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B-SOiD, an open-source unsupervised algorithm for
identification and fast prediction of behaviors
Alexander I. Hsu 1 & Eric A. Yttri 1,2✉

Studying naturalistic animal behavior remains a difficult objective. Recent machine learning

advances have enabled limb localization; however, extracting behaviors requires ascertaining

the spatiotemporal patterns of these positions. To provide a link from poses to actions and

their kinematics, we developed B-SOiD - an open-source, unsupervised algorithm that

identifies behavior without user bias. By training a machine classifier on pose pattern sta-

tistics clustered using new methods, our approach achieves greatly improved processing

speed and the ability to generalize across subjects or labs. Using a frameshift alignment

paradigm, B-SOiD overcomes previous temporal resolution barriers. Using only a single, off-

the-shelf camera, B-SOiD provides categories of sub-action for trained behaviors and kine-

matic measures of individual limb trajectories in any animal model. These behavioral and

kinematic measures are difficult but critical to obtain, particularly in the study of rodent and

other models of pain, OCD, and movement disorders.
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The brain has evolved to support the generation of indivi-
dual limb movements strung together to create natural
behavior. The selection, performance, and modification of

these actions is key to an animal’s continued survival1. Estab-
lishing the neural underpinnings of this behavioral repertoire is
one of the foundations of neuroscience2; however, research lar-
gely focuses on stereotyped, reductionist, and over-trained
behaviors due to their ease of study. Beyond the potential con-
founds associated with artificial or over-trained tasks, this line of
interrogation discards most of the behavioral repertoire and its
intricate transition dynamics3–5. Comprehensive behavioral
tracking requires accurate behavioral identification and quantifi-
cation (e.g. kinematics and transitions at meaningful timescales).

Typically, behavioral scientists have relied upon top-down
methods in which pre-established criteria are applied to beha-
vioral data6–9. These methods, which include laborious human
rating, have benefited from advances in supervised machine
learning methods for classification10, achieving accuracy on par
with human labeling. Although these approaches can be useful,
supervised machine learning classifiers are trained to replicate
their user’s annotations. These human annotations, however, are
prone to observer biases and are known to suffer from high inter-
rater variability11–13 and typically possess low temporal resolu-
tion. Moreover, the experimental flexibility is typically quite
limited. Because of their one-size fits all approach, the top-down
rubric may have diminished sensitivity to the many perturbations
that could not be encompassed in the training data set. However,
these perturbations comprise the majority of use cases (see von
Ziegler et al.14 and Sturman et al.13).

To overcome these top-down limitations, Shaevitz, Berman, and
colleagues began a new generation of unsupervised learning
algorithms utilizing non-linear dimensionality reduction of the
complex behavioral space to identify stereotyped behaviors
(MotionMapper15–17). Specifically, movement is quantified by
aligning the body in each frame, then extracting the spectral
energy of the protruding limbs. This time-frequency information
is then reduced down to a two-dimensional space (see Todd
et al.18 for review of various algorithmic implementations). The
spectral energy component of this approach is particularly well-
suited to extract the movement of orthogonal limbs, such as fly
appendages sticking out from their bodies19. In soft-bodied
invertebrates like worms and fly larvae, similar methods using
decomposed body shape dynamics have been used with
success20–22. However, these studies require model organisms that
generate primarily orthogonal movements that are optimal for the
frequency domain information they rely upon. As such, these
methods have seen few applications in the study of vertebrate
behavior. Additionally, to best extract this spectral information,
these methods depend critically on a uniform background, com-
monplace in a fly dish, but more rare in vertebrate cages.

More recently, a proprietary package, MoSeq23 advanced the
field though the use of spinograms obtained from a specialized
depth camera in conjunction with unsupervised hierarchical
clustering methods to identify action groups. While MoSeq
represents the first unsupervised segmentation in rodents, it
highlights a greater issue concerning scales of behavioral extrac-
tion. First, both the action and its kinematics are critical, parti-
cularly to the study of several disease states24–26. Second, the low
temporal resolution of most methods limits the applicability of
any results with electrophysiological recordings. Third and per-
haps most impactful, to maximize reproducibility and experi-
mentatal efficiency, methods must be generalizable across
sessions and across research groups. Current unsupervised
methods are insufficient.

Recent advances in computer vision and machine learning
have enabled automatic tracking of body part positions12,27,28.

Although limb position or pose can be informative, its behavioral
interpretability is quite low. For instance, the location of a paw
may be used to determine stride length, but it does not capture
what the animal is doing with that paw. Moreover, the various
top-down frameworks that each user may create are incredibly
subjective and may not generalize between animals of different
sizes or cameras with differing frame rates11.

Taking inspiration from the converging lines of technology, we
created a platform that extracts the spatiotemporal patterns of
these identified body poses (e.g. behaviors), of any subject. An
important feature of our algorithm, B-SOiD, is that pose rela-
tionships are used to train a multi-class classifier that then can be
used to bypass the intermediate transformation and clustering
stages. In doing so, B-SOiD performs more quickly (100,000
frames/minute on a typical laptop) and with higher fidelity - as it
is no longer limited to a single session’s data set to define cluster
boundaries. More importantly, once trained, the algorithm can
generalize across animals, cameras, and setups, thus solving the
issue of transference. With the utilized position information,
B-SOiD provides a 2D readout of kinematics, and can provide
temporal resolution in the single milliseconds, required for use
with electrophysiological methods. We provide this platform as
an open-source, step-by-step GUI interface to enable autonomous
behavior identification and classification based upon the dis-
covered pose relationships.

Here, we demonstrate B-SOiD’s use in a variety of experi-
mental models (mouse open field behavior, rat reach to grasp
task, and human kinesiology data) We also benchmark the tool
across different camera angles and against the current state of the
art. Demonstration of distinct neural signatures corresponding to
the identified behaviors and the analytical utility of the improved
temporal resolution are also provided. Finally, we reveal robust
kinematic changes following a cell-type specific lesion that are
otherwise unobservable with current methods.

Results
We provide here an open source tool to resolve distinct behaviors
(Fig. 1). To achieve this end, we sought to make use of pose
estimation software, which uses computer vision and machine
learning to identify the location of body parts from video. These
techniques have made huge strides in recent years, but making
sense of those data remains difficult. We begin with a summary of
the behavioral classification/segmentation tool (Supplementary
Fig. 1), its computational underpinnings, and basic benchmark-
ing. In addition to the extraction of behavior from poses, B-SOiD
provides a signal processing method that provides temporal
resolution matching the video frame rate. We then demonstrate
the utility of this increased resolution - increased signal signal of
the neural activity of behavior. In doing so we also provide
neurophysiological verification of the mathematical-derived
behavioral groups. We then quantify the algorithm’s perfor-
mance across different camera angles and compare it to the
current state of the art. These measures also serve to validate the
external and internal consistency of the method, respectively. The
manuscript concludes with a real-world example of B-SOiD’s
potential, detecting several canonical grooming types and their
kinematic composition, critical information that is not available
via other methods.

