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The pupillary light reflex (PLR) is a neurological reflex driven by rods, cones, and

melanopsin-containing retinal ganglion cells. Our aim was to achieve a more precise

picture of the effects of 5-min duration monochromatic light stimuli, alone or in

combination, on the human PLR, to determine its spectral sensitivity and to assess the

importance of photon flux. Using pupillometry, the PLR was assessed in 13 participants

(6 women) aged 27.2 ± 5.41 years (mean ± SD) during 5-min light stimuli of purple

(437 nm), blue (479 nm), red (627 nm), and combinations of red+purple or red+blue

light. In addition, nine 5-min, photon-matched light stimuli, ranging in 10 nm increments

peaking between 420 and 500 nm were tested in 15 participants (8 women) aged 25.7±

8.90 years. Maximum pupil constriction, time to achieve this, constriction velocity, area

under the curve (AUC) at short (0–60 s), and longer duration (240–300 s) light exposures,

and 6-s post-illumination pupillary response (6-s PIPR) were assessed. Photoreceptor

activation was estimated by mathematical modeling. The velocity of constriction was

significantly faster with blue monochromatic light than with red or purple light. Within

the blue light spectrum (between 420 and 500 nm), the velocity of constriction was

significantly faster with the 480 nm light stimulus, while the slowest pupil constriction

was observed with 430 nm light. Maximum pupil constriction was achieved with 470 nm

light, and the greatest AUC0−60 and AUC240−300 was observed with 490 and 460 nm

light, respectively. The 6-s PIPR was maximum after 490 nm light stimulus. Both the

transient (AUC0−60) and sustained (AUC240−300) response was significantly correlated

with melanopic activation. Higher photon fluxes for both purple and blue light produced

greater amplitude sustained pupillary constriction. The findings confirm human PLR

dependence on wavelength, monochromatic or bichromatic light and photon flux under

5-min duration light stimuli. Since the most rapid and high amplitude PLR occurred

within the 460–490 nm light range (alone or combined), our results suggest that color
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discrimination should be studied under total or partial substitution of this blue light

range (460–490 nm) by shorter wavelengths (∼440 nm). Thus for nocturnal lighting,

replacement of blue light with purple light might be a plausible solution to preserve color

discrimination while minimizing melanopic activation.

Keywords: pupillometry, light, pupillary light reflex, ipRGC, melanopsin, human melanopic lux

INTRODUCTION

The pupillary light reflex (PLR) is a neurological reflex
characterized by a reduction in pupil diameter in response to
an increase in retinal illumination, as well as the subsequent
redilation of the pupil after light cessation. Its main function is
to increase the depth of field and image sharpness in bright light
conditions.

Rods and cones were the only knownmammal photoreceptors
until the discovery of melanopsin (1), a photopigment with
a peak of sensitivity (λmax) at 480 nm, which is expressed in
the intrinsically photosensitive retinal ganglion cells (ipRGCs)
(2). These ipRGCs project to the suprachiasmatic nuclei (SCN),
the circadian pacemaker, and other non-image forming brain
areas, such as the olivary pretectal nucleus (OPN), a control
center for the PLR (3–7). Thus, ipRGCs participate in a common
pathway for the PLR and other processes such as circadian
entrainment, either by themselves (intrinsically) or through their
connections with the outer retinal photoreceptors (extrinsically),
the most efficient wavelengths (humans, λmax 446–477 nm) to
both entrain the circadian timing system and inhibit melatonin
synthesis (8, 9) being those closer to the maximal sensitivity for
ipRGCs. In addition, a relationship between circadian status and
PLR has recently been reported (10), indicating a complex inverse
relationship between both systems. Once this common pathway
and its interactions are further studied, it may be plausible to
assess the effect of different lights on the human circadian system
through their effects on the PLR.

