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A novel ferroptosis related 
gene signature is associated 
with prognosis in patients 
with ovarian serous 
cystadenocarcinoma
Zhixiang Yu3,5, Haiyan He1,5, Yanan Chen4, Qiuhe Ji2* & Min Sun1*

Ovarian cancer (OV) is a common type of carcinoma in females. Many studies have reported that 
ferroptosis is associated with the prognosis of OV patients. However, the mechanism by which 
this occurs is not well understood. We utilized Genotype-Tissue Expression (GTEx) and The Cancer 
Genome Atlas (TCGA) to identify ferroptosis-related genes in OV. In the present study, we applied Cox 
regression analysis to select hub genes and used the least absolute shrinkage and selection operator 
to construct a prognosis prediction model with mRNA expression profiles and clinical data from TCGA. 
A series of analyses for this signature was performed in TCGA. We then verified the identified signature 
using International Cancer Genome Consortium (ICGC) data. After a series of analyses, we identified 
six hub genes (DNAJB6, RB1, VIMP/ SELENOS, STEAP3, BACH1, and ALOX12) that were then used to 
construct a model using a training data set. The model was then tested using a validation data set and 
was found to have high sensitivity and specificity. The identified ferroptosis-related hub genes might 
play a critical role in the mechanism of OV development. The gene signature we identified may be 
useful for future clinical applications.

Ovarian cancer is a severe threat to the health of females and is one of the gynecological cancers that can be fatal1. 
In some developed countries, such as the United States, it has been the top 5 causes of cancer-related death for 
females2. There are four main kinds of ovarian cancers, accounting for almost all advanced stage cases: ovarian 
serous cystadenocarcinoma (OV), peritoneal carcinoma, carcinosarcoma, and mixed carcinoma3. OV is the most 
common in clinical work and has been well-documented interpatiently4, intertumorally5, and intratumorally6. 
However, the mechanism is not well understood. The early symptoms of OV are latent, and the early diagnostic 
methods of OV are not mature, which leads to the fact that most OV is diagnosed at an advanced stage7. Due to 
the high heterogeneity of OV, the prognostic prediction seems challenging. Furthermore, there are huge differ-
ences between early-stage OV and advanced-stage OV in the treatment efficacy and prognosis6. Therefore, it is 
urgent to develop prognostic models.

Ferroptosis is a unique form of regulated cell death associated with iron metabolism8. The lethal accumulation 
of lipid peroxidation accelerates ferroptosis. Furthermore, Liang et al.9 reported that ferroptosis is involved in 
cancer apoptosis, which provides a potential therapeutic target for the treatment of malignancies. Ferroptosis-
related genes can be divided into the following three groups: drivers, suppressors, and markers. Previous studies 
have reported that ferroptosis plays a crucial role in OV tumor-initiating cells in vivo10. Recent studies have 
revealed that some ferroptosis-related genes, including TFR1, IL6, and SCD111, are correlated with OV develop-
ment and apoptosis. However, there are still no studies about the relationship between ferroptosis-related genes 
and OV patient prognosis.
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In this study, we used the mRNA expression data and clinical OV patient data from TCGA and IGCG. Moreo-
ver, we identified ferroptosis-related differentially expressed genes (DEGs) by comparing OV mRNA expression 
and regular ovarian tissue expression from GTEx. Then, we constructed a prognostic DEG signature with TCGA 
data and verified the multigene signature in an IGCG Australian OV patient cohort. After constructing the gene 
signature, we tested the model with Cox analysis to predict OV patient prognosis. Finally, we performed GO 
(Gene Ontology) enrichment analysis of the OV patient high-risk subgroup to explore the potential ferroptosis-
related gene-associated pathways in OV.

Methods
Data collection.  The mRNA expression data and corresponding clinical information of 379 OV patients 
were downloaded from TCGA (https://​portal.​gdc.​cancer.​gov/​repos​itory) on September 10, 2020. The mRNA 
expression data and corresponding clinical data of 88 normal ovarian tissues were downloaded from GTEx 
(https://​gtexp​ortal.​org/) on September 10, 2020. We applied the normalization strategies offered in the "limma" 
R packages (https://​bioco​nduct​or.​org/​packa​ges/​limma/)12 to the gene expression of the two different databases. 
The RNA-seq profiles and clinical data were acquired from the IGCG Australian OV patient cohort (https://​
dcc.​icgc.​org/​relea​ses/​curre​nt/​Proje​cts/​OV-​AU) on September 15, 2020. We strictly obeyed the guidelines of the 
three databases.

We screened the FerrDb database (http://​www.​zhoun​an.​org/​ferrdb/) and obtained 259 ferroptosis-related 
genes13. These genes were grouped and are shown in Table 1.