B-SOiD is an openly available tool to identify and extract
behavioral classes at millisecond timescales - all with a single, off-
the-shelf camera (Supplementary Movie 1). Because B-SOiD
identifies spatiotemporal patterns in labeled body part positions,
it has no a priori limit on camera angle or organism (see Sup-
plementary Fig. 2 and Supplementary Movie 2 for rat reaching
task throughout training – including the same identified grasping
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Fig. 1 Summary of B-SOiD process, GUI, and performance in mice and other animals. a After extracting the pose relationships that define behaviors,
B-SOiD performs a non-linear transformation (UMAP) to retain high-dimensional postural time-series data in a low-dimensional space and subsequently
identifies clusters (HDBSCAN). The clustered spatiotemporal features are fed as inputs to train a random forests machine classifier. This classifier can then
be used to quickly predict behavioral categories in any related data set. Once trained, the model will segment any dataset into the same groupings. b Screen
shots from B-SOiD app GUI, available freely for download. Examples of simple language progress from loading data, to improving model, and quantifying
performance are shown. c Bout durations for each of the identified behaviors throughout an hour-long session, n= 1 animal. Data are presented as mean
values ± SEM. d Snapshot of behavioral state space aligned to a freely moving mouse(DeepLabCut), fruit fly(SLEAP), and the first author - taken with a cell
phone camera(OpenPose). Informed consent to publish the images was obtained. Color of group number refers to colored distribution within UMAP space.
Source data are provided as a Source Data file for (c).
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behavior with and without a sugar pellet present, Supplementary
Fig. 3 and Supplementary Movie 3 for human exercising with
positions extracted using OpenPose29,30, and Supplementary
Movie 4 for categorization of Drosophila behavior. Screenshots
can be found in Fig. 1d for summary). For simplicity we focus
here on a bottom-up view of six body part locations (snout, paws,
tail-base, as identified by DeepLabCut) of a mouse in order to best
resolve the animal’s limb kinematics.

B-SOiD extracts the spatiotemporal relationships between all
position inputs (speed, angular change, and distance between
tracked points – Fig. 1a). After embedding these high-
dimensional measurements into a low-dimensional space
UMAP, a state-of-the-art dimensionality reduction algorithm31, a
hierarchical clustering method, HDBSCAN, is used to extract
dense regions separated by sparse regions32. Although defining
clusters in low-dimensional spaces is largely sufficient to achieve
the desired behavioral identification15,16,18,33, doing so is a
computationally expensive process. Additionally, behavioral
transference in the low-dimensional space is difficult to evaluate,
owing partly due to the non-linearity in dimensionality reduction.
To overcome both of these issues, we utilized a machine learning
classifier that learns to predict behaviors based on the high
dimensional measurements (Fig. 1a). This approach provides
greatly improved computational speed (processing time for one
hour of 60fps data containing six poses is under five minutes with
a 128GB RAM CPU) and a consistent model that enables gen-
eralization across data sets within or across labs. Because the
classifier is trained to partition pose relationships, not their low-
dimensional representations, the defined clusters are further apart
from one another, greatly improving consistency over statistical
embedding methods (for unsupervised behavioral metrics com-
paring high vs. low-dimensional behavioral representation, see
Todd et al.18. Finally, to improve functionality, we have increased
accessibility – formatting the code into a downloadable app which
provides an intuitive, step-by-step user interface (Fig. 1b).

B-SOiD extracts behavioral clusters in high-dimensional space.
Behaviors can be parsed into a sequence of pose relationships that
the brain has evolved to perform34,35. To reduce dimensions of
those spatiotemporal pose relationships, B-SOiD implements
Uniform Manifold Approximation and Projection (UMAP), next
generation dimensionality reduction method31 to simplify com-
putations without simplifying the complexity of the behavior
space. This non-linear dimensionality reduction approach pro-
vides an improved ability to delineate high-dimensional data in
low-dimensional space over linear methods31,36,37. In particular,
UMAP is preferred over t-SNE (t-Distributed Stochastic Neigh-
bor Embedding) for its ability to preserve global pairwise dis-
tances in embedding. This feature is critical for users to
manipulate behavioral delineation. More concretely, if the user
considers segmented behaviors not critical for their research
question, allowing preservation of global pairwise distances
enables supervision in the number of behavioral groups.

Although non-linear dimensionality reduction algorithms may
be advantageous when the output is two-dimensional, systematic
exploration of unsupervised algorithms for animal behavior
suggests that embedding in high-dimensional space improves
results across various metrics18. To that end, we allowed UMAP
embeddings to exist in a high dimensional space. Similar to Todd
et al., we projected our data down to the number of dimensions
required to achieve ≥0.7 variance explained using PCA. In this
dataset assembled across six animals, the criteria number of
dimensions was 11. To segregate behavioral assignments in
the 11-dimensional UMAP space, we employed a hierarchical
clustering method – Hierarchical Density Based Spatial

Clustering of Applications (HDBSCAN)32. Similar density-
based clustering methods have been employed for unsupervised
segmentation of behaviors in both vertebrates and
invertebrates15,16,38–42. However, HDBSCAN is particularly
well-suited to address the inevitable variability in pose estima-
tions, even with with state-of-the-art software (see Methods
section for specific HDBSCAN parameters), enabling B-SOiD to
purify the training data to assign every frame.

Algorithmic benchmarking. When trained B-SOiD on video
from six mice, in which it identified 11 classes in the 11-
dimensional space (clearly distinguishable in pose relationship
space, Figs. 1c and 2b, see https://github.com/runninghsus/
bsoid_figs/blob/main/examples/README.mdfor spatiotemporal
relationship distributions. Note, dimensionality count and group
count are the same only be happenstance). Though not a given,
the conserved kinematic motifs of the groups easily mapped
onto established ethological names. For organizational purposes,
we grouped these behaviors according to http://
mousebehavior.org/ethogram-index/(red= quiescence, gold=
rear, blue=maintenance, green=move; to be used throughout
this manuscript).

As a first pass to verify that B-SOiD did not errantly merge
behaviors, we randomly isolated videos based on behavioral class
assignments, and found behavioral assignments to be internally
consistent (see https://github.com/runninghsus/bsoid_figs/blob/
main/examples/README.mdfor details). This visual consistency
approximates the human rating that a supervised algorithm
would be based upon. In addition, meta-analyses on physical
features showed distinct multi-feature distributions (full para-
meter distributions for each group available at the same link).