The human PLR follows a general dynamic (11–14), that
can be affected by the intensity, spectral composition (15,
16) and duration of the light stimulus. When the stimulus
starts, the pupil shows a rapid constriction until it reaches
a minimum size (maximal constriction amplitude). After this
early transient response, a pupillary re-dilatation occurs (escape),
reaching a more sustained state of partial pupil constriction,
which lasts until the end of the light stimulus (17) as well
as after termination (post-illumination pupil response, PIPR)
(12). According to some studies in primates and humans, the
early transient pupil constriction is predominantly driven by
cones, while control of the sustained and persistent PIPR seems
to correspond to a melanopsin-mediated intrinsic response
(12, 18–20). Recent studies, however, have suggested that
the outer retinal photoreceptors could also participate in
this sustained (21–23) and post-illumination pupil response
(PIPR) (24, 25). Despite some limitations of pupillometry, it
is possible to infer rod and cone function and the intrinsic
activation of ipRGCs independently by analyzing the transient,
sustained, and persistent (or PIPR) pupillary response to light

stimuli of different wavelengths, intensities, and durations
(17).

Apart from their relative specificity on the PLR dynamics,
each human retinal photoreceptor exhibits different wavelength
sensitivities, based on their corresponding photopigments: λmax

498 nm for rods, λmax 420 nm for S-cones, λmax 530 nm for M-
cones, λmax 559 nm for L-cones (26). The maximum sensitivity
for melanopsin-containing ipRGCs has been established at
480 nm (2, 6, 27), although other PLR studies in humans
indicate peak sensitivities around 490 nm (28), based on
ocular photoresponses. In primates intensity thresholds for
each photoreceptor are also different, being higher for ipRGCs
(∼10–11 log quanta/cm2/s) (23, 29) than for the classical
photoreceptors [cones 2.30 log quanta/cm2/s; rods 1.70 log
quanta /cm2/s, at the cornea level (30)]. Furthermore, it has been
proposed that melanopsin’s spatial conformation and thus its
wavelength sensitivity can switch back from the M to R state
by absorbing longer wavelength photons, so-called melanopsin
bistability (31, 32). This has also been associated with the PLR,
exhibiting increased pupil constriction when the light stimulus
was preceded by longer wavelength light (32). Tristability (with
two silent and one signaling state) has also been suggested as
a mechanism for ipRGC to integrate both time and wavelength
(33). However, not all studies have been able to demonstrate
this long wavelength potentiation of blue light responses (34,
35), while some studies have proposed the existence of retinal
pigment epithelium (RPE)-derived regeneration in melanopsin
(36, 37), which could be interpreted as a complementary
mechanism [reviewed in (38)].

The study of possible interactions between two
monochromatic wavelengths when administered simultaneously,
as well as assessment of PLR sensitivity over a high resolution
short wavelength range will help to provide knowledge on the
effect of polychromatic lights on the PLR.

The aim of this study was thus to achieve a more precise
picture of the effects of 5-min monochromatic light stimuli,
alone or in combination [long (red) combined with short (blue
and purple) wavelength lights], on the human PLR (including
PIPR), to determine its spectral sensitivity and to confirm the
importance of photon flux as a determinant of the human PLR.

Based on previous knowledge, we hypothesized that blue or
purple light would produce different responses when combined
with red light as a result of melanopsin bistability, probably
increasing the sustained response (greater amplitude) due to the
conformational change of melanopsin by red light. Regarding
monochromatic short wavelength light, we expected greater
pupillary responses under the 460–490 nm light range, and under
higher light intensities.
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MATERIALS AND METHODS

Participants
This study was approved by the University of Surrey Ethics
Committee. Volunteers received appropriate information about
the study protocol, signed a written informed consent form
(in compliance with the Declaration of Helsinki) before being
enrolled and were compensated for their participation.

In both experimental conditions participants were healthy,
non-smoking volunteers: 13 (6 women) between 19 and 35
years (27.2 ± 5.41 years, mean ± SD) for Study A, and 15 (8
women) between 19 and 35 years (25.7 ± 8.90 years) for Study
B. Data from three participants from Study A were excluded
from analysis because of very noisy PLR signals that were not
interpretable.

