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Abstract
The aim of this study was to investigate the regulating effect of pericentrin (PCNT) on insulin

secretion in the development of insulin resistance and to determine the underlying mecha-

nism. PCNT expression was studied in different tissues of C57/B6 mice by reverse tran-

scriptase-PCR and immunofluorescence. PCNT was highly expressed in organs involved

in the regulation of metabolism, while cytoplasmic expression was only enriched in islet

cells. PCNT expression was significantly lower in the central regions of insulin resistance

(IR) mouse islets than in those of control mouse islets. PCNT expression was further stud-

ied in mouse MIN6 cells exposed to glucose stimulation, small interfering RNA (siRNA)

against PCNT, and an ERK inhibitor (PD98095). The results revealed that PCNT expres-

sion in glucose-stimulated MIN6 cells reduced linearly with cytoplasmic insulin levels. MIN6

cells transfected with PCNT siRNA showed significantly decreased intracellular insulin and

F-actin expression. The change in F-actin expression in MIN6 cells during PCNT siRNA

interference showed a linear relationship with PCNT expression at different time points. The

ERK inhibitor affected PCNT expression and F-actin expression linearly. The abnormal

insulin secretion observed both in vivo and in vitro was associated with decreased PCNT

expression, and F-actin was found to be the target of PCNT regulation.

Introduction
Diabetes has become a disease of worldwide prevalence. In 2013, 382 million people had devel-
oped diabetes, with type 2 diabetes mellitus (T2DM) comprising 90% of all cases, which is
equivalent to 8.3% of the entire global adult population [1,2]. Diabetes results in approximately
1.5 million deaths annually [2] and the percentage of adults with diabetes is increasing. It is
anticipated that the number of annual deaths resulting from diabetes may nearly double by
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2030 [3]. Serious research efforts have been devoted to overcoming diabetes, although progress
has been hindered because of glucose fluctuates, causing variable cases of hyperglycemia and
hypoglycemia [4]. Thus, investigations into regulatory mechanisms underlying insulin homeo-
stasis have been the subject of great interest in recent years.

There are two phases of pancreatic beta cells’ insulin secretion. During the first phase, insu-
lin granules are released from the established pool near the plasma membrane (PM). Whereas
in the second-phase, it was proposed that insulin granules came from the newly synthesized
pools deep in the cells, and were transferred continuously from storage pools towards the PM
[5–8].

Pericentrin (PCNT), a component of the pericentriolar material, is a highly conserved coiled
coil protein [9–13]. PCNT localizes to centrosomes and serves as a multifunctional scaffolding
protein for various proteins and protein complexes [14]. Recently, loss-of-function studies of
human PCNT have established a causal link between PCNT mutations and the early onset of
T2DM in microcephalic osteodysplastic primordial dwarfism type II (MOPD II) patients
[15,16]. The mechanism linking pericentrin mutations with dysregulation of glucose homeo-
stasis, however, is still unknown.

This study was designed to determine whether changes in PCNT expression occur in high-
fat-induced insulin resistant (IR) mice in vivo and to explore the in vitromechanism whereby
PCNT regulates insulin secretion, using a mouse pancreatic cell line (MIN6).

Materials and Methods

Animals
Twenty-four male specific-pathogen-free (SPF) C57BL/6 mice, aged 6–8 weeks and weighing
22 ± 2 g (mean ± SD), were purchased from the Institute of Laboratory Animal Sciences at the
Chinese Academy of Medical Sciences (Beijing, China). Mice were housed in individual cages,
under conditions of constant temperature (23°C ± 1°C) and humidity (50% ± 5%) in a standard
12-h light/12-h dark cycle with free access to food and water. Food was supplied every day after
their cages were cleaned and before the dark cycle began. Animal care and experimentation
were conducted in accordance with the National Institute of Health Guide for the Care and
Use of Laboratory Animals (http://oacu.od.nih.gov/regs/guide/guide4.htm), and consent was
obtained from the Ethics Committee of the Chinese People’s Liberation Army General Hospi-
tal in Beijing, China. All efforts were made to minimize suffering.

