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Brain atrophy,measured byMRI, has been proposed as a useful surrogatemarker for disease progression inmultiple
sclerosis (MS). However, it is conventionally assumed that the accurate quantification of brain atrophy is made dif-
ficult, if not impossible, by changes in the parameters of the MRI acquisition, which are almost inevitable over the
course of a longitudinal study sinceMRI technology changes rapidly. This state of affairs can negatively affect clinical
trial design and limit the use of historical data. Here, we investigate whether we can coherently estimate brain
atrophy rates in a heterogeneous MS sample via linear mixed-effects multivariable regression, incorporating three
critical assumptions: (1) using age at time of scanning, rather than time since baseline, as the regressor of interest;
(2) scanning individualswith a variety of techniques; and (3) introducing a simple additive correction formajor dif-
ferences in MRI protocol. We fit the model to several measures of brain volume as the outcome in twoMS popula-
tions: 1123 scans from 195 cases acquired for over approximately 7 years in two natural history protocols (Cohort
1), and 1331 scans from 69 cases seen for over 11 years who were primarily treated with two specific MS disease-
modifying therapies (Cohort 2).We compared themixed-effectsmodelwith additive correction forMRI acquisition
parameters to a model fit without this correction and performed sample-size calculations to provide an estimate of
the number of participants in anMS clinical trial thatmight be required to see a therapeutic effect of treatment using
the approachdescribed here. The results show thatwithout the additive correction for T1-weightedprotocol param-
eters, atrophywas underestimated and subject-specific estimates weremore narrowly distributed about the popu-
lation mean. Ventricular CSF is the most consistently estimated brain volume, with a mean of 2.8%/year increase in
Cohort 1 and 4.4%/year increase in Cohort 2. An interesting observationwas that graymatter volume decreased and
white matter volume remained essentially unchanged in both cohorts, suggesting that changes in ventricular CSF
volume are a surrogate for changes in gray matter volume. In conclusion, the mixed-effects modeling framework
presented here allows effective use of heterogeneously acquired and historical data in the study of brain atrophy
in MS, potentially simplifying the design of future single- and multi-site clinical trials and natural history studies.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Multiple sclerosis (MS) is an immune-mediated disease of the CNS
that is characterized by focal demyelinating lesions and causingphysical
and cognitive impairment. Although these focal lesions are the most
striking feature of the diseasewhenMSpatients are studiedwithmagnet-
ic resonance imaging (MRI), brain lesion volume per se is not strongly
correlated with disability (Filippi et al., 1995; Furby et al., 2010; Kappos
et al., 1999). Additionally, patients often continue to have progressive
symptoms while developing few new lesions.

One possible explanation for progressive disease in MS despite a
paucity of new lesions is abnormally rapid brain atrophy, which has
been noted in many studies that have examined MS with MRI (for re-
view, see Giorgio et al., 2008). Atrophy has its origin in neuronal and
ved.
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Table 1
Relevant patient sample characteristics for both Cohort 1, a convenience sample of MS
patients from two natural history protocols, and Cohort 2, patients whose data were
used in a post hoc analysis of the therapeutic effect of daclizumab in MS. MS: RR,
relapsing–remitting; PP, primary progressive; SP, secondary progressive; CIS, clinically
isolated syndrome.

Dataset Cohort 1 Cohort 2

N (by sex) 116 F, 79 M 44 F, 25 M
Number of scans 1123 1331
Mean age (range) 42 years (17–68 years) 38 years (18–60 years)
Median scans per
person (range)

4 (2–27) 15 (2–55)

Mean total follow-up
time (range)

1.2 years (21 days–5.2 years) 5.9 years (1.1–10.5 years)

Disease type RRMS: 142; PPMS: 34;
SPMS: 12; CIS: 7

All RRMS

Median EDSS (range) 1.5 (0–8.5) 1.5 (0–6.5)
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glial degeneration, primarily resulting in gray matter loss (Fisher et al.,
2008; Fisniku et al., 2008; Shiee et al., 2012). Gray matter volume has
been shown to be an independent predictor of disability in all MS sub-
types (Roosendaal et al., 2011). Therapies such as interferon beta-1b
(Molyneux et al., 2000), glatiramer acetate (Rovaris et al., 2001), and
natalizumab (Miller et al., 2007), which are effective at preventing
new lesions, are ineffective at fully correcting atrophy rate (for review
of the effect of therapeutics on atrophy, see Zivadinov et al. (2008)).
Thus, atrophy rate has been postulated as a surrogatemarker for disease
progression and has been used as an outcome measure in many trials
(several previously mentioned, as well as Filippi et al. (2004)).

