, in-
cluding high infiltration of immune cells and enrichment of PD-1 
signalling. However, inferring the response to immunotherapy 
solely by identifying the immune phenotype is unreliable. The intri-
cate and dynamic interactions between tumour cells, immune cells, 
and other immunomodulators embedded in the microenvironment 
may either strengthen or weaken the immune response, thereby 
affecting the effectiveness of checkpoint inhibitors. Therefore, we 
incorporated the tumour microenvironment to further dissect the 
immune group, and obtained two microenvironment-based subsets. 
Both activated-immune and CAFs-immune subtypes exhibited high 
expression of immune molecules; however, the former one exhib-
ited antitumor immune features, such as enrichment of IFN signa-
tures, active immune response genes and better prognosis, whereas 
the other was characterized by tumour-promoting signals (eg ac-
tivated stroma, anti-inflammatory M2 macrophages). In particular, 
WNT/TGF-β signalling pathway was activated in CAFs-immune sub-
type; TGF-β regulates tumour-stroma interactions, EMT, angiogen-
esis and metastasis and can suppress the host anti-tumour immune 

F I G U R E  3  Distribution of estimated 
IC50 values of five chemotherapy drugs 
among the three immune-specific 
subtypes. CAFs-immune subtype was 
predicted to be resistant to all five drugs, 
while the activated-immune subtype 
was sensitive to at least three drugs. 
Differences in estimated IC50 among 
three immune-specific subtypes were 
evaluated by the Kruskal-Wallis test. 
Pairwise comparisons were assessed by 
two-sample Mann-Whitney U test
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response, leading to a poor prognosis. Such divergence was also re-
flected in the prediction of clinical response to immune checkpoint 
blockade, where the activated-immune subtype was more likely 
than the CAFs-immune subtype to respond to immunotherapy.

Our findings have potential therapeutic implications for the ra-
tional design of combination therapy. For CAFs-immune subtype, a 
combination therapy including TGF-β inhibition as well as anti-fibrosis, 
anti-vascular and immunotherapy could be beneficial. This strategy is 
promising as a combination of TGF-β inhibition and immunotherapy 
has been shown to induce complete responses in mouse models,26 
and a phase 1b/2 clinical trial is currently underway to test the com-
bination of a novel TGF-β inhibitor, galunisertib, with nivolumab in 
treating advanced solid tumours (NCT02423343). Moreover, anti-vas-
cular therapies hold great promise for targeting the tumour microenvi-
ronment.27 For activated-immune subtype, combining chemotherapy 
with immunotherapy may be the most effective treatment,21 while 
traditional chemotherapy and radiotherapy may be the current choice 
for the non-immune group (inactivated-immune subtype) because we 
failed to observe any significant enrichment favouring potential tar-
geted therapies, including specific oncogenes or tumour suppressors. 
Furthermore, as we have also predicted the enrichment of a stem cell-
like phenotype in the immune group, perhaps this group would benefit 
from a promising strategy that targets cancer stem cells.28

Robustness of the immune-specific subtypes was supported by their 
successful replication in two independent cohorts. To further support 
this, we analysed the characteristics of the ovarian cancer cell line SKOV3. 
In vitro experiments with DIRAS3-knockdown SKOV3 allowed us to al-
most reproduce the activated-immune subtype, because further investi-
gation demonstrated that the activity of STAT1 was significantly induced 
in DIRAS3-knockdown SKOV3 cells. Consistent with STAT1 levels, the 
expression of PD-L1 was significantly induced in DIRAS3-knockdown 
SKOV3 cells. Therefore, in vitro verification confirmed the activated-im-
mune subtype is more sensitive to chemotherapy and immunotherapy.

In conclusion, we introduced a novel immune group in HGSOC 
that contains two robust microenvironment-based subtypes with 
distinct likelihoods of response to immunotherapies and who might 
represent ideal immunotherapy candidates. These findings warrant 
further investigations in larger HGSOC cohorts receiving immune 
checkpoint therapies.
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