Animal treatment and sample collection
Mice were randomly divided into 2 groups (n = 12 per group) using computer-generated ran-
dom numbers. The normal (N) group was fed a standard diet (329.0 kcal/100 g of food; 12.3%
of calories from fat, 24.4% from protein, and 63.3% from carbohydrate), and the IR group was
fed a high-fat diet (414.0 kcal/100 g of food; 38.0% of calories from fat, 12.0% from protein,
and 50.0% from carbohydrate). Mice were maintained on these diets for 12 weeks and were
then sacrificed by CO2 after glucose tests listed as below.

Glucose tolerance tests (GTTs), including the intraperitoneal glucose tolerance test (IPGTT)
and the oral glucose tolerance test (OGTT) were performed on all animals, as described below,
every 2 weeks, commencing after 4 weeks of feeding. Blood samples (~ 1 ml) for insulin testing
were obtained by eye enucleation without the use of an anticoagulant, and serum samples were
prepared by centrifuging at 2000 rpm (4°C for 15 min) and stored at −20°C for subsequent mea-
surements of insulin levels. Six mice from each group were randomly selected for IPGTT and
OGTT tests.
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Tissue samples (adipose, spleen, kidney, liver, skeletal muscle, pancreas, intestinal, dia-
phragm, and testis) were obtained from all mice sacrificed in week 12. All tissue samples were
snap frozen in liquid nitrogen and stored at −80°C for subsequent reverse transcription PCR
(RT-PCR), as described below. Pancreas samples were also investigated by gene chips using
ArrayCompass System (Affymetrix, Santa Clara, USA) of the CapitalBio Corporation (Beijing,
China). Tissues used for immunohistochemistry (IHC) studies were fixed in 10% neutral-buff-
ered formalin (NBF) for at least 3 days before being embedded in paraffin. Tissues for immu-
nofluorescence studies were submerged in optimal cutting temperature (OCT) compound
(Biogen Idec, Cambridge, MA, USA), cooled in liquid nitrogen, and stored at -80°C.

Glucose tolerance tests
Glucose tolerance tests were performed on all animals. Mice were fasted for 10–12 h overnight.
The IPGTT was used to evaluate the first phase of insulin secretion and the OGTT was used to
test the second phase of insulin secretion. Three mice from each of the N and IR groups were
sacrificed at 0 min to determine baseline glucose and insulin levels. Approximately 2 g/kg body
weight glucose was administered intraperitoneally or intragastrically to 3 mice from the N and
IR groups. Glucose levels were tested from the tail vein of each mouse at 0, 2, 4, 6, 8, 10, and 15
min in IPGTT. Blood samples were tested at 0, 30, 60, and 120 min in OGTT. Mice were then
sacrificed for subsequent insulin level testing.

Blood glucose levels were tested using a standard glucometer (Accu-Chek, Roche, Mann-
heim, Germany). Serum insulin levels were measured by radioimmunoassay (RIA), using the
Sensitive Rat Insulin RIA Kit (SRI-13K; Millipore, Billerica, MA) according to the manufactur-
er’s instructions. Homeostasis model assessment for insulin resistance (HOMA-IR) values
were determined from results of the fasting blood glucose (FBG) and fasting insulin (FINS)
tests, using the equation HOMA-IR = (FBG × FINS)/22.5.

Quantitative RT-PCR (Q-RT-PCR)
Total RNA from islets was extracted using the RNeasy Micro Kit (Qiagen, Madrid, Taiwan)
and Q-RT-PCRs were performed according to manuscript. Briefly, 2 μg RNA was used for
first-strand cDNA synthesis using Superscript II (Invitrogen S.A.) in a total volume of 20 μl.
Three microliters of diluted cDNA sample was used as a template for Q-RT-PCR, and detec-
tion was achieved with SYBR green (Roche Farma S.A., Madrid, ES). Q-RT-PCR data were
normalized using the ΔΔCt method (2-ΔΔCt), which gives relative expression levels for
transcripts evaluated in different tissues. Primer sequences listed in Table 1 were designed
using Primer 3 Software (http://frodo.wi.mit.edu/primer3/). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as the internal control for determining relative target gene
expression levels via the ΔΔCt method.