We observed that the clustered groups of spatiotemporal pose
patterns did not change with animal color or size. The body
length of the brown mouse in Fig. 2a is 50% greater than that of
the black mouse (5.9 cm vs 3.9 cm), but both were clustered with
the same B-SOiD model (and both contributed to the validation
metrics shown here). We noted that in some instances B-SOiD
ignored subtleties in body conformation, i.e. grooming at
different places along the torso were all considered to be
members of the same ’body lick’ group (Fig. 2a). In other
instances, B-SOiD separated related but fundamentally distinct
kinematic patterns. In particular, without instruction to do so,
B-SOiD identified the three canonical grooming types. These
actions, first described decades ago as the syntactic chain of self-
grooming in rodents, are paw/face groom, head groom, and body
lick34,43,44. Itching with the hind leg was also identified,
distinguished from any groom type using the forelimbs. This
ability to both generalize and differentiate is vital to accurate
behavioral segmentation and is largely the due to utilizing
machine learning to recognize the spatiotemporal patterns. The
algorithm seizes upon the conserved, repeated features and
accepts the variability in others (see Supplementary Movie 1 for
summary definitions and video examples). Note that cluster size
limits can be adjusted in the aforementioned GUI, providing the
user additional control over the grouping detail (see parsing of
reach-to-grasp into sub-actions in Fig. S2).

To improve consistency, speed, and applicability in classifying
behaviors, we equipped B-SOiD with a random forest classifier.
The random forest classifier is well-suited for high-dimensional
feature training and has been shown to predict low-dimensional
representation of high-dimensional features well, particularly
compared to potential alternatives like MLP or SVM36 (see
Methods section for classifier design). To test whether these pose
relationships can be learned accurately, we tested the mapping on
randomly selected 20% of the data. The predicted labels generated
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by our random forest classifier matched cluster assignments by
HDBSCAN (’true labels’) over 90% of the time. Indeed, the
confusion matrix and 10-fold validation indicate that high-
dimensional features can be robustly assigned given low-
dimensional group assignments (Fig. 2b, c).

Frameshift paradigm enables behavioral segmentation at
temporal resolution sufficient for electrophysiology. Accurate
resolution of the timing of behavior transitions is a necessary
feature of segmentation beyond identification. We present two
example transitions (Fig. 2d), at 10 frames per second (fps) a
temporal resolutions on par with many current methods.
Although the group identification is correct, the large inter-frame
interval misses the transition time, leading to much of the
behavior being inaccurately categorized. Resolving transitions
with adequate precision for use with electrophysiological mea-
sures requires considerably faster sampling rates, which are
unavailable given current technology. However, a particular
challenge in defining behaviors at a high sampling rate is that
pose location jitter dominates the signal from any movement
(Fig. 2e, left side). It is precisely this loss of frame-to frame dif-
ference at high sampling rates that makes 10 fps sampling a
popular temporal resolution.

To enable the resolution of behavioral transitions at the scale of
single milliseconds, we introduced a ‘frameshift’ manipulation,
borrowed from recent automatic speech recognition

innovations45 (Fig. 2e). Briefly, B-SOiD initially downsamples
all video, regardless of framerate, to 10 fps to achieve a high signal
to noise ratio in the spatiotemporal dynamics of the markers. The
process is then repeated, with each new set of predictions made
on downsampled data, each time offset by an additional frame
(see t1, t2, t3 in Fig. 2e right side). In essence, we decompose the
high-resolution signal and run a sliding threshold for fitting the
high-SNR decomposition. By combining behavior assignments
extracted from the shifted, downsampled data, we gain improved
transition time resolution while overcoming the hurdle of
decreased signal-to-noise (Fig. 2f, g). Note, improving transition
resolution does not fundamentally change the distribution of
action durations observed at 10 fps. Thus frameshifting carries
over the robust behavioral signal provided by lower sampling to
the native resolution of the camera used.

As an example, B-SOiD automatically downsampled the
200 fps used here to 10 fps, then segments the downsampled
data 20 times; each iteration offset by a single, 5 ms frame. We
quantified the effect of different temporal resolutions by first
subsampling a 200 fps video, thus providing an internally
consistent comparison across resolutions (e.g. to extract 20 fps
for analysis, we used every 10th frame of the 200 fps video).
B-SOiD was then run independently on each resolution of the
video, using frameshifting on each version. With the original
200 fps as a standard, we observed that the predictions across
resolutions was highly coherent. Even at 10 fps (which was not

Fig. 2 Performance quantification across multiple temporal resolutions with novel machine learning algorithms. a Snapshots of a small (Animal 1) and
large (Animal 2) mouse, 300ms into the execution of example behaviors. b Confusion matrix on the 20% held-out data. True positive predictions appear
on the diagonal. c 10-fold cross-validation yield high accuracy on shuffled data across behavioral groups (21,600 data points/test), n= 6 animals. Data are
presented as mean values ± SEM. d Trajectory plots of right (orange) and left (teal) limbs of the fore paw (darker) and hind paw (lighter) demonstrating
example transitions from investigate to locomote, and head groom to itch. Vertical lines denote transition time as identified by basic B-SOiD analysis
(10fps). e Schematized example of the potential for prediction noise in pose estimation to override the movement signal at high sampling rates. To
overcome this, we executed a frameshift computation to derive high resolution transition times from downsampled, high signal data. f Percent coherence
between low frequency and progressively higher resolution frameshift data. A major break occurs under for data under 50 fps, n= 1 animal. Data are
presented as mean values ± SEM. g Same trajectories as in (d), now incorporating the frameshift algorithm to improve resolution of transitions. Source data
are provided as a Source Data file for (b, c, f).
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further downsampled/frameshifted), we observed a median
coherence of ~84% across behavioral groups, Fig. 2f). As
sampling rate increased, coherence improved – although the
added benefit of increased sampling rate plateaus after 50 fps.
These changes can be attributed to an increase in transition time
accuracies, as seen in Fig. 2g and Supplementary Fig. 4. The
frameshift paradigm allows B-SOiD to predict behaviors at a
temporal resolution matching the sampling rate of the original
video, enabling a notably deeper analysis of action kinematics
(Fig. 2d, g). Given the excellent performance above 50 fps and the
impetus to use less-specialized cameras, the remainder of this
manuscript focuses on easily attainable 60 fps video.