Construction and validation of a prognostic ferroptosis‑related gene signature.  After data 
normalization, we used the "limma" R package12 to identify the ferroptosis-related DEGs between OV in the 
TCGA cohort and normal ovarian tissues in GTEx. We set a false discovery rate (FDR) < 0.05 as a criterion. 
For primary screening, we performed a univariate Cox analysis of overall survival for each ferroptosis-related 
DEG. A p value < 0.05 was considered the cutoff for the genes with prognostic values. To avoid overfitting in 
the gene signature, we needed to simplify the signature as much as possible. The least absolute shrinkage and 
selection operator (LASSO) regression could offer a suitable choice for the selection of potential genes. We car-
ried out LASSO regression with the DEGs, which was subjected to univariate Cox analysis using the R package 
"glmnet". The parameter λ decided the complexity of the model. Λ was defined as the penalty regularization, 
which was obtained at minimum partial likelihood deviance. Each patient’s risk score was based on the LASSO 
analysis results and the expression of each gene. The risk score was calculated using the following formula: 
riskScore = esum(univariateCoxanalysis∗correspondingcoefficient) . According to the median value, the patients were divided 
into a high-risk group and a low-risk group according to the signature they scored. We performed principal 
component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE) with the "stats" R package 
for the two groups. Moreover, we drew a series of pictures to visualize the differences between the two groups. 
Moreover, we constructed Kaplan–Meier (KM) survival plots to evaluate the prognostic value and receiver oper-
ating characteristic (ROC) curves with different time cutoffs to evaluate the predictive efficiency.

Examination of the gene signature in another database.  We applied the formula to the patients 
in the IGCG Australian OV patient cohort who had a clear outcome indicator five years after diagnosis. The 
patients were divided into high-risk and low-risk groups based on the median risk score. PCA and tSNE were 
also carried out in the next step. We performed similar tests to examine whether the model could determine the 
significance of the prognostic prediction.

Functional enrichment and immune analysis.  We performed Kyoto Encyclopedia of Genes and 
Genomes (KEGG)14–16 pathway enrichment analysis of data from TCGA and IGCG. Through pathway enrich-
ment analysis, we explored the potential ferroptosis-related gene-associated pathways in OV development. 
Moreover, we calculated the infiltration score of 16 kinds of immune cells. We performed single-sample gene set 
enrichment analysis (ssGSEA) for further study of the 13 immune-related pathways. ssGSEA was finished with 
the help of the ’gsva’ R package17.

Verification of the clinical values of the signature.  First, we carried out univariate Cox analysis for the 
risk score and other critical clinical factors to decide whether the risk score could be an independent prognostic 
factor. We took a risk score as a novel classification indicator for further research and compared several charac-
teristics between the high-risk and low-risk groups. The above work was completed with the help of R software. 
A p value < 0.05 indicated that the difference was statistically significant.

Table 1.   Group of the ferroptosis-related genes. There 28 genes repeat count more than one group.

Data set Gene count

Driver 108

Suppressor 69

Marker 111

https://portal.gdc.cancer.gov/repository
https://gtexportal.org/
https://bioconductor.org/packages/limma/
https://dcc.icgc.org/releases/current/Projects/OV-AU
https://dcc.icgc.org/releases/current/Projects/OV-AU
http://www.zhounan.org/ferrdb/
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Results
A total of 379 OV patients were from the TCGA-OV cohort, and 82 OV patients were from the IGCG (OV-AUS) 
cohort. We downloaded the mRNA expression data and clinical files from both databases. Some samples were 
excluded for kinds of reasons that were not suitable for a further research.

Figure 1.   screening for the hub genes. (a) The heatmap of differently expressed genes in the normal and tumor 
group (b) the univariate Coxanalysis of the genes equipped with a consistent tendency in mRNA expression in 
tumor samples and prognosis (c) the network of hubgenesand related genes with the function enrichment (d) 
the co-expression network between hub-genes..
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Identification of prognostic ferroptosis‑related DEGs in TCGA cohort.  DEGs from the compari-
son between OV and healthy ovaries accounted for most of the ferroptosis-related genes (199/259). We per-
formed univariate Cox regression analysis for the DEGs to select prognostic ferroptosis-related DEGs. Eighteen 
genes passed the univariate Cox regression analysis with the cutoff of p < 0.05 (Fig. 1a). Six genes (DNAJB6, RB1, 
VIMP/SELENOS, STEAP3, BACH1, and ALOX12) had a consistent mRNA expression level in tumor samples 
and prognosis in the univariate Cox analysis (Fig. 1b). The other 12 genes were excluded from further study. 
First, we presented the correlation between the six genes (Fig. 1d). Then, we constructed the six preserved genes 
and associated gene network with the help of GeneMANIA (http://​genem​ania.​org/)18 in Fig. 1c. We performed 
the KM plot in the KM plotter (https://​kmplot.​com/​analy​sis/​index.​php?p=​servi​ce&​cancer=​ovar)19. DNAJB6, 
RB1, STEAP3, BACH1, and ALOX12 were associated with prognosis (supplementary figure S1), while VIMP/
SELENOS might be a prognosis indicator in some cases (supplementary figure S2).