All participants declared no medical or mental health
disorders and were not taking any medication that could affect
circadian rhythms, according to the general health questionnaires
completed during the screening period. None of them were shift
workers nor had crossed more than two time zones in the 2
months prior to study admission. They kept regular sleep-wake
cycles with no reported sleep disorders (Pittsburgh Sleep Quality
Index ≤5) (39), and were not extreme morning or evening
types (40). A full ophthalmic examination including uncorrected
vision, near vision corrected, ophthalmoscopy, pupil reactions,
Henson Field Test, refraction, intra-ocular pressure, oculomotor
status, stereo acuity, accommodation, and color vision by the
Ishihara test, was performed to confirm they all were free from
any ocular disorders.

Pre-study Measurements
The protocol used was similar to that previously described
(41) with participants maintaining a regular, actigraphically
(AWL, Cambridge Neurotechnology, UK) monitored sleep/wake
schedule for at least 7 days before and throughout the
in-laboratory sessions. For 72 h before and during each
laboratory session, participants refrained from caffeinated drinks,
alcohol, excessive exercise, bright lights, and non-steroidal anti-
inflammatory drug intake.

In-laboratory Protocol
Protocol for Light Stimuli Presentation
A randomized, within-subject design was performed. In both
experimental conditions A and B, all the sessions were carried
out in the morning. In Study A (Figure 1A) the participants (3
per session) arrived at the laboratory and remained seated in
dim light (<5 lux) for 30min in order to progressively adapt
their vision to the dark conditions. Then, he or she received
a drop of tropicamide [Minims Tropicamide (1.0%, Chauvin
Pharmaceuticals, Romford, UK)] in the right eye to dilate the
pupil. After that, the participant remained in darkness (0 lux +

eye mask) for an hour prior to pupil recording in order to avoid
any confounding effect due to prior light exposures (42). Once
this dark adaptation schedule was completed, pupil recording
started. For this, the left non-dilated pupil was recorded [220
frames per second] in darkness for 60 s to obtain a baseline, which
was later used as a control to normalize the pupil diameter. Then,

the light source was turned on and the right eye (pupil dilated)
received a light stimulus for 5min (Figure 1A) while recording
the left pupil, thus assessing the consensual reflex. Only one light
condition was tested per laboratory session.

The protocol for light stimuli presentation and administration
of tropicamide in Study B is shown in Figure 1B and has
been detailed in a previous study (10). The pupillary recording
followed the same protocol as described for Study A, except that
pupil recording continued for 60 s after light offset.

Light Stimuli Characteristics
A 5-min light stimulus was administered to the participant’s right
eye (dilated) through a specially constructed Ganzfeld sphere
(Apollo Lighting, Leeds, UK) coated with white reflectance
paint (WRC-680 Labsphere, Pro-Lite Technology, Bedfordshire,
UK) to produce patternless illumination. An ultra high-
pressure mercury lamp (Focus 100LS3, 100W, Philips Lighting,
Eindhoven, The Netherlands) illuminated the sphere via a fiber
optic cable connected to a light box (10, 35, 41)

In Study A, monochromatic light (purple, blue, and red) was
produced using narrow bandwidth interference filters (Coherent
Ealing Europe Ltd., Watford, UK) peaking at 440, 480, and
630 nm (half maximal bandwidth of 10 nm), respectively. The
spectra measured at eye level, exhibited peaks at 437, 479, and
627 nm (Figure 2A), respectively, as measured by a calibrated
spectrometer (Ocean Optics BV, Dunedin, Florida, USA). Light
irradiances were adjusted using neutral density filters (0.10, 0.60,
0.90) (Kodak, Hemel Hempsted, UK) and were verified at the
participant’s eye level (cornea) using a calibrated radiometer
(R203, Macam Photometrics Ltd., Livingston, Scotland) before
and after each light exposure.