An issuewith using brain atrophy as a surrogate for disease progres-
sion is the inherent difficulty in measuring it. Most studies use normal-
ized measures of brain volume that fall primarily into two categories.
Longitudinal methods, such as SIENA, register two images from the
same individual and look for changes in the brain surface (Smith et al.,
2002). Cross-sectional methods relate the volume of interest to a nor-
malization volume, such as the skull or intracranial volume, and track
changes in the relative size of brain structures over time (Chard et al.,
2002). Both types of method have been valuable in the study of atrophy
inMSbut require, or performbestwith,MRI data acquired in a homoge-
neous fashion with respect to hardware, protocol, and acquisition pa-
rameters. The reason is that these methods are analogous to studying
the atrophy rate of each subject separately and averaging the results
to generate an atrophy rate for the population of subjects. A spurious
change in apparent brain volume induced by a change in acquisition pa-
rameters in one ormore scans on a particular subjectwill produce an in-
accurate measurement of atrophy rate in that subject. A “second stage,”
population-level analysis will then produce a flawed population esti-
mate of atrophy rate. This technical constraint limits study duration
and sample size, since imaging technology is in constant flux and differ-
ent centers often use different equipment and protocols, andmeans that
brain atrophy is often estimated from relatively short-term data. How-
ever, short-term biological variability in brain volume is well-known
in MS, resulting from variations in factors such as hydration status and
the effect of anti-inflammatory therapy known as pseudoatrophy,
which can result in loss of brain volumewithout actual loss of brain tis-
sue upon the initiation of treatment (Fox et al., 2005; Mellanby and
Reveley, 1982; Rao et al., 2002; Sampat et al., 2010; Zivadinov et al.,
2008). Compounding the problem is that the absolute change in brain
volume that represents real atrophy is small relative to this biological var-
iability (De Stefano et al., 2010; Rao et al., 2002). The result— that follow-
up must essentially start over with every new trial or improvement in
MRI equipment or technique — is especially difficult when good quality
historical control data fromMS trials exist (Shirani et al., 2012).

In the analysis of longitudinal data, linear mixed-effects multivari-
able regression analysis enjoys several well-described statistical advan-
tages over the described “two-stage” or so-called “NIHmethod” (Cnaan
et al., 1997) (for textbook treatment, see Fitzmaurice et al. (2011)).
Mixed-effects regression enables the generation of both population-
level and subject-specific atrophy rates, permits the use of data from
subjects with few data points, and also allows the quantification of the
effects on atrophy of variables such as therapy and lesion load at the
population level. In fact, mixed-effects models have been applied to at-
rophy rates generated using the aforementioned methods to calculate
sample sizes for trials (Anderson et al., 2007).

The goal of this study was to investigate whether longitudinal data
from multiple scanning protocols can be reasonably integrated into a
coherent estimate of individual- and population-level brain volume
changes in MS. We hypothesized that applying linear mixed-effects re-
gression to absolute brain volumes, rather than to atrophy rates gener-
ated separately for each patient, would allow us to correct for the effect
of MRI acquisition differences at the population level using an additive
factor. To accomplish this, we postulate that regression should be
performed against age at the time of scanning (rather than time elapsed
since the first scan, with age as covariate), and also that scans with
different protocols be performed on individual subjects. We show that
this approach can generate reasonable results for atrophy rate in two
populations of MS patients with intra-subject variation in MRI acquisi-
tion parameters — Cohort 1, a collection of heterogeneous longitudinal
data from two MS natural history protocols, including scans performed
off and on disease-modifying therapy; and Cohort 2, derived from a
retrospective analysis of data obtained from MS cases seen at our
center over an 11-year period who were predominantly treated with
daclizumab, an anti-CD25 monoclonal antibody, and interferon beta.
An important implication of thiswork is that it opens the doors for com-
parison of historical data to data more recently acquired, particularly if
individual subjects were studied with a spectrum of protocols, thereby
decreasing the impact of small sample sizes and short-term follow-up
durations on studies of brain atrophy.
2. Materials and methods

2.1. Cohort 1

This cohort includes a convenience sample of MS cases enrolled in
our center between October 2005 and September 2011, who were
being evaluated in the context of two ongoing natural history protocols
(the last scan in this cohort was performed in December 2011). We ini-
tially analyzed 1491 MRIs from 373 cases using our automated image-
processing software (see below). Of these, we excluded 111 cases
with only one MRI, as we were only interested in longitudinal changes
in brain volume. Of the remaining 262 cases, we excluded 3 because
our software failed to provide reasonable estimates of lesion volume
from their images.We also removed 64 cases because their final diagno-
sis was not MS according to 2005 and 2010 McDonald criteria (Polman
et al., 2005, 2011). A final pool of 1123 MRIs from 195 cases remained
for the analysis. Of these scans, 23 were later removed because they
had extreme ventricular sizes that precluded reliable quantification of
brain volume (see Section 2.4). Table 1 contains a summary of demo-
graphic and clinical characteristics; a summary of MRI acquisition pa-
rameters may be found in Table 2. Subjects in Cohort 1 were treated
with a variety of disease modifying therapies, including interferon
beta 1a and 1b, glatiramer acetate, daclizumab, natalizumab, idebenone,
mitoxantrone, and fingolimod; 773 scans were from subjects treated
with any disease-modifying agent during the observation period,
while 327 were from those never treated during this period. Modeling
of individual treatment effects was beyond the scope of this work.
Differences in follow-up length were not considered in our analysis,
as a multivariable regression of age, sex, EDSS, and disease type on
follow-up length (results not reported) yielded no association between
any of these factors and follow-up length.