Western blots
Tissue samples (approximately 0.5 cm3 from each mouse) were washed in PBS and lysed by
sonication in 100 μl of ice-cold lysis buffer containing Tris-HCl (pH 7.5), 150 mMNaCl, 1 mM
EDTA, 2 mMDTT, 2 mM PMSF, and 1% Triton X-100. The lysates were centrifuged at 12,000
× g for 30 min at 4°C. Protein concentrations for each sample were determined using the BCA
Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL). Equal amounts of protein were
resolved on SDS-PAGE gels, transferred to nitrocellulose membranes (Amersham, Little
Chalfont, UK), and membranes were blocked in 5% skim milk power in PBS/Tween for 1 h at
room temperature. The membranes were then incubated overnight at 4°C in PBS/Tween with
2% BSA containing the following dilutions of primary antibodies from Abcam (Cambridge,
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MA): anti-β-actin (1: 1000), anti-Cyclin D2 (1: 1000), and anti-CDK (1: 1000). The membranes
were washed in PBS/Tween 3 times for 6 min/wash, Membranes were then incubated for 1 h at
room temperature with 1: 5000 dilutions of horseradish peroxidase (HRP)-conjugated rabbit
anti-mouse IgG secondary antibodies (Beyotime, Beijing, China). Next, membranes were
washed in PBS/Tween 3 times for 6 min/wash, and the bands of interest were visualized by
enhanced chemiluminescence (eBioscience, San Diego, CA).

Tissue immunohistochemistry
Mouse tissues were fixed in NBF for at least 3 days, embedded in paraffin, and sectioned at
7 μm. Tissue sections were deparaffinized and rehydrated using xylene and methanol. Endoge-
nous peroxidase activity in tissue sections was inhibited by incubation in 3% H2O2 for 10 min.
Subsequently, tissue sections were incubated in potassium citrate solution as antigen retrieval
buffer in a microwaveable vessel. The vessels containing the slides were microwaved/boiled for
20 min and cooled at room temperature in PBS for 10 min. Tissue samples were blocked in
PBS with 3% BSA for 1 h. Primary antibodies against insulin, glucagon, somatostatin (Santa
Cruz Biotechnology, Santa Cruz, CA) or PCNT (BD Bioscience, San Jose, CA) were diluted
1:200, 1:200, 1:50, or 1:500 in PBS, and incubated with tissue samples overnight at 4°C. Tissues
were washed 3 times in PBS and incubated with appropriate anti-rabbit or anti-mouse biotiny-
lated secondary antibodies (Beyotime, Beijing, China, 1: 300 dilution in PBS) for 1 h at room
temperature. Staining was achieved by incubating slides with streptavidin-conjugated HRP for
40 min and subsequently with DAB for 5 min. Slides were analyzed using a U-RFL-T micro-
scope (Olympus; Tokyo, Japan).

MIN6 cell culture
MIN6 cells were obtained from Dr. Xinyu Miao (Department of Geriatric Endocrinology, Chi-
nese People's Liberation Army General Hospital, Beijing, China) [17]. MIN6 cells were main-
tained in Dulbecco’s modified Eagle medium (DMEM; 25 mM glucose; Gibco), supplemented
with 15% FCS, penicillin/streptomycin (100 units/ml, 0.1 mg/ml), 2 mM L-glutamine, and 0.05
mM 2-mercaptoethanol. Cells were incubated at 37°C in a 5% CO2-humidified incubator.

To study relationships between PCNT and insulin secretion, as well as the effect of F-actin,
glucose stimulation was performed as follows: MIN6 cells were planted in 6-well chamber
plates at about 50% confluent. Cells were then cultured in DMEM (Gibco) with 5 mM, 15 mM,

Table 1. Sequences of primers used in this study.

Gene Primers (50–30)