Construction of a six‑gene signature in TCGA cohort.  The more genes the signature included, the 
more complex the signature was. We performed LASSO Cox regression analysis of the six genes. All the genes 
were preserved after LASSO (Fig. 2b), and we constructed a six-gene signature based on the ideal λ (Fig. 2a). 
The risk score = e (0.347*expression level of RB1 + 0.368*expression level of STEAP3 + 0.712*expression level 
of BACH1 + 0.401*expression level of ALOX12-0.685*expression level of DNAJB6-0.421*expression level of 
VIMP/ SELENOS). According to the median value of the risk score, we divided the patients into high-risk and 
low-risk groups (Fig. 3a). For further work, we drew a Kaplan–Meier curve (Fig. 3b) and a survival plot (Fig. 3c). 
Moreover, We listed some baseline information of patients in high- and low-risk groups (Table 2). We found that 
OV patients with high-risk scores had a higher death rate and a significantly worse overall survival (OS) than 
those with low-risk scores (supplementary figure S3). As for progression-free survival (PFS), representing the 
possible benefits for patients, patients in the high-risk group still suffered more from disease progression and 
death events (supplementary figure S5). The ROC curves showed the predictive value of the signature. The area 
under the curve (AUC) reached 0.602 at three years and 0.710 at five years (Fig. 3d), which indicated that the 
predictive performance of the signature worked well. The PCA and t-SNE analyses indicated that the signature 
could divide the OV patients into two groups (Fig. 3e,f). Further analysis of TCGA data is shown in the supple-
mentary materials, the high-risk group was also associated with advanced TNM stage.

Validation of the six‑gene signature in the IGCG cohort.  To ensure the robustness of the signature 
constructed in TCGA cohort, we applied the same formula mentioned above (Fig. 4). The patients who had a 
clear outcome in the five-year follow-up period were divided into high-risk and low-risk groups based on the 
median riskScore in the IGCG cohort (Fig. 4a). The PCA and t-SNE analyses were similar to the result of the 
TCGA cohort in that the signature could separate the two groups in opposite directions (Fig. 4e,f). Similarly, 
patients in the low-risk subgroup shared a better prognosis (Fig. 4b,c). The AUC of the six-gene signature in the 
IGCG was 0.648 at three years and 0.707 at five years (Fig. 4d). The test results mentioned above in the IGCG 
cohort revealed that the signature passed the examination.

Figure 2.   LASSO Cox regression analysis. (a) Partial likelihood deviance was plotted versus log (lambda). The 
vertical dotted line indicatesthe lambda value with the minimum error and the largest lambda value in which 
deviance was within one standard error of the minimum.(b) LASSO coefficient profiles of genes associated with 
survival of in patients with Ovarian cancer. LASSO, least absolute shrinkage andselection operator.

http://genemania.org/
https://kmplot.com/analysis/index.php?p=service&cancer=ovar
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Figure 3.   Prognostic analysis of the six-gene signature model in the TCGA cohort. (a) the distribution and 
median value of the risk scores inthe TCGA cohort. (b) Kaplan-Meier curves for the OS of patients in the high-
risk group and low-risk group in the TCGA cohort.. (c) thedistributions of OS status, OS and risk score in the 
TCGA cohort. (d) AUC of time-dependent ROC curves verified the prognosticperformance of the risk score in 
the TCGA cohort (e) PCA plot of the TCGA cohort. (f) t-SNE analysis of the TCGA cohort.
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Independent prognostic and application values of the six‑gene signature.  We carried out Cox 
regression analysis among the key variables in the clinical work and our signature to explore the application 
value (Fig. 5). In the univariate Cox regression analysis, the risk score was the only independent prognostic fac-
tor in TCGA (HR = 2.914 95% CI: 1.916 to 4.434, adj. p < 0.001) (Fig. 5a) and IGCG (HR = 1.323 95% CI: 1.009 
to 1.735, adj. p = 0.043) (Fig. 5b). For further research, we performed multivariate Cox regression analysis for a 
series of available variables, including age, grade, and risk score (Fig. 5c). Moreover, we established a nomogram 
based on the multivariate Cox regression analysis results to predict the probability of OV patient survival at 3 
and 5 years (Fig. 6a). We generated calibration curves to evaluate the nomogram and obtained an ideal match 
(Fig. 6b,c), which indicated that the model could be applied in the clinic.