Table 2
MRI acquisition parameters. Nominal in-plane resolution was approximately 1 × 1 mm for all scans. T1WP, T1-weighted protocol; Vol, volume coil; 8-ch, 8-channel head coil;
TR, repetition time; TE, echo time; TI, inversion time; F, FSPGR (fast spoiled gradient echo); M, MPRAGE (magnetization-prepared rapid acquisition of gradient echoes).

Cohort 1 Cohort 2

T1WP: 1 2 3 4 5 6 7 8 9 10 1 2 3 4

Number of scans 5 335 2 1 68 305 5 289 30 83 188 996 38 110
Scanner manufacturer GE GE GE GE GE GE GE GE GE Philips GE GE GE GE
Field strength (T) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 1.5 1.5 1.5 1.5
Receive coil Vol Vol Vol Vol 8-ch 8-ch 8-ch 8-ch 8-ch 8-ch Vol Vol 8-ch 8-ch
TR (ms) 12 9–10 7 8 10 9 8 9 8–9 7 ~9 ~9 ~10 ~9
TE (ms) 5 2–3 3 3 3 3.5 3 3.5 3 3 ~2 ~2 ~3 ~3.5
TI (ms) None None 400 750 None 450 750 450 725 900 None None None 450
Flip angle (deg) 20 20 12 16 20 13 16 13 6 9 20 20 20 13
Slice thickness (mm) 1.2 1.4 1.5 1 1.4 1.5 1 1 1 1 1.3 1.4 1.4 1.5
Acquisition protocol F F F F F F F F M M F F F F
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2.2. Cohort 2

Cohort 2 consisted of MS cases whose data were used in a post hoc
analysis of the therapeutic effect of daclizumab (Borges et al., 2013).
Seven of the 69 cases in Cohort 2 were also in Cohort 1 (comprising
only 20 scans). Table 1 contains clinical and demographic characteristics
of these data, while Table 2 shows the MRI acquisition parameters.
There were 26 cases treated with daclizumab and 43 non-daclizumab
cases; the effect of therapy was not considered here.

2.3. Image processing

Lesion-TOADS is a fully automated, topology-preserving brain seg-
mentation algorithm based on image intensity and a statistical prior
probability atlas that enables simultaneous tissue classification and MS
lesion detection and compares favorably with other segmentation tech-
niques (Shiee et al., 2010). The algorithm uses both a T1-weighted
image and a T2-FLAIR image to generate a classifier image and accounts
for the effect of lesions on signal intensity in the T1-weighted image.
The output from lesion-TOADS includes brain volumes for each of the
17 tissue types it considers, as well as the lesion volume. The T1-
weighted images are used for brain structure segmentation, whereas
the T2-FLAIR images are used for lesion segmentation. In this study,
our tissue types of interest were ventricular CSF (vCSF) as well as
supratentorial gray matter (sGM), white matter (sWM), and total vol-
ume (sTot). Average lesion volume, calculated as described below,
was also considered. sWM volume included both lesions and normal-
appearing white matter.

Before applying lesion-TOADS, T1-weighted and T2-FLAIR im-
ages were inhomogeneity corrected using the N3 algorithm (Sled
et al., 1998), and the chronologically middle image was rigidly
registered to the MNI-152 space; this middle image was also used
as the target for registration of all other images for that subject. A
mean image was then computed by voxel-wise averaging across
all of the subject's scans. The skull was removed automatically
using SPECTRE (Carass et al., 2007), generating a brain-and-CSF
mask for each individual scan. Each image was normalized by
subtracting the mean whole brain intensity and dividing by its stan-
dard deviation (Shinohara et al., 2011), and the images were then
re-registered to the mean image. Lastly, the histograms for each
image were matched to the histogram of the mean image using
the “Histogram Image Matching” algorithm in MIPAV (medical
image processing, analysis, and visualization, http://mipav.cit.nih.
gov). Lesion-TOADS was then applied to each image.

A single lesion volume was generated for each case by averaging all
volumetric T1-weighted images and all T2-FLAIR images from that case
and applying lesion-TOADS to the average images. In our experience,
this produced a more reliable single estimate of overall lesion volume
than averaging the lesion load estimates from individual scans, at the
cost of losing the ability to track lesion volume over time and possibly
inducing an overestimation of lesion volume (as lesions tend to accu-
mulate over time).