Increased transition fidelity improves neural signature reso-
lution. Improved temporal resolution is a critical advancement
for analyzing neural correlates of spontaneous behaviors46. To
assess the real-world benefit of increased temporal resolution, we
simultaneously recorded 35 units from the left caudal forelimb
area of motor cortex in a mouse as it navigated the open field
arena (see Methods section). We then aligned the activity to the
onset of classified actions using non-frameshift (10 fps) and fra-
meshift (60 fps) predictions.

In this first demonstration of motor cortical activity aligned to
the breadth of naturalistic behaviors observed, we noted distinct
neural signatures for the range of identified naturalistic behavior
groups (Fig. 3a). Across behavioral groups, these population
representations were quite robust and observable with both high
and low-resolution versions of B-SOiD (see Supplementary Fig. 5

for detailed account of neural activity by group). More
importantly, these clear population responses indicate the
mathematically established B-SOiD groupings reflect real dis-
tinctions at the level of neural representation. The strength of the
aligned population responses largely coincided with actions
involving the forelimbs, consistent with the recording location
within motor cortex – although this simple descriptor cannot
broadly summarize the diverse dynamics discovered (Supple-
mentary Fig. 5). We also noticed a trend for greater modulation
for orientations in the direction contralateral to the recording
(group 10) compared to ipslilateral (group 9), although some
neurons were preferentially modulated for ipsilateral orienting
(Supplementary Fig. 6). While in-depth future analyses will be
required to understand these responses, these data strongly
support the quality of B-SOiD’s clustering and its the potential for
the study of the neurophysiology of unconstrained behaviors.

In addition to these neural correlates of spontaneous behaviors,
we observed that frameshifted data yielded a greater magnitude of
neural modulation. The improved neural resolution was particu-
larly pronounced just before and during the time of each action’s
onset. To quantify these differences for each neuron, we
subtracted the magnitude of the low-resolution activity from
the magnitude of the higher resolution activity (e.g. positive
values= stronger signal with high resolution frameshift method).
Differences in signal quality across neurons and groups for
individual neurons can be found in Supplementary Fig. 5. We
then summed these within-session signal differences across all
neurons, without any assumption whether a neuron was tuned to

Fig. 3 Frameshifted high-temporal resolution improves identification of neural signatures at behavioral initiation. a Z-scored neural activity aligned to
the 11 B-SOiD identified behaviors using either low temporal resolution, non-frameshifted or high-resolution, and frameshifted alignment. Neurons and
neuron order are the same for each pair of behavior panels. Detailed plots can be found in Supplementary Fig. 5. b Total signal magnitude difference (high -
low resolution) for each of the behaviors (1 on bottom). Scale bar= 5 z-score difference. Colors as in Fig. 1c. c Mean and SEM of signal magnitude
difference across all behaviors (magenta= p < 0.01, two-tailed t-test). Positive values indicate greater signal magnitude for high vs low temporal resolution.
d Using simulated data, we measured the average firing rate with zero (Actual), high resolution (60 fps), or low-resolution (10 fps) temporal jitter
introduced. 60 fps produced a considerably more accurate account of the ground truth model. e Incorporating features from our recording data, the model
produces similar high-low resolution difference dynamics to (c), here in a spiking artificial neuron. Source data are provided as a Source Data file for (a).
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that behavior (tuned neurons should contribute to the sum, while
untuned should have zero net effect). Higher temporal resolution
yielded improved signal preceeding behavioral onset across
several actions groups (Fig. 3b) and on average across all
segmented behaviors (Fig. 3c). Again, the largest differences were
typically observed for actions involving forelimbs.

This improvement is considerable taking into account the only
difference between the data sets is a 50 fps improvement in
behavior onset resolution. The increase in signal strength yields
an improved ability to detect more nuanced dynamics, and the
duration of this improvement may be instructive as to the time
course of motor planning in this population.

Several of the plots of the differences between high minus low-
resolution demonstrate a biphasic dynamic in which the quality of
the high resolution signal is initially greater, then worse, than the
low-resolution signal. To better understand this dynamic, we
modeled a simple neuron with a Poisson-distributed firing rate.
This rate instantaneous increased from 5Hz to 15 Hz. In our data
and generally assumed for movement-related activity, we observed
neural modulation occurring before movement onset and for
relatively relatively short durations. Therefore the increase in
synthetic activity was made 100ms long and began 130ms before
onset. We then sampled the synthetic activity with 60 fps and
10 fps resolution onset jitter. Peri-event time histograms of the
resulting signals demonstrate that 60 fps behavior resolution
yielded dramatically improved results that were quite close to the
zero jitter ground truth (Fig. 3d). The resulting difference in
observed signal between methods was similar to that observed in
the population activity (Fig. 3e). Specifically, we found the late
improvement in low-resolution signal to be the result of a delay in
resolving the cessation of the activity increase. This rudimentary
summary demonstrates that B-SOiD’s increased action alignment
resolution prevents both signal degradation and temporal
displacement of neural activity pattern.

Comparison between top-down to bottom-up camera angles.
To optimally extract limb 2D kinematics (e.g. stride length,
horizontal limb speed), we have focused on a bottom-up camera
setup. This arrangement also provides an ideal situation for
tethered animals, eliminating problems caused by the cable tether.
However, many research groups prefer to use or have existing
data from top-down cameras placed above a cage or arena.
Additionally, a transparent floor may alter behavior or induce
anxiety47, and therefore may be suboptimal for some experi-
ments. Using a session recorded simultaneously from above and
below, we tested the performance of B-SOiD in different camera
positions. For consistency, we used six points for the generation
of both the bottom-up and top-down B-SOiD prediction models
(for top-down: top of snout, shoulders approximation, hips
approximation, and tail-base were used). In this head-to-head
comparison, B-SOiD extracted eight behavior groups categories
from top-down video. These groups largely mirrored with those
identified with bottom-up video (sample ethogram Fig. 4a, c and
category labels Fig. 4b, d; colors to group action types as in Fig. 2).
No new actions were found and some related action groups were
combined (e.g. elevated and lower rearing were combined into
one group). Unsurprisingly, we did observe some divergence in
groups that relied upon precise paw localization (e.g. grooming-
type behaviors), which is difficult to achieve when viewed from
above. In these cases of misalignment, assignments typically
defaulted to the most similar behavior type given the same
amount of head movement but no information about paw
position (see full kinematic properties for each group for
direct comparison https://github.com/runninghsus/bsoid_figs/
blob/main/examples/README.md).