Pericentrin Forward CGGGCAAGGAAAGATCAACTTCG

Reverse TGAGTAGAATCTGGCGGCAACC

ERK Forward GACCTCATGGAGACGGACCTTTAC

Reverse TCACAAGTGGTGTTCAGCAGGAG

F-actin Forward GGTAGAGTTGGCTTTATGGGACAC

Reverse CAGGATGATGGGCACATTTGGAC

Cyclin D2 Forward AGTCCCGACTCCTAAGACCC

Reverse TGGGGCTTCACAGAGTTGTC

P21 Forward GGTGATGTCCGACCTGTTCCG

Reverse CCAGACGAAGTTGCCCTCCAG

CDK4 Forward GCAGTCAGTGGTGCCAGAGATG

Reverse TGCGTCGCTTTCCTCCTTGTG

doi:10.1371/journal.pone.0130458.t001
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or 25 mM glucose for 48 h. MIN6 cells were double-stained with antibodies against PCNT and
insulin, or PCNT and F-actin. MIN6 cells were transfected with small-interfering RNAs (siR-
NAs) against mRNAs of PCNT or a scrambled control for 48 h, after which they were also dou-
ble-stained. Duplicate wells of MIN6 cells were also incubated with 50 μM PD98095 (an ERK
inhibitor) and stained with appropriate antibodies to study the effects of ERK inhibition on
PCNT and F-actin expression.

RNA interference (RNAi)-mediated PCNT silencing
MIN6 cells were transfected with PCNT siRNA or scrambled siRNA using Lipofectamine
RNAiMAX Reagent (Invitrogen, Carlsbad, CA), according to the manufacturer’s instructions.
Briefly, cells were cultured in 6-well plates until they reached 60–80% confluence. Nine microli-
ters of Lipofectamine RNAiMAX Reagent was diluted in 150 μl Opti-MEMMedium, and 3 μl
PCNT siRNA and scrambled siRNAs were diluted in separate 150 μl volumes of Opti-MEM
Medium. Each diluted siRNA solution was mixed with separate solutions of diluted Lipofecta-
mine RNAiMAX Reagent and incubated for 5 min at room temperature. Subsequently, the
siRNA-lipid complexes were added to cells and cells were incubated at 37°C. MIN6 cells were
harvested at 0, 24, and 48 h post-transfection and used for double staining experiments against
PCNT and insulin, or PCNT and F-actin, as described below.

Double immunofluorescence staining
Cells were grown in glass-bottom culture dishes at 37°C and 5% CO2 for the indicated times.
Cells were washed in PBS, fixed/permeabilized on ice for 30 min in fixation solution (2% para-
formaldehyde in PBS), washed 4 times in PBS, and blocked for 15 min with 1% BSA in PBS.
Fixed cells were incubated at 4°C overnight with primary antibodies against insulin (Santa Cruz
Biotechnology, CA), PCNT (Abcam, Cambridge, MA), or F-actin (Santa Cruz Biotechnology,
CA) that were diluted 1: 200, 1: 500, or 1: 1000 in PBS with 1% BSA. Cells were then incubated
for 1 h in PBS containing 1% BSA and appropriate secondary antibodies (1: 500 dilution, P0196,
FITC-conjugated anti-mouse IgG; P0193, Cy3-conjugated anti-mouse IgG; P0186, FITC-conju-
gated anti-rabbit IgG; and P0183, Cy3-conjugated anti-rabbit IgG, Beyotime, Beijing, China).
Nuclei were stained with DAPI (Beyotime, Beijing, China). The slides were analyzed using a
microscope (Olympus U-RFL-T, Tokyo, Japan). Confocal imaging was performed with a confo-
cal microscope (Radiance 2000, BioRad, California, USA) using a 60 × CFI plan Apo objective
and a filter optimized for mCherry fluorescence.

Fresh tissues were submerged in OCT compound (Biogen Idec, Cambridge, MA), cooled in
liquid nitrogen, and stored at -80°C until further use. Cryostat sections (4–8 μm thick) were
mounted on Superfrost Slides. Slides were warmed to room temperature for 30 min before IF
staining was initiated, as described above. Slides were analyzed using an Olympus U-RFL-T
Microscope.

Statistical analysis
All data analyses were performed using SPSS 17.0 software (SPSS, Inc., Chicago, IL). Data are
presented as means ± SD. Comparisons were made using unpaired Student’s t tests and one-
way ANOVA, as appropriate. P-values less than 0.05 were considered statistically significant.
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Results

High cytoplasmic PCNT expression in islet cells
Real-time PCR was used to compare differences in PCNT expression (Fig 1A and 1B). We
found that PCNT was highly expressed in metabolic-regulating tissues, such as kidney, liver,
muscle, and intestinal tissues. We also studied PCNT expression in islets by immunocytochem-
istry and immunofluorescence to study subcellular localization patterns. PCNT was not only
expressed at the centrosomes, but was also highly expressed throughout the cytoplasm (Fig
1C). Our results showed that the subcellular localization of insulin and PCNT overlapped
completely.