2.4. Statistical methods

A linear multivariable mixed-effects regression model was applied
separately to each tissue type of interest to quantify the rate of volume
change:

Volij ¼ β0 þ β1 � AGEij þ β2 � SEXi þ β3 � LESIONi þ β4 � T1WPij þ b0i
þ b1i � AGEij þ εij:

In this model, the predicted volume of interest for subject i at time
j (Volij) is determined by population (“fixed”) effects, represented by
β0…β4, and subject-specific (“random”) effects, b0i and b1i. The average
rate of change in the population is β1, while the subject-specific differ-
ence in that rate is captured by b1i. Sex and T1-weighted protocol
(T1WP) were modeled as indicator variables. T2-FLAIR protocol is not
included because the T2-FLAIR image is predominantly used by lesion-
TOADS for delineation of lesions rather than of brain tissue structure.
Differences in T1WP were captured in a descriptive “code” generated
from the scannermanufacturer, magneticfield strength, receive coil, ac-
quisition type (fast spoiled gradient echo [FSPGR] vs. magnetization-
prepared rapid acquisition of gradient echoes [MPRAGE]), inversion
time (TI), and slice thickness. Data are presented with this correction
applied, so that model fits can be shown as straight lines. Age in years
and lesion load (LESION) are continuous variables. Themodel was fitted
once to vCSF volume data, and an empirical threshold for the residuals
was established (absolute value of the residual N3.75 ml). Scans with
data above this cutoff were found to be those with extreme ventricular
sizes. These scanswere removed (23 scans), and themodel was refit for
each structural volume of interest. The rationale for this is that lesion-
TOADSmost often fails on scanswith extremely large or small ventricles
due to its use of a statistical atlas for tissue types. The results of the
model were compared to those obtained when fitting the same model
but removing T1WP; a likelihood ratio test was performed to compare
the two models. For vCSF volume in Cohort 1, results for fitting a
model including a fixed effect for the square of age as well as a model
including a fixed effect for ever treated vs. never treated during the ob-
servation period are also reported. Additionally, the effect of using age
as the time variable was compared to structuring the model with time
elapsed sincefirst enrollment as the timevariable and age as a covariate.
For Cohort 2, longitudinal lesion loadwas not included in the previously
reported modeling results (Borges et al., 2013).

The distribution of vCSF volumes in the population as a whole was
found to be right-skewed in both datasets, so a natural logarithmic trans-
formation was applied before model fitting. Therefore, atrophy rates
for vCSF are given as %/year. A normal distribution reasonably approxi-
mated all of the supratentorial tissue measures, so no transformation
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was applied to these data, and atrophy rates are reported as absolute rates
in ml/year.

Statistical analysis was performed in R version 2.14.1 (R
Development Core Team, 2011). The lme4 package version
0.999375-42 (Bates et al., 2011) was used for the fitting of mixed
effects models using restricted maximum likelihood estimation.
Graphics were produced using the ggplot2 package, version 0.9.1
(Wickham, 2009). In lieu of p values, the 95% confidence interval
is reported for calculated values as appropriate, since many com-
parisons were performed and showing “statistical significance” of the
results is not the goal of these analyses.

2.5. Sample size calculations

The sample sizes necessary in each arm of a hypothetical therapeutic
trial to detect effects of 25%, 50%, and 75% of the therapy on the atrophy
rate were calculated using the following formula (Diggle et al., 2002):

N ¼ 2
γ2 z1−α=2 þ z1−β

� �2
σ2

b;2 þ 2
σ2

ε

t2

 !

where N represents the number of subjects per trial arm necessary to
detect a change in atrophy rate γ, assuming variance of the slopes σb,2

2

and variance of the residuals σε
2, both of which were estimated from

our sample. Z-scores for α = 0.05 and power = 1 − β = 80% were
used. Results were calculated for a simplified trial with an initial scan
and one follow-up scan; follow-up scan times of one and two years
were compared.

3. Results

Fig. 1 shows representative T1-weighted and T2-FLAIR images from
one case at a single time point, as well as the lesion-TOADS classifier
mask associated with them.

Mixed-effectsmodelswith andwithout T1WP correctionwere fitted
to the data collected from Cohort 1, a heterogeneous population of MS
cases (see Materials and methods). The effect of including an additive
correction factor based on a code that captures the variability associated
with 6 parameters of the MRI acquisition is demonstrated in Fig. 2. The
additive corrections for each T1WP code were calculated from the
mixed-effects model fits and are constrained by the population-level
effects of age, sex, and total lesion volume, as well as the clustering of
data by subject. These correction factors were then explicitly added to,
or subtracted from, the original measurements in order to create the
T1WP-corrected values shown in the plots. Other acquisition types
were corrected to protocol 1 (see Table 2). The mixed effects fits are
shown with T1WP-correction (black lines) and without it (red lines).
Fig. 1. Representative A) T1-weighted (FSPGR), B) T2-FLAIR, and C) lesion-TOADS
classification images. The lesion-TOADS image shows classification of cortical gray
matter (orange), white matter (white), ventricles (brown), and lesions (red). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
The effect of T1WP correction is explored in two individual subjects
in Fig. 3, which includes notation of the combinations of acquisition
parameters for each scan (with reference to Table 2).