While the ethograms provide an overall sense of the quality of
each method, we sought to determine the relationship between
behavior segmentations using the different views. We determined
the percent overlap for each view’s action group, e.g. for frames
identified as ‘Orient Left’, what is the relative distribution of
bottom-up groups? After mapping each segmentation onto the
target frames, we discovered that action groups are largely
conserved between the camera angles, with top-down and
bottom-up groups correctly mapping onto each other at a rate
of several hundred percent more than would be expected given
the baseline distributions, effectively removing the bias for
behaviors that happen more often (Fig. 4b). Therefore, while
identical segmentation between the two camera angles is
impossible, we suggest that both approaches are valid and
demonstrate high inter-method consistency.

Comparison against alternative unsupervised pose-estimation
method. To benchmark B-SOiD against the state-of-the art in
unsupervised behavioral segmentation, we compared the perfor-
mance of B-SOID to MotionMapper on identical, bottom-up
video data sets. The family of open source MotionMapper
methods are the leading unsupervised method for behavior
segmentation18 and uses spectral information to discern beha-
viors. MotionMapper has a release that uses the same pose esti-
mation input as B-SOiD (https://github.com/DeepLabCut/
DLCutils/tree/master/DLC_2_MotionMapper), providing the
means for a direct comparison. We made no assumption of
ground truth for comparison; rather we focused our evaluation on
the quality of the segmented behavior. We extracted and aligned
frames of identical dimensions around the animal. For each bout
we measured the motion energy of each pixel in the frames
comprising that bout (the bright, constant background did not
significantly contribute to motion energy), then computed the
mean motion energy (ME) per behavioral group. Movement
conserved across bouts will yield sharp and clear mean ME
values. While the input data were identical, differences in the
quality of groups were apparent. Compared to MotionMapper,
summary images of B-SOiD groupings were more distinct from
each other. Additionally, in several within-group panels, the
average ME signal was clear enough that both limbs and group
identities are visually apparent (Fig. 5a).

To quantify these differences, we computed the ME image
mean sqaured error (MSE, see Methods section for details) for up
to 20 randomly selected bouts per group. To reduce the effects of
bout length, only bouts lasting 300–600 ms were used; thus
occasionally groups with only very short bouts were under-
represented. The unassigned noise group in MotionMapper was
discarded for these analyses. The percent difference in MSE was
then computed across in-group examples, providing an estima-
tion of the in-group variability (Fig. 5b, in-group comparisons are
contained within the diagonal, see Methods section for details).
Normalizing to the mean in-group values, percent differences in
out-group values were also obtained. Darker colors indicate a
greater difference in ME. Although some in-groups may exhibit
greater differences in ME than others (e.g. locomotion vs
inactivity), well-clustered bouts should be more different from
out- than in-group bouts. We then summarized the differences
across all groups (Fig. 5c). We also provide results from the same
B-SOiD bouts, shuffled into randomly assigned groups, thus
providing a baseline for structureless in-group and out-group
variability to be expected.

The extent of divergence of out-group MSE (dashed line)
relative to in-group MSE (solid line), is indicative of the quality of
groupings – specifically how different a group is from the
remaining population. Both algorithms demonstrated significant
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rightward shifts of their out-groups, but the effect was much more
pronounced in the B-SOiD data (MotionMapper: p < 3e-12; B-
SOiD: p < 7e-111; Shuffled: p= 0.60). MotionMapper has con-
stituted a pivotal advance, opening the door to unbiased analysis
of the richness of unconstrained behavior. We recognize that the
strength of the method lies in the ability to process spectral data
from organisms with body components moving orthogonally to
its center of mass, such as fruit flies. Thus, this pose-adapted
method may benefit from greatly increasing the number of body
positions identified, effectively providing similar spectral infor-
mation. Finally, in the comparison of methods, we note that
aspects MotionMapper are memory-limited, leading to roughly a
100X difference in processing time compared to B-SOiD with
only six points. More points will exaggerate these differences.
Some of this two-order of magnitude differences can be
attributed to our integration of the novel UMAP technology
rather than t-SNE (https://umap-learn.readthedocs.io/en/latest/
benchmarking.html)

Robust and often unmeasurable kinematic changes resolved
with B-SOiD. To assess B-SOiD’s real-world utility, we quantified
grooming-type behaviors in mice with and without cell-type
specific lesions of the indirect pathway of the basal ganglia (A2A-

cre, with or without cre-dependent caspase virus injected into
striatum, N= 4 mice each; Supplementary Fig. 7). The basal
ganglia is thought to be involved in action selection and
sequencing34,46, the dysfunction of which may give rise to dis-
eases like OCD and Huntington’s, in which unwanted actions
occur, or occur too quickly48. Additionally, activation of the
indirect pathway has been suggested to contribute to hypokinesis,
or smaller and slower actions49. Importantly, methods for mea-
suring these kinematic changes (e.g. limb speed and distance)
across behaviors are largely absent, aside from locomotion. We
first compared the individual strokes comprising bouts of head
and face grooming.

Consistent with a hypokinetic role, we found that across all
animals lacking indirect pathway neurons there was a significant
rightward shift in the speed and distance of face grooming,
particularly pronounced for the smaller movements in the
distribution (Fig. 6). However, these effects was not observed in
the similar, but generally larger head grooming behavior. Current
quantitative methods for grooming only provide bout duration
and typically the canonical grooming types are combined because
of technological limitations. Realizing these robust but hitherto
indiscernible effects is made possible because of B-SOiD’s ability
to dissociate groom types, measure kinematics, and accurately
identify the start and stop of bouts. We were also able to uncover

Fig. 4 Comparison of top-down to bottom-up camera angles. a Example ethograms of concurrent behavioral segmentation from the top-down view. The
group definitions for the behavioral groups are as titled in (b), Fig 1c. b To quantify the relationship between approaches, top-down video reference groups
were mapped onto bottom-up target groups. Y-values indicate percentage of overlap greater than baseline distribution. Values < 0 not shown. c, d Same as
(a, b), but using bottom-up as reference and top-down as target. Tick mark along x axis indicates correct target group. Source data are provided as a Source
Data file for (a–d).
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other kinematic effects (Supplementary Fig. 8), including
pronounced increases in itching speed. Locomotor stride length,
but not stride speed was also significantly increased, providing a
kinematic mechanism for previous seminal motor control work
that observed gross locomotor hyperactivity following indirect
pathway lesion50. The behavior-specific kinematic sensitivity
demonstrated here may provide the means to uncover deeper
understanding in the fields of motor control, OCD, and
pain48,51,52.