Gene enrichment analysis in the OV cohort.  To determine the pathways and functions correlated with 
the risk score, GO (Gene Ontology) and KEGG analysis was carried out (Table 3). The GO analysis results indi-
cated that the enrichment was associated with immunity, including "leukocyte cell–cell adhesion", "lymphocyte 
differentiation" and "T cell differentiation" (Fig. 7). The KEGG results were in Table 220–26. And we had already 
got permission to use the KEGG software from the Kanehisa laboratory.

To further explore the correlation between the signature and immune status, we quantified the enrichment 
scores of common immune cell subpopulations, related functions, or pathways with ssGSEA (Fig. 8). A series of 
immune cells were significantly different between the low-risk subgroup and high-risk subgroup in the TCGA 
cohort (adj. p < 0.05), which led to differences in immune functions, such as the type II IFN response and CCR 
(chemokine receptor). Treg and type II IFN responses were validated in the IGCG cohort (adj. p < 0.05), consist-
ent with the GO analysis above.

Discussion
Our study systematically researched ferroptosis-related genes in OV tumor tissues and their influence on prog-
nosis. A novel six-gene signature was based on LASSO regression analysis, and the signature was validated 
with an external test set. We made full use of the value of the signature in predicting OS by nomogram and the 
KM-plots showed that our signature was a reliable factor for OV patients’ prognosis both in OS and disease 
progression. Functional analyses indicated that the ferroptosis-related genes in OV were enriched in immune-
related pathways.

Although a few previous studies have reported that several genes are associated with OV and some could 
be potential treatment targets, they did not pay enough attention to the correlation between ferroptosis-related 
genes and prognosis. To our surprise, most ferroptosis-related genes were significantly expressed between OV 
and healthy ovaries, which revealed that ferroptosis might play a key role in OV and the possibility of construct-
ing a predictive signature with ferroptosis-related genes.

Six genes (DNAJB6, RB1, VIMP/ SELENOS, STEAP3, BACH1, and ALOX12) were involved in the model; 
these genes could be roughly divided into three groups: drivers (DNAJB6, BACH1 and ALOX12), suppressors 
(RB1) and markers (VIMP/ SELENOS and STEAP3).

BTB and CNC homology 1 (BACH1) is a ubiquitously expressed transcription factor. BACH1 plays a vital role 
in a series of pathways and biological processes, including oxidative stress, heme oxidation, the cell cycle, hemat-
opoiesis, and immunity. Han et al.27 reported that high expression of BACH1 activates p-AKT and promotes 

Table 2.   Baseline information of the patients in high- and low-risk groups. Bold values represents p<0.05 
which means there exists significant differences bewteen the two groups

High-risk Low-risk p value

Age Media 59 (30–87) 58 (40–87) 0.6961

Grade G1 1 0 0.294

G2 21 16

G3 145 156

G4 1 0

Stage Stage I 0 1 0.8215

Stage II 14 4

Stage III 127 146

Stage IV 32 23

Tumor residual < 10 mm 110 113 0.8092

10–20 mm 16 8

> 20 mm 30 36

Venous invasion Yes 32 27 0.2727

No 16 16

OS Events 107 87 0.0312

Without events 67 88

PFS Events 109 91 0.0444

Without events 65 84
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Figure 4.   Validation of the six-gene signature in the ICGC cohort. (a) the distribution and median value of the 
risk scores in the ICGC cohort.(b) Kaplan-Meier curves for the OS of patients in the high-risk group and low-
risk group in the ICGC cohort. (c) the distributions of OSstatus, OS and risk score in the ICGC cohort. (d) AUC 
of time-dependent ROC curves verified the prognostic performance of the riskscore in the ICGC cohort. (e) 
PCA plot of the ICGC cohort. (f) t-SNE analysis of the ICGC cohort.
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ovarian cancer growth as a transcriptional regulator both in vitro and in vivo. Peng et al.28 and Rebbeck et al. 29 
stated that BACH1 was involved in the BRCA1 damage response related to an increased risk of OV.