The population estimates of atrophy rate, as well as the variability in
the subject-specific estimates as quantified by the standard deviation,
are given in Table 3. Additionally, Table 3 provides results for each tissue
type when the model includes time elapsed since enrollment/first scan
as the time variable, with age as covariate. Note that likelihood ratio
tests comparing the model results without and with the T1WP correc-
tion were all highly significant (p b 2.2 × 10−16), probably due to the
high number of observations and relatively small number of terms in
the model. Moreover, residual variance is substantially lower for the
models that include the T1WP correction.

The results indicate that without the correction for T1WP, themodel
assigns a lower population rate of vCSF increase and a higher rate of
sWM decrease relative to the results obtained with the T1WP correc-
tion. Stability over time of sWM volume, as determined by the T1WP-
corrected model, is consistent with prior studies (Pirko et al., 2007;
Shiee et al., 2012). Moreover, the uncorrected models yielded a
narrower distribution of subject-specific atrophy rates around the pop-
ulation mean, whereas the T1WP-corrected model closely approximat-
ed individual subject trends, particularly for vCSF. Age and time elapsed
both provide similar estimates of atrophy for vCSF when used as the
time variable, although the variance in the estimate is larger when
using timeelapsed. For sGMand sWM,however, using agemore strong-
ly constrains the estimate of atrophy rate in the face of the high variabil-
ity in these data. Residual variance is similar for these two classes of
model.

A model including a fixed effect for the square of age reduced the
utility of the age predictor while not adding great predictive value to
the model for vCSF data. In particular, in the quadratic model the atro-
phy rate with age was 2.0%/year [95% CI: −1.4, 4.3] and with age2

0.011%/year [−4.2, 4.4]; the SD of atrophy rates was 2.6%/year. Hence,
we performed further analysiswithout the quadratic term.Afixed effect
of ever vs. never treated with any disease-modifying agent during the
observation period did not add predictive value to the model (regres-
sion coefficient for treatment: 15%/year [−1.3,35]) andwas also exclud-
ed from further analyses.

Fig. 4 shows the mixed-effects fits with and without T1WP correc-
tion for the cases from Cohort 2. To facilitate comparison to Cohort 1,
no treatment effect of daclizumab was considered, unlike in Borges
et al. (2013), where daclizumab therapy was shown to reduce the rate
of brain volume change relative to interferon beta. Population atrophy
rate and within-subject variability estimates for Cohort 2 are found in
Table 4. In this cohort, long follow-up and relatively low within-
subject variability (due in part to the use of more similar acquisition
protocols) led to reasonable individual- and population-level estimates
for both vCSF and sTot. As in Cohort 1, atrophywas underestimated, and
subject-specific estimates were more narrowly distributed about the
population mean, in the absence of T1WP correction. Note that we did
not separate the data into gray andwhitematter components for Cohort
2, because gray-white segmentation was not particularly reliable in this
dataset, wheremost scanswere acquired at 1.5 Twith a volume receive
coil (Borges et al., 2013).

To study the effect of the differing within-subject variability be-
tween vCSF and sGM in Cohort 1 on the ability to detect changes in at-
rophy rate, we performed calculations to estimate the sample sizes in
each arm of therapeutic trials necessary to detect 25%, 50%, and 75% dif-
ferences in atrophy rate. A simplified trial design of one initial scan and
one follow-up scan at either one or two years was used (Table 5). The
results suggest that about 18 times asmany cases are required to detect
changes in atrophy rate for sGM volume as compared to vCSF volume
for the one-year trial, whereas about 10 times as many cases are neces-
sary for the two-year trial. Note that these sample sizes are provided for
illustration only, as it is highly unlikely that a clinical trial would be
designed using a cohort and acquisition parameters similar to ours.

image of Fig.�1


Fig. 2. The effect of T1-weighted protocol (T1WP) correction in 195 MS cases in Cohort 1 (natural history protocol; individual cases represented with different hues of blue and green).
A) Log-transformed ventricular cerebrospinal fluid (CSF) volume and fits generated by the mixed effects model that did not incorporate T1WP correction (black lines) B) The fits (red
lines) of the model with T1WP correction for ventricular CSF; the point-by-point data were also corrected for T1WP. C) and D) are analogous plots for supratentorial gray matter (GM)
volume, while E) and F) show the same for supratentorial white matter (WM) volume. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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4. Discussion