Discussion
Naturalistic, unconstrained behavior provides a rich account of
an animal’s motor decisions and repertoire. Until recently, cap-
turing these movements with precision and accuracy was prohi-
bitive, as evidenced in part by the relative lack of computational
ethology studies53. Still, position does not equal behavior. Rather,
it is the stereotyped spatiotemporal patterns of these positions
that yield behavior. Our unsupervised algorithm, B-SOiD, cap-
tures the inherent statistics of limb and action dynamics with off-

the-shelf technology and a simple user interface. This tool serves
as the vital bridge between recent breakthroughs in establishing
the position of body parts12,28 and the conserved patterns of
positions we call behaviors. It also demonstrates the utility and
potential of pairing unsupervised spatiotemporal pattern extrac-
tion with supervised machine learning classifier in behavioral
assessment. It is the patterns in pose relationships that are dis-
covered, extracted, and used to inform the ML classifier, thus
mathematically tailoring the tool to the subject’s inherent beha-
viors and eliminating top-down user bias.

In addition to providing a tool that can be used on any position
data, we provide a glimpse into its potential. In part enabled by
the improved temporal resolution, we were able to align action
onsets with cortical activity, uncovering neural dynamcs that
reflected the changing behaviors. The greater resolution also
provides increased sensitivity to detect brief behaviors and the
individual components of those movements. In particular, we
resolved kinematic changes of individual limb strokes (grooming,
itching, locomotion) in a lesion model. The ability to decompose

Fig. 5 Quantification of unsupervised segmentation algorithms. a Using the same pose-estimation data, we selected up to 20 bouts from each behavioral
group identified by either DLC_2_MotionMapper or B-SOiD to construct motion energy (ME) images - capturing the average amount of movement across
bouts. Brighter colors indicate greater consistency in movement over the 300-600ms bouts. b To quantify the quality of these groupings, we determined
the difference (MSE) in motion energy across every bout, normalizing every values along a row to that row’s in-group mean MSE. The comparison between
related, in-group bouts is shown in the highlighted diagonal. Darker orange indicates greater differences between those pairs of bouts, e.g. 2 = twice the
normalized MSE. B-SOiD behavior numbers as used in Fig 1c. c Cumulative histograms of values in (b) for in-group (solid line) and out-group (dashed line)
bouts. The same B-SOiD bouts were shuffled into 11 random groups (black) to demonstrate a distribution without structure. Right-shifting of the
distribution is indicative of increased differences between sample bouts. Source data are provided as a Source Data file for (b, c).
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behaviors into their constituent movements is a key feature.
Because B-SOiD uses limb position, it extracts not only the action
performed, but also kinematics (stride speed, paw trajectory, etc).
While recent work has benefited from access to such performance
parameters26,54, it stands to be an even more potent advantage in
the study of disease models. Obsessive compulsive disorder
research in particular has long sought improved identification
and quantification of grooming behavior43,55,56. Pain and itch
research has also sought to achieve similar ends52. These results
point to the need for a deeper comprehension of the composite
kinematics forming those actions, as many current methods are
limited to only the duration of such actions.

A unique advantage of the classifier built on these pose-
relationships is computational ease. First, the open source pack-
age provides a platform that is accessible to biologists without
extensive coding knowledge nor computational resources (e.g.
expensive GPUs). Next, the classifier provides greater flexibility,
allowing a single trained model to be generalized across subjects,
labs, or frames with minor positioning errors. This ability is
fundamental deliverable of the machine learning integration. The
random forest classifier is trained on pose relationships, extract-
ing the conserved, essential features while also recognizing those
features with high variability. The classifier then predict the
likeliest label given all of the features, eliminating the potential
concerns that are inherent in non-linear transformations. Finally,
the speed afforded by using a classifier, rather than clustering, to
segment behavior leaves open the door to perform closed-loop
manipulations through real-time segmentation57.

To discover the clusters on which the classifier is built, B-SOiD
uses UMAP, which is both more computationally effective and
faster than similar methods like t-SNE31. While both methods
presetve tje local structure, UMAP preserves the “global struc-
ture”, or long-distance embedding placement of the dimension-
ally reduced space. Said another way, UMAP can enables the

determination of whether point 1 closer to point 2 or 3. These
advances may be useful for future development and interpret-
ability. The improved stability and speed of pose to re-embedding
enables segmentation at speeds greater than most camera fra-
merates. Additionally, B-SOiD need not be restricted to seg-
menting behaviors based only on pose-relationships. High-
dimensional, unsupervised segmentation may also be able to
integrate multi-model signals such as acoustics, environmental
stimuli, or multi-animal social interactions.

Methods
Here we explain the in vivo behavioral and electrophysiological measurements, and
then proceed to the computational techniques underlying the algorithm and fur-
ther analyses. A processing diagram can be found in Supplementary Fig. 1. For
bout duration in Fig. 1c, model cross-validated accuracy in Fig. 2c, and frameshift
coherence in Fig. 2f, box-plot elements carry the standard definitions(e.g. center
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile
range; points, outliers)

Behavioral subjects and experimental set-up. For normal, non-lesion experi-
ments (Figs. 2, 4, and 5), subjects were six, adult C57BL/6 mice (3 females, Jackson
Laboratory). The single brown mouse shown in Fig. 2a, is one of those sixe mice,
and is an example of the diversity of the C57BL/6 line, specifically the substrain 6N
(NIH) lineage, which can produce brown fur. Individual animals were placed in a
clear, 15 × 12 inch rectangular arena for one hour while a 1280 × 720p video-
camera captured video at 60 Hz (cluster and ML) or 200 Hz (frameshift). Following
each data session, any feces were cleaned out and the arena was thoroughly sprayed
and wiped down with Virkon S solution. The arena was then allowed to dry and air
out for several minutes. This video was acquired from below, 19 inches under the
center of the field. Offline analysis was performed in either Python or MATLAB
(MathWorks). Unless otherwise mentioned, all statistical measures of behavior
were non-parametric, two-tailed Kolmogorov–Smirnov tests and all error bars are
the standard error of the mean. All animals were handled in accordance with
guidelines approved by the Carnegie Mellon Institutional Animal Care and Use
Committee (IACUC).