Decreased PCNT expression in beta cells of high-fat-induced insulin
resistant mice
Insulin resistant models in C57BL/6 mice were developed by feeding mice a high-fat diet for 12
weeks. Glucose tolerance tests showed that plasma glucose levels and the area under the glucose
level-time curves were significantly higher in the IR group than in the control group. At week
12, HOMA-IR values of mice in the IR group were significantly higher compared to those in
the controls (1.39 ± 0.14 vs. 0.44 ± 0.01, P< 0.01). IHC and IF results showed that PCNT

Fig 1. PCNT expression in tissues from variousmouse organs. (A) A histogram showing RT-PCR results
for PCNT expression in different mouse tissues. Tissue samples were divided into 6 groups according to their
PCNT expression: Sub fat tissue had the highest expression of PCNT (group 1); kidney, muscle, liver had the
second highest PCNT expression (group 2); PCNT expressions in pancreas, spleen, intestinal had the third
highest expression (group 3); visceral fat, diaphragm, testis were the fourth, fifth and sixth highest,
respectively (groups 4, 5, and 6; grouped by dash line). PCNT expression levels in different groups showed
statistically significant differences, but were similar in replicates from the same group. (B) Amplification plot
showing PCNT expression in different tissues from groups 2 and 3. Tissue samples were tested in triplicate.
(C) Detection of PCNT expression by IF imaging in islets. PCNT was not only localized to centrosomes, but
was also highly expressed throughout the cytoplasm. Insulin was stained using a FITC-conjugated
secondary antibody (green), PCNT was stained using a Cy3-conjugated secondary antibody (red), and nuclei
were stained with DAPI (blue).

doi:10.1371/journal.pone.0130458.g001
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expression was significantly decreased in IR mouse pancreatic tissue, mainly in the central part
of the islets (Fig 2A and 2B). Insulin, glycogen, and somatostatin were stained in the islets cells
(Fig 2C). Beta cells showing robust insulin expression were centrally located. This revealed that
PCNT expression in central mouse islets might locate in beta cells. Moreover, the reduction in

Fig 2. Comparison of PCNT expression in islets of IR and control mice. (A) IHC and (B) IF analysis of
PCNT expression in the islets of IR and control mice. PCNT expression was significantly lower in the central
region of islets in IR mice compared to those in the controls. (C) IHC staining for insulin, glycogen, and
somatostatin expression in mouse islet cells. Beta cells showing robust insulin expression were centrally
located in the islets and represented the majority of islet cells. Alpha cells expressed glucagon on the plasma
membrane, and delta cells expressed cytoplasmic somatostatin and surrounded the islets.

doi:10.1371/journal.pone.0130458.g002
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PCNT expression in central islets was not related to beta cell number, because the traditional
proliferation indices (CyclinD2 and CDK4) were increased in western blot (Fig 2D).

Decreased PCNT expression is related to abnormal insulin secretion
Intraperitoneal glucose bolus administration is a standard beta cell stimulus of first-phase insu-
lin secretion. OGTT is a standard way to test the glucose tolerance mainly reflecting the function
of the second phase. Compared with control mice, insulin secretion in IR mice was relatively
lower in the first phase (lower ΔINS-1, Fig 3A), while it was significantly elevated in the second
phase (higher ΔINS-2, Fig 3B). To test the possible effect of PCNT on insulin release, corre-
sponding in vitro experiments were designed using MIN6 cells. In MIN6 cells exposed to glu-
cose stimulation, PCNT and insulin expression levels decreased significantly from the 5 mM
group to the 25 mM and 35 mM groups. The 25 mM group seemed to have the lowest PCNT
and INS levels of the 3 groups. There was no significant difference between the 25 mM and 35
mM groups (Fig 3C and 3D). Linear regression revealed that there was a linear relationship
between the fluorescence changes of PCNT and insulin in MIN6 cells under glucose stimulation
(Fig 3E). The RNA interference experiment showed that an obvious decrease in intracellular
insulin levels was observed in MIN6 cells transfected with PCNT siRNA compared with MIN6
cells transfected with a scrambled siRNA (Fig 4A and 4B).