Brain atrophy inMS is awell-studied phenomenon that is thought to
reflect neuroaxonal loss and that, as a result, has been postulated as a
surrogate measure of disease progression. Our results demonstrate
that mixed-effects modeling of absolute brain volumes can robustly
allow the use of larger, more heterogeneous datasets to improve esti-
mation of atrophy rates in MS populations. Themethodology presented
here may be further tested in large-scale, multi-site clinical trials.
Specifically, our framework incorporates: (1) explicit integration of
age as the independent variable of interest, given clear population-wise
(and essentially linear) associations of brain structure volumes with
age; (2) simple statistical modeling of heterogeneous data acquisition
protocols to reduce uninformative variability in the data, which is facili-
tated by acquiring data from individual subjects using a variety of proto-
cols; and (3) generation of subject-specific rates of brain volume change.

The goal of this study was not to define the optimal model for inte-
grating heterogeneous data into a single analysis. Nevertheless, it is

image of Fig.�2


Fig. 3. The effect of T1-weighted protocol (T1WP) correction in A) a representative subject
who underwent 18 scans for over 2 years with 4 different T1-weighted protocols and
B) a second representative subject who underwent 10 scans in 2 years and 4 months.
Plots show log-transformed ventricular cerebrospinal fluid (CSF) volume; the green line
represents uncorrected data, while the blue line represents data with additive T1WP
corrections applied. The number on each uncorrected point represents protocol number,
as described in Table 2. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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interesting to note that even the simple additive correction used here
substantially reduces within-subject variability. In-depth modeling of
the effects of individual scanning parameters is beyond the scope of
this study but could certainly be incorporated to further reduce the var-
iability and improve estimation of atrophy rates. Also beyond the scope
of this study is determining the specific numbers of subjects and scans
per protocol that would be necessary to apply the methods described
here. Although the success of the method would certainly increase
Table 3
Estimates of atrophy rates, with associated 95% confidence intervals (CI) as well as standard de
T1WP correction for ventricular cerebrospinal fluid (vCSF), supratentorial gray matter (sGM),
model is also reported. The last row shows the calculated atrophy rateswhen time elapsed since
T1WP, T1-weighted protocol.

Model vCSF rate
[95% CI]

SD of vCSF rates Residual variance
[(log-mm3)2]

sGM rate
[95% CI]

T1WP correction 2.8%/year
[2.1, 3.5]

±2.6%/year 1.6 × 10−3 −2.1 ml
[−2.7,−

No T1WP correction 0.72%/year
[0.15, 1.3]

±1.7%/year 3.6 × 10−3 −2.1 ml
[−2.8,−

T1WP correction, time
since enrollment

2.9%/year
[1.5, 4.2]

±4.8%/year 1.3 × 10−3 0.47 ml
[−2.0, 2.
with the number of subjects and scans, in our experience simple inspec-
tion of the corrected volume trajectories should yield a good qualitative
sense of the success or failure for a particular dataset. An additional re-
finement of themodel that includes afixed effect for the square of age in
estimation of atrophy rates did not have increased predictive power,
consistentwith a linear atrophy rate over time as seen in several reports
(Martola et al., 2010; Shirani et al., 2012). Further refinements of the
model to test the effects of lesion load and disease subtype, aswell as in-
teractions of scanning protocol with time, could proceed under the
same framework. Additionally, the effect of specific disease-modifying
therapies could be investigated in much more detail. A simplistic ever
vs. never treated model in Cohort 1, a convenience sample, did not in-
crease predictive power, but applying a similar but more specific
model in Cohort 2 yielded a clear effect of daclizumab therapy (Borges
et al., 2013).

We note that the proposed framework can be applied to any scalar,
continuous variable: any measured quantity derived from imaging or
other data can be used as the outcome variable, as long as the variable
(or a transform thereof) varies deterministically with age across the
population. Our data suggest that using age as the time variable in
data with relatively lower variability (e.g., vCSF) provides estimates
similar to those obtained using time elapsed since enrollment (although
using age does provide a narrower confidence interval even in this
case). However, as variance in the data increases, as occurs for sGM
and sWM volumes, using time elapsed provides too weak a constraint
upon the high variability between scans to tease out the population-
level atrophy rate.

These considerations make the mixed-effects modeling framework
proposed here a very strong option in the population-level analysis of
brain atrophy in MS, especially when long-term data are available. The
model could even conceivably be applied in clinical practice tomake in-
ferences about individual patientswhose historical imageswere collect-
ed with varying acquisition parameters — a very common situation,
particularly at referral centers where patients bring prior MRI scans at
the time of first evaluation. For example, a particular MS center might
apply the model to determine a correction factor for brain volume for
each scanner and protocol combination, which would allow the inter-
pretation of brain volume changes on the subject level over long periods
of time.