Electrophysiology. To demonstrate differences in temporal resolution (Fig. 3), we
recorded during one open field session from layer 5 of forelimb area of motor

Fig. 6 Detection of robust, hard to detect kinematic changes in grooming behavior following cell-type specific lesion. a Schematic of canonical head
grooming and (bottom) face. b Cumulative histograms of distances and speed of the individual strokes comprising a bout, and of bout duration (control -
blue; lesioned - red, N= 4 animals, one session each). *p < 0.05, ***p < 0.0001, two-tailed Kolmogorov-Smirnov test). (c, d) Same as (a, b), but for
canonical face grooming. Source data are provided as a Source Data file for (a).
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cortex (0.50 mm anterior, 1.75 mm lateral of Bregma, z= 950 μm) in one Drd1a-
cre x ai32 on C57BL/6 background female mouse using a 64-channel silicon
electrode chronically implanted in aseptic conditions (Cambridge Neurotechnol-
ogy). Signals were sampled at 30 kHz with Open Ephys hardware. Spikes were
high-pass filtered and sorted offline using Kilosort2 (https://github.com/
MouseLand/Kilosort2). Activity across bouts aligned to onset of each behavior. To
enable comparison across neurons, each neuron’s average activity was binned
(10 ms) and z-scored over the interval −1s to 2s relative to onset. Neural activity in
Fig. 3 was z-scored across all instances of that action and are rank ordered
according to the average low-resolution activity during the 200 ms prior to align-
ment time. This rank order was used for both panels of a given behavior. The
neurons in Supplementary Fig. 5 are not rank sorted, but are consistent across
panels so as to facilitate comparison across panels. Similarly, z-scoring across all
panels incorporated all bouts identified with at the given resolution. A sliding
boxcar with a semi-width of three bins was applied to activity visualizations.
Randomly sampled data was achieved by taking the same number of instances of
each action within the session and distributing this number of alignment times
throughout the session. PSTHs were then generated with those alignements in the
same manner (Supplementary Fig. 4).

Extraction of kinematics. Individual strides and grooms were identified, and the
speed of the stroke quantified, by using the MATLAB function findpeaks() on the
speed of the right forepaw, with the troughs serving as the start/stop of each
movement. Average groom distance was computed as the euclidean distance of
right forepaw displacement per stroke averaged amongst all head groom bouts.

Indirect pathway cell-type specific lesion experiment. Eight adult Adora2a-cre
(often called A2A, Jackson Laboratory stock #036158, four females, C57BL/6
background) mice were used to study the effects of cell-type specific lesion of
striatal indirect pathway neurons. Half of these animals (two females) were injected
with AAV2-flex-taCasp3-TEVP58 4 × 1012 vg/mL from UNC Vector Core bilat-
erally into the dorsomedial striatum: AP +0.9, ML ± 1.5, DV −2.65. Animals were
allowed to recover at least 14 days prior to open-field experiments. The virus is
designed to kill only cells expressing cre recombinase. To help visualize virus
spread, a non-Cre dependent GFP virus, AAV2-CAG-GFP 4 × 1012 was co-
injected. 1 μL in each hemisphere was injected with a virus ratio of 2:1, Casp:GFP
and a rate of 200 nL/min. The GFP virus was added because the cre-positive cells
will be killed as a result of the caspace virus injection, leaving the many cre-negative
cells behind (Supplementary Fig. 7). Thus the location of gross cell loss is difficult
to quantify otherwise (GFP – green, foxpl1 counterstain – red, overlap – green).
Expression of GFP is restricted to the striatum. Quantifying decreased cell density
by eye also produced similar lesion maps (not shown).

DeepLabCut training and model availability. For pose-estimation, we used the
aforementioned six-body part model trained on a total of 7881 frames (at least 50
frames for all sessions, 69 total sessions, N= 21 animals). The training regimen was
set to the DeepLabCut default12 and trained for 1.03 million iterations, achieving a
loss of ≈0.002. The weights of the neural network are open sourced and freely
available https://github.com/YttriLab/B-SOID/tree/master/yttri-bottomup_dlc-
model/dlc-models.

Data processing feature extraction. With increasing sampling frequency, the
intra-frame differences that are critical to determining the spatiotemporal features
(e.g. speed) diminish. For instance, 60 fps sampling provides an inter-frame
interval of only 16.7 ms – relegating the changes in position to a similar magnitude
to the jitter in the position signal itself. To improve the signal-to-noise ratio,
B-SOiD downsamples all input to non-overlapping 10 fps (100 ms) windows, and
then either sums (displacement, anglular change) or averages (distance) over all
10 fps samples. Thus, for the six points used in our mouse data, the per-frame
spatiotemporal features consisted of 15 displacement (D) and angular change (Θ)
measures, and six distances (L). This process is described in Algorithm 1 and the
process pipeline diagram (Supplementary Fig. 1). In addition, these features are
then smoothed over, or averaged across, a sliding window of size equivalent to
~60 ms (30 ms prior to and after the frame of interest). This is important for
distinguishing the pose estimate jitter from finer movements that the animal
makes, such as the different groom types.

Algorithm 1
Feature extraction for N pose estimates
Initialize, for m= 1 to ðN2 Þ:
Lm ← 0
Θm ← 0
form= 1,M do

m ← any pair of pose n and ≠ n
Store ∥(nm1, nm2)∥2 in Lm
for t= 1, T− 1 do

Store arccos [(Lm,t+1 × Lm,t)/(∥/Lm,t+1∥ ⋅ ∥Lm,t∥)] in Θm

end

Discard the first index of Lm
end
Initialize, for n = 1 to N:
Dn ← 0
for n= 1,N do

n← 2D pose estimate
for t= 1, T− 1 do

Store ∥(nt+1, nt)∥2 in Dn

end
end
return L,Θ,D

Dimensionality reduction with UMAP. B-SOiD then projects the computed pose
relationships (D, Θ, and L) into a low-dimensional space, which facilitates behavioral
identification without simplifying the data complexity. In simpler terms, similar
mouse multi-joint trajectory will retain its similarity visualized in the low-dimensional
space. B-SOiD achieves this through UMAP, a state-of-the-art algorithm that utilizes
Riemannian geometry to represent real-world data with the underlying assumptions
of the algebraic topology31. UMAP is chosen over the popular t-SNE for its advantage
in compuational complexity, outlier distinction, and most importantly, preservation
of longer-range pairwise distance relationships31,36,59–61. Dimensionality reduction
was implemented in the ‘Start clustering’ step in B-SOiD UI. Embedded in this step is
a python implementation of umap-learn v.0.4.x (https://github.com/lmcinnes/umap).
Since our goal is to use UMAP space for clustering, we enforced the following UMAP
parameters: (n_neighbours= 60, min_dist= 0.0, euclidean distance metric). In terms
of n_components, we call python implementation of decomposition.PCA() from
scikit-learn v.0.23.x (https://github.com/scikit-learn/scikit-learn) and set n_compo-
nents to explain ≥0.7 of total pose-estimation variance.

Identify group assignments with HDBSCAN. UMAP embeddings were then
clustered through HDBSCAN algorithm32. It is particularly useful for UMAP
outlier detections as it recognizes subthreshold densities. HDBSCAN assignments
was implemented in the ‘Start identifying’ in B-SOiD UI. Embedded in this step is a
python implementation of hdbscan v.0.8.x (https://github.com/scikit-learn-contrib/
hdbscan). To enable maximum flexibility in determining the number of behavioral
groups the method creates, we enabled user input for HDBSCAN parameter
min_cluster_size.