F-actin is related to PCNT in the regulation of insulin release
Gene chip results (Table 2) showed that F-actin was differentially expressed in pancreases of IR
and control mice. F-actin expression was detected in MIN6 cells by IF. In MIN6 cells trans-
fected with PCNT siRNA, the intracellular expression of F-actin was significantly decreased
from 0 h, 24 h, to 48 h (Fig 4C and 4D). The fluorescence change of PCNT and F-actin had a
linear relationship (Fig 4E). ERK was believed to be the upstream of F-actin. When the ERK
inhibitor PD98095 was added to MIN6 cells, PCNT expression and F-actin were sharply
decreased (Fig 5A and 5B). The relationship between the fluorescence of PCNT and F-actin in
the control group and the PD98095 group remained linear (Fig 5C).

Discussion
In this study, PCNT was highly expressed in tissues and organs that are closely related with
insulin resistance, such as subcutaneous fat, skeletal muscle, liver, and pancreas. Further IF
staining revealed that PCNT is enriched only in the cytoplasm of islets. To our knowledge, this
is the first time that PCNT expression has been shown to be significantly lower in the central
region of IR mouse islets compared to that in control mice, where it is primarily composed of
beta cells. The cytoplasmic expression of PCNT did not have a clear relationship with cellular
proliferation in islets. For this reason, PCNT may serve functions other than cell division and
cell cycle progression, which are the main functions of PCNT reported previously in cell types
other than islets.

It is widely accepted that insulin is secreted in a biphasic manner through different mecha-
nisms [18]. IR mice present an insufficient insulin release increase in the first phase and an
abnormally high insulin level in second phase. Interestingly, we confirmed that the decreased
PCNT was closely related to abnormal insulin release in glucose-stimulating MIN6 cells. Cyto-
plasm insulin fluorescence decreased sharply in high glucose (25 mM and 35 mM) stimulating
MIN6 cells compared with low glucose (5 mM) cultured MIN6 cells. Cytoplasm fluorescence
of PCNT changed in accordance with that of insulin, for which there was a linear relationship.
Furthermore, when PCNT expression was down-regulated by RNA interference, a decrease in
intracellular insulin vesicles occurred. These results suggest that the significant decrease in
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Fig 3. Insulin secretion in IR mice and PCNT and insulin expression following glucose stimulation in
MIN6 cells. (A) First-phase IPGTT values in IR and control mouse groups. Dynamic change of glucose level
at different time points was shown on line chart; final glucose level, final insulin level, the changes of glucose
and insulin level in first-phase were shown on histogram cart. First-phase glucose levels in the IR mouse
group were higher than those in the control group, while the increase of insulin levels were significantly lower
in the IR group (P < 0.05). GLU: glucose level; GLU-15: glucose level at 15 min in IPGTT; INS-15: insulin level
at 15 min in IPGTT; ΔGLU-1: change of first-phase glucose level; ΔINS-1: change of first-phase insulin level.
(B) Second-phase OGTT values in IR and control mouse groups. Dynamic change of glucose level at
different time points was shown on line chart; final glucose level, final insulin level, the changes of glucose
and insulin level in second-phase were shown on histogram cart. Second-phase glucose and insulin levels in
the IR group were higher than those observed in the control group (P < 0.01). PBS: glucose level at 2 h in
OGTT; PINS: insulin level at 2 h in OGTT; ΔGLU-2: change of second-phase glucose level; ΔINS-2: change
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of second-phase insulin level. (C) Confocal microscopy imaging and (D) histogram showing PCNT and
intracellular insulin staining in glucose stimulating MIN6 cells. Results are from quintuplicate experiments with
duplicate wells. (E) The fluorescence change of PCNT and insulin in glucose stimulating MIN6 cells had
linear relationships. Each plot represents one experiment with duplicate wells.

doi:10.1371/journal.pone.0130458.g003

Fig 4. Change in F-actin, PCNT, and insulin expression following PCNT silencing. (A) Confocal
microscopy imaging and (B) histogram show that intracellular insulin levels decreased significantly in MIN6
cells transfected with PCNT siRNA, compared with control cells transfected with a scrambled siRNA. (C)
Confocal microscopy imaging and (D) histogram show florescence staining changes of F-actin in MIN6 cells
after being transfected with a PCNT siRNA for 0 h, 24 h and 48 h. Results are from quintuplicate experiments
with duplicate wells. (E) Linear relationship of F-actin and PCNT staining during 48 h of PCNT siRNA
interference. Each plot represents one experiment with duplicate wells.

doi:10.1371/journal.pone.0130458.g004
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Table 2. Differentially expressed genes in IR and control mice, identified in the gene chip study.