One interesting outcome of this study is the suggestion that vCSF
volume can stand in for sGM volume, since sWM volume appears to
change very little (if at all) over time. There is little doubt that primary
vCSF expansion is unlikely inMS— rather, changes in vCSF are primarily
due to the loss of sGM, the primary component of atrophy inMS (Fisher
et al., 2008; Fisniku et al., 2008; Shiee et al., 2012). Of note, we did not
attempt to separate different gray matter structures, such as cortical
vs. deep gray matter, and we did not examine changes in infratentorial
gray matter volume. These insights are supported by a recent study
showing that lesion volume is correlated more strongly with global
than regional atrophy, as well as a study describing the ability of lateral
ventricle volume to differentiate stable from progressive patients
(Antulov et al., 2011; Horakova et al., 2009).
viations (SD) for subject-specific slopes, using the mixed-effects model with and without
and supratentorial white matter (sWM) volumes in Cohort 1. The residual variance of the
enrollment is used as the time variable in themixed-effectsmodelwith age as a covariate.

SD of sGM
rates

Residual
variance

sWM rate
[95% CI]

SD of sWM
rates

Residual
variance

/year
1.4]

±0.77 ml/year 190 ml2 0.18 ml/year
[−0.42, 0.78]

±0.70 ml/year 310 ml2

/year
1.5]

±0.67 ml/year 610 ml2 −0.46 ml/year
[−1.0, 0.11]

±0.55 ml/year 540 ml2

/year
9]

±5.2 ml/year 160 ml2 0.14 ml/year
[−2.5, 2.8]

±5.6 ml/year 280 ml2

image of Fig.�3


Fig. 4. The effect of T1-weighted protocol (T1WP) correction in 69MS cases in Cohort 2 (cases used in a post-hoc analysis of daclizumab (Borges et al., 2013); individual cases represented
with different hues of blue and green). A) Log-transformed ventricular cerebrospinal fluid (CSF) volume and fits generated by themixed effects model that did not incorporate T1WP cor-
rection (black lines). B) The fits (red lines) of themodel with T1WP correction for ventricular CSF; the point-by-point datawere also corrected for T1WP. C) and D) are analogous plots for
supratentorial total volume. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The use of the percentage change in vCSF (i.e., performing a log-
transformation on the data before applying the model) is reasonable
since the changes in vCSF are small relative to the vCSF volume and
the ventricular volume cannot be negative. An exponential model ad-
justs for the increasing variability between older subjects. Since sulcal
CSF is difficult to estimate, as it requires consistent and accurate “skull
stripping,”we do not consider it when using vCSF. However, this omis-
sion of sulcal CSF could lead to incorrect estimation of the atrophy rate.

The main limitation of statistical modeling with regression in our
study is that there is noway to prove that the results obtained represent
the “ground truth.” Important effects may not be accounted for; for ex-
ample, although the purpose of our study was not to measure a differ-
ence in atrophy rate with different therapeutic modalities, therapy
does affect atrophy rate (Borges et al., 2013). A long-term follow-up
study taking place on identical hardware with identical protocols and
analyzed with the same method presented herein would be the ideal
way to verify that our method generates atrophy rates similar to those
measured by established methods, but such data are rare and were
Table 4
Estimates of atrophy rates, with associated 95% confidence intervals (CI) as well as standard de
T1WP correction for ventricular cerebrospinal fluid (vCSF) and total supratentorial (sTot) volu
protocol.

Model vCSF rate [95% CI] SD vCSF rates Residual variance [(lo

T1WP correction 4.4%/year [3.3, 5.4] ±4.0%/year 2.9 × 10−3

No T1WP correction 4.0%/year [3.0, 5.0] ±3.8%/year 3.1 × 10−3
not available to us. Indeed, as the difficulty in conducting such a study
is the problem this research is designed to circumvent, it is easy to see
the challenge in comparing these results to a “gold-standard” approach.
Additionally, with variability in the methods used to estimate brain tis-
sue volume aswell as the natural variability in atrophy betweenMS pa-
tients, it is unclearwhatmeaning can be ascribed tominor differences in
the estimation of atrophy rate seen between this and prior atrophy
studies.

Short-term or highly variable data, such as the sGM and sWM data
from Cohort 1, lead to less accurate subject-specific estimates, regard-
less of the model being used. In this case, the mixed-effects model esti-
mates atrophy in a similar fashion to a population-level regression.
Although this is a technically valid way to generate a population esti-
mate of atrophy rate using these data, the variability present makes
the utility of the calculated subject-specific rates unclear. Our model
does perform better with longer follow-up length, as can be seen by
comparing Cohorts 1 and 2. One prior study (Hughes et al., 2012)
found that strong within-cohort rank stability in the EDSS score was
viations (SD) for subject-specific slopes, using the mixed-effects model with and without
mes in Cohort 2. The residual variance of the model is also reported. T1WP, T1-weighted

g-mm3)2] sTot rate [95% CI] SD sTot rates Residual variance

−4.8 ml/year [−6.5, −3.2] ±6.5 ml/year 540 ml2

−3.5 ml/year [−5.1, −1.9] ±6.2 ml/year 660 ml2
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Table 5
Sample size (SS) necessary in each arm of a therapeutic trial to detect differences of 25%,
50%, and 75% in the atrophy rate using ventricular CSF (vCSF) volume and supratentorial
gray matter (sGM) volume, based on the variance of the slopes and residuals from the
mixed-effects model fit to Cohort 1 (see text for formula).