RB1 was reported to be related to defective DNA repair30. RB1 loss could lead to longer-term survival for OV 
patients. This verified the result that high expression of RB1 indicated a poorer prognosis in our research. Lin 
et al.31 declared ALOX12 related to RB1 in a genome-wide map of humans. Chu et al.32 reported that ALOX12 
is required for p53-mediated tumor suppression through a distinct ferroptosis pathway. The study challenged 
several research articles, including ours, and concluded that ALOX12 facilitated the development of tumors33–35. 
Similar to RB1, ALOX12 functions in the ferroptosis pathway through p53. The specific mechanism of RB1, 
ALOX12, and p53 in ferroptosis needs more research.

A mammalian relative of DNAJ (DNAJB6) belongs to the 40 families of heat shock proteins. Zhang et al.36 
found an essential axis in OV where DNAJB6 is located in a vital position in the functional axis that is regulated 
by upstream BRCA1 and that regulated downstream KLF4. As mentioned above, BACH1 could protect BRCA1, 
which indicated that BACH1 had indirect impacts on DNAJB6. The potential correlation between BACH1 and 
DNAJB6 revealed that the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis might have a greater impact on the devel-
opment of OV than we believed.

STEAP3 was closely related to iron homeostasis. Isobe et al.9 reported that STEAP3 maintains tumor growth 
under hypoferric conditions. This gene joins the regulation of iron homeostasis and inflammatory responses. 
Men et al.37 found that VIMP/ SELENOS was associated with cell death and the cell cycle in insulinoma cells. 
However, there have been few studies on these genes in OV. What roles they play in OV cell development and 
apoptosis still needs to be explored.

Figure 5.   Results of the univariate Cox regression analyses regarding OS in the (a) TCGA derivation cohort 
and (b) the ICGC validation. (c)multivariate Cox regression analyses regarding OS in the TCGA derivation 
cohort.
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Figure 6.   The application of the gene signature. (a) Nomogram to predict the survival of patients with OV(b) 
Calibration curve of thenomogram in 3 years. (c) Calibration curve of the nomogram in 5 years.

Table.3.   KEGG enrichment analysis of the hub genes.

ID Description Gene ratio p value p adjust

hsa04060 Cytokine-cytokine receptor interaction19 6/27 3.74E−05 0.003406

hsa04810 Regulation of actin cytoskeleton20 5/27 0.000626 0.027426

hsa04151 PI3K-Akt signaling pathway21 6/27 0.00092 0.027426

hsa04550 Signaling pathways regulating pluripotency of stem cells22 4/27 0.001206 0.027426

hsa05140 Leishmaniasis23 3/27 0.002068 0.037644

hsa05410 Hypertrophic cardiomyopathy24 3/27 0.003227 0.048945

hsa05414 Dilated cardiomyopathy25 3/27 0.003873 0.050348
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Figure 7.   The GO (Gene Ontology) analysis for the differently expressed genes between high-risk and low-risk 
subgroups..

Figure 8.   Comparison of the ssGSEA scores between different risk groups in the TCGA cohort (a, b) and 
ICGC cohort (c, d). The scores of 16immune cells (a, c) and 13 immune-related functions (b, d) are displayed 
in boxplots. CCR, cytokine-cytokine receptor. Adjusted P valueswere showed as: ns, not significant; *, p < 0.05; 
**, p < 0.01; ***, p < 0.001.
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Although several research studies have declared that ferroptosis plays a crucial role in development and 
apoptosis, the mechanisms remain elusive. According to the DEGs between the high-risk and low-risk groups, 
we performed GO enrichment analysis. To our surprise, several immune-related pathways were enriched. The 
discovery revealed that ferroptosis might exert an influence on OV through tumor immunity. However, few 
modulations have been reported in the association between ferroptosis and tumor immunity.

Interestingly, the T cells related to immune cells were significantly different in the two subgroups. Moreover, 
the type II IFN response was the only significantly different immune function in both databases. We speculated 
that ferroptosis cells promoted the inhibition of the activity of effector T cells by regulating Treg cells. Yin et al.38 
and Magdalena et al.39 declared that increased macrophages and Treg cells in tumor tissue would result in a 
poorer prognosis in OV patients, consistent with our results. Based on immune gene enrichment, we need to 
pay more attention to abnormal T cell behaviors in OV patients, and immune treatment deserves more research 
in future work.

Limitations
The results were obtained from the data expression matrix. They were not proved by in vivo and clinical studies. 
Moreover, there might be several essential genes missed in multiple continuous processes.

Conclusion
Our research constructed a model based on six ferroptosis-related genes. The signature performed well in pre-
dicting the prognosis of OV patients both in the training set and test set. The risk score could be an independent 
factor associated with OS. The potential mechanisms between ferroptosis and tumor immunity in OV are still 
unclear, and T cell-related immunity changes in OV deserve more investigation.
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