Sequence number Full name of the proteins Ratio of IR/control

1367581_A_AT secreted phosphoprotein 1 2.02

1367614_AT annexin A1 2.04

1368271_A_AT fatty acid binding proteins 4 3.05

1368397_AT uridine diphosphate glucose 2.16

1370892 complement 4–2 2.02

1372190_AT Aquaporin 4 2.14

1386901_AT cluster of differentiation 36 2.27

1387683_AT cluster of differentiation 36 2.14

1387995_A_AT Interferon-induced transmembrane protein 3 2.05

1388583_AT C-X-C motif chemokine 12 2.62

1377626_AT calcium-activated chloride channels 2.39

1379582_A_AT Cyclin A2 3.36

1379818_AT clusterin 2.44

1381993_AT chloride intracellular channel 2 2.11

1386695_AT aryl-hydrocarbon receptor repressor 3.58

1394200_AT hot shock proteins 2.29

1394220_AT Cyclin D2 2.34

1367917_AT F-actin -2.03

1367811_AT 3-Phosphoglycerate dehydrogenase -2.02

1368709_AT fucosyltransferase 1 -2.37

doi:10.1371/journal.pone.0130458.t002

Fig 5. Relationship between PCNT and F-actin expression following exposure to ERK inhibitor
(PD98095). (A) Confocal microscopy imaging and (B) histogram show that F-actin and PCNT fluorescence
staining decreased significantly when MIN6 cells were exposed to the ERK inhibitor PD98085. Results are
from quintuplicate experiments with duplicate wells. (C) F-actin and PCNT staining showed a linear
relationship following exposure to the ERK inhibitor PD98085. Each plot represents one experiment with
duplicate wells.

doi:10.1371/journal.pone.0130458.g005
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PCNT expression in beta cells was closely related with abnormal insulin release, which might
contribute to the abnormal insulin secretion in insulin-resistant mice.

Next, we focused on the mechanism underlying beta cell insulin secretion. Gene chips
showed that the most differentially expressed genes between IR and control mice were related to
metabolism, proliferation, apoptosis, inflammation, and cytoskeletal functions. In our studies,
down-regulation of PCNT siRNA significantly decreased F-actin expression in immunofluores-
cence. There was a linear relationship between the decreased fluorescence of PCNT and F-actin
during RNA interference. ERK was thought to be upstream in regulating F-actin polymerization
conditions; it was also thought that ERK could be activated by glucose. Interestingly, in our
study, the ERK inhibitor PD98059 significantly decreased the immunofluorescence detection of
F-actin and PCNT in MIN6 cells. The decrease in PCNT was linear in relation to that of F-actin.
Therefore, we believe that F-actin depolymerization may be regulated by PCNT. Landmark
research by Orci et al. [19] showed electron micrographs of islet beta cells depicting F-actin in
the form of a meshwork barrier just beneath the plasma membrane, which might have the effect
of preventing the release of insulin. Jurczyk et al. [20] reported that a possible function of PCNT
was to mediate transport vesicle docking in islet beta cells. Thus the change of F-actin expres-
sion, which is related to the decrease in PCNT, might explain the abnormal insulin secretion
observed in IR mice.

In conclusion, abnormal insulin secretion observed both in vivo and in vitro was associated
with decreased PCNT expression, and F-actin was found to be the target of PCNT regulation.
The decrease of PCNT expression in beta cells plays an important role in the abnormal insulin
secretion in IR pathologic procedure. PCNT may be a novel target for modulating regulated
protein secretion in disorders such as insulin resistance or diabetes. Research into the effect
of PCNT on insulin release may give a new way to prevent and control diabetes in a clinical
setting.
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