Trial length % diff. in atrophy rate vCSF SS sGM SS

1 year 25 160 2828
50 40 707
75 18 315

2 years 25 65 712
50 17 178
75 8 80
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only seen after 4 years of follow-up in a population of all MS sub-
types, illustrating that this problem is not limited to our model
alone and arises from natural variability in the disease and in the
methods of assessing it. At the same time, the need for longer
follow-up length competes with other considerations when design-
ing and conducting clinical trials of MS therapeutics that use brain
atrophy as a surrogate outcome.

Sample-size calculations using our data support the importance of
follow-up length. Specifically, we found that, after adjusting for hetero-
geneously acquired MRI data, increasing follow-up length provides a
decreased sample size requirement for MS clinical trials. These sample
sizes are similar to or even improved over other published reports
(Altmann et al., 2009; Anderson et al., 2007). As discussed previously,
however, high within-subject variance (resulting in high residuals in
the formula used to calculate sample size) necessitates a very large
sample size and makes the use of direct estimation of the gray matter
volume impractical with our method. It is possible that more homoge-
neously acquired MRI data, coupled with improved cross-sectional
and longitudinal (Dwyer et al., 2013) segmentation methods, could
greatly decrease the sample size requirement for sGM, but, as discussed,
we suggest that vCSF volume is a practical surrogate measure for sGM.
In addition to the fact that the data used for the sample-size calculation
presented here are not likely to be replicated in any real clinical trial, a
realistic trial would also have more than one time point. Unfortunately,
for the random intercept/random slope mixed-effects model presented
here, there is no known formula to analytically calculate the sample
sizes, necessitating numerical simulations that are beyond the scope of
this paper. Briefly, with a model similar to ours as the starting point, a
fixed treatment effect would be added and levels of this effect on atro-
phy rate chosen for study. Then, simulated data sets for the time points
chosen for the trial would be created with increasing sample size; the
sample size at which the power to reject the null hypothesis exceeded
a predetermined level would be the sample size necessary for the trial.

One reason that uniformMRI acquisition protocols are generally pre-
ferred is that current segmentation techniques tend to perform poorly
when tissue contrast changes, even slightly, as a result of variation in ac-
quisition parameters. Although lesion-TOADS allows a direct estimation
of brain volume from cross-sectional data, the between-scan variability
in the estimation of the gray-white border that arises when acquisition
parameters change is high enough to result in poor subject-specific
model fits, especially when the data are not collected over a sufficiently
long follow-up period. Althoughwe apply a statistical control for proto-
col type in our model, very small changes in contrast that are not reli-
ably related to a particular protocol, or that are not accounted for in
our T1WP code, can still have a large effect on the segmentation results.
This property of the segmentation, combined with much higher tissue
contrast between ventricles and brain than between gray and white
matter, accounts for the more reliable estimation of vCSF volume than
sGM or sWM volumes. Our use of average lesion volume rather than le-
sion volumes at individual time points arises from the same issue, and is
limiting in that patients with longer disease durations are likely to have
more lesions. This problemhighlights the need for longitudinal segmen-
tation techniques that consider all the information available for a given
subject when segmenting tissue types; one such method was recently
presented (Dwyer et al., 2013). A “smarter” segmentation would recog-
nize, for example, that an outlier result from a particular scan that
shows excessive change in gray matter volume compared to prior
scans is probably spurious. Such a method might increase the ability
of multiple scans in a shorter period of time to detect treatment effects
or predict long-term outcomes, possibly lessening the necessary follow-
up length and increasing the speed at which new, effective therapies
can reach the patients who need them.

5. Conclusions

Linear, multivariable mixed-effects regression can be successfully
applied to longitudinal MRI data from multiple scanning protocols in
order to generate a coherent estimate of population-level brain volume
changes in MS. This method would therefore allow the use of data ac-
quired with non-uniform MRI acquisition parameters, potentially in-
creasing sample size and follow-up length in future MS trials using
atrophy as an endpoint and possibly allowingmulticenter trials to over-
come the obstacle of differing hardware at different sites. Ventricular
CSF volume is themost reliably measured brain volume, and our results
support other studies that report that graymatter is primarily responsi-
ble for atrophy,making the ventricles amore easily quantified surrogate
to measure gray matter loss. We believe that mixed-effects modeling of
absolute brain volumes can allow a wider use of available data in the
study of brain atrophy in MS.
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