Random forest classifier for accurate and fast prediction. Random forest
classifier design was chosen for high-dimensional pose relationships mapping to
discrete multi-class behaviors. In addition, it has been suggested that Random
forest has the ability to accurately learn the low-dimensional embedding from the
high-dimensional features36. Random forest was implemented in the ‘Start training
a behavioral random forest classifier’ step in B-SOiD UI. Embedded in this step is a
python implementation of ensemble.RandomForestClassifier() from cikit-learn
v.0.23.x (https://github.com/scikit-learn/scikit-learn). We set the parameters to
default, as it was sufficient for learning the mapping.

Frameshift prediction paradigm. Many end users may wish to apply the algo-
rithm to higher frame-rate video. Because B-SOiD applies a temporal constraint of
~10 fps to maintain an optimal signal-to-noise ratio (which can be adjusted by
tricking the UI in input frame-rate), we designed B-SOiD to predict along a sliding
window. This is mathematically implemented using offsets, pseudocode in
Algorithm 2.

Algorithm 2
Frameshift implementation for F times higher sampling rate than 10 fps
Initialize behavioral array:
G ← 0
Initialize downsampled behavioral array, for f= 1 to F:
gf ← 0
for f= 1, F do

Start at f, sample pose-relationships at 10 fps, S frames
for s= 1, S do

Store the prediction (g∣s) in gf
end
Insert gf at every Fth position in G starting at f

end
returnG

In Fig. 2f, to accurately quantify the consistency between predicted frameshifted
G and the non-frameshifted gf (annotation described in Algorithm 2), we
upsampled gf with the same values prior. To demonstrate the input flexibility of
B-SOiD with a high speed camera, our frameshift example in Fig. 2f was 200 fps.
Given no evidence for improvement beyond 50 fps, all other analyses were 60 fps at
resolution.

We recognize that spurious labeling could arise due to jitter. Although
segmentation is applied independently to each frame, we assume some level of
continuity of actions. As such, we discarded any frameshifted bout that was not at
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least three samples (<50 ms) in duration where applicable (Figs. 3 and 4; Fig. 5 used
a 300 ms lower bound and when set lower, the inclusion of shorter durations only
improved B-SOiD relative to MotionMapper; the data in Fig. 6 was devoid of
<50 ms bouts). In Fig. 3, non-frameshift was comprised of 10,433 bouts with a
mean of 948 bouts/group; frameshift was comprised of 17,129 bouts with a mean of
1557 bouts/group. Given 11 groups, the probability of the random jitter event
occurring and being repeated three times is less than one percent. We note that the
addition of this conservative approach did not qualitatively change any findings,
and that each datapoint itself is the summary of several segmentations across the
100 ms frameshift window. Although this duration cutoff is in line with other
mouse behavioral work, our motivation was more mathematical and less a
statement on any psychophysical assumptions. As demonstrated in the 300 fps rat
reach-to-grasp data, B-SOiD as a tool can be titered to preferentially segment whole
actions or their sub-actions. Additionally, some actions (e.g. saccades during
reading) have durations as low as 20 ms. A human can deliver as many as 20
punches in a single second. As such, B-SOiD does not enforce any limits on
duration, allowing the user to determine the pertinent timescales and appropriate
interpretations.

Integration of low-confidence pose estimates. The occlusion of a point from
view can be informative (e.g during a rear, the snout is often occluded by the body
when viewed from below), but a missing point can be the result of poor pose
estimation on a given frame. The certainty of each frame’s pose estimation is
provided by most pose estimation software in the form of prediction confidence/
likelihood values. In all data sets, we observed a bimodal distribution comprised of
either very high or low confidence values. To bisect the two distributions with each
session, B-SOiD designates all points with a confidence score below the elbow point
(difference (high - low) between adjacent likelihood becomes positive) of the
probability. We remove these low-confidence points and substitute that position
with last high-confidence position. Thus, the displacement between frames for a
low-confidence point is zero. It should be noted that even when stationary, pose
estimation programs do not output identical positions in consecutive frames.

Low confidence estimations can occur from a missing body part (e.g. from
being behind another body part) or poor prediction (e.g. blurry video or
inconsistent lighting). In the latter case, the aberrations which led to the low-
confidence points are typically short lived, often only a single frame, and are fully
mitigated by averaging over the 100 ms frameshifting interval. Prolonged low-
confidence points contribute a spatiotempotal signature, and if repeated as a
behavior, may be part of an identified spatiotemporal pattern (either in training or
prediction). The occlusion of the snout during rear(+) is one example.
Importantly, occasional prolonged aberrations do not adversely affect the
algorithm. During training, spurious omissions will be too variable to constitute a
conserved pattern – and the added variability may make the random forest even
more robust. During prediction, the trained model utilizes 36 spatiotemporal
features, minimizing the effect of a pose estimation error. This ability to
incorporate patterned omissions and overcome spurious errors is another benefit of
adding the trained classifier following the clustering.

Motion energy image mean-squared-error. The term ‘motion energy’ was
introduced by Stringer et al.62 and refers to the absolute value of the difference of
consecutive frames. Since the animal is freely moving in the environment, starting
pose alignment is necessary. Following image registration using estimated outline
of animal at the start of each identified behavior, we compute the motion energy
(ME, absolute value of the difference of all consecutive frames) using MATLAB
command matlabimshowpair, capped at 600 ms for conciseness. We then per-
formed weighted averaging for each bout to reconstruct a single ME image. In
other words, each pixel in such reconstructed ME image represents the average
absolute difference between consecutive frames at a given pixel location. Since there
are multiple instances of each action, we want to see if such animal-centric average
absolute difference is conserved between instances. To quantify consistency, we
performed all pair-wise image mean-squared-error using MATLAB command
matlabimmse. Essentially, the pixel difference between instances (ME images) will
be coalesced into a single value (MSE). MSE is inversely proportional to con-
sistency of animal movement for each identified action.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in a GitHub repository found at https://
github.com/YttriLab/openfield_data, https://doi.org/10.5281/zenodo.490057363. Source data
are provided with this paper.

Code availability
Our DeepLabCut network, analysis code, as well as the data used to create these figures,
are all open sourced and freely available from GitHub https://github.com/YttriLab/B-
SOID, https://doi.org/10.5281/zenodo.485010764, including a similar version of the code

for MATLAB, though this version is simpler and uses t-SNE for dimensionality
reduction.
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