Purple (437 nm), blue (479 nm), and red (627 nm)
monochromatic lights were administered alone or in
combination [monochromatic purple + monochromatic
red (PR) and monochromatic blue + monochromatic red (BR)]
(Figures 2A,B). Both purple and blue lights were administered
at photopic light intensities of 1.2 × 1013 photons/cm2/s
(13.1 log quanta/cm2/s), while 5 x 1013 photons/cm2/s (13.7
log quanta/cm2/s) was selected for red light administration
(Figure 2A). The photon densities for each light stimulus were
chosen based on the previously determined irradiance response
curves to monochromatic light for melatonin suppression (8, 9).
In addition, since bistability was demonstrated in human PLR
experiments using a higher irradiance of red light (32), a similar
decision was made for the current study.

In Study B, 9 × 10 nm increment monochromatic lights (420,
430, 440, 450, 460, 470, 480, 490, and 500 nm), each with a half
maximal bandwidth of 7 nm, were obtained using a Bentham
M300 monochromator (Figures 3A,B). Technical characteristics
of this system have been previously described (10). Due to the
narrower spectral range selected and the wavelength dependent
grating response of the monochromator, the photon densities
tested (Figure 3A) were 10-fold lower than the ones achieved
in Study A (Figure 2A). The achieved photon density was
approximately 11.9 log quanta/cm2/s at the level of the cornea.
Considering a 0.3 correction for optical media, all the photon
fluxes tested would have been applied above 11 log quanta/cm2/s,
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FIGURE 1 | In-laboratory protocol for Study A (A) and Study B (B). The drop symbol shows the time when the pupil dilator was administered. The up arrows point to

the duration (mins) of the shorter periods.

FIGURE 2 | Light wavelengths tested in Study A and their corresponding photon fluxes (A), and normalized spectra (B).

thus being above the photopic threshold (43) and within the
limits for melanopsin activation (18). Identical photon fluxes
could not be obtained for all the wavelengths tested due to
technical limitations of the instrumentation. Some data from
Study B have already been published as part of a previous study in

which they were correlated with different aspects of the circadian
system (10).

The tested range of wavelengths were selected according to
previous studies on short wavelength sensitivity of the human
circadian system (8, 9, 44–46). In addition, assessing the effects of
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FIGURE 3 | Light wavelengths tested in Study B and their corresponding photon fluxes (A), and normalized spectra (B).

wavelengths shorter than the melanopsin λmax peak on the PLR
could help to clarify the role of very short wavelength light.

Since two of the lights in Study A and B were almost identical
in terms of maximum spectral emission (peak at 437 nm in Study
A vs. 440 nm in Study B and peak at 479 nm in Study A vs.
480 nm in Study B), comparison between a higher (1.2 × 1013

photons/cm2/s) and a lower (8–9× 1011 photons/cm2/s) photon
density at those wavelengths was performed.

Pupil Recording
To assess the consensual PLR, a pupillometer system was used.
The pupil size was tracked from the infrared illuminated (left) eye
through a video pupil tracking system (ViewPoint Eye Tracker R©,
Arrington Research Inc., Scottsdale, AZ). The researcher helped
the participants to be seated in front of the sphere in darkness,
resting their forehead and chin on the pupillometer system
support while the left eye was focussed by the infrared camera.
The system recorded 220 data per second [see (10) for further
technical details].

Data Analysis
Data Pre-processing
Pupil diameter was analyzed using software specifically designed
by the Chronobiology Laboratory and the Artificial Intelligence
Group at the University of Murcia (Pupilabware R©), as already
described (10). This processing included the determination of
baseline (mean pupil diameter during the 60 s in darkness prior
to the light stimulus) and normalized pupil size (NPS), i.e., ratio
of the measured pupil diameter divided by the baseline pupil size.

Primary Pupil Outcome Parameters
Minimum diameter (expressed as relative maximum rapid pupil
constriction), time to minimum (time required to achieve the
relative maximum rapid pupil constriction), velocity of pupil
constriction as (maximum constriction

time to minimum ) and area under the curve

(AUC = AUC
∑t1

t0 100− NPS), where t0 is the initial time point
of pupil response and t1 is the end time, 100 is the baseline
pupil size, and NPS is normalized pupil size. Two AUCs were
calculated: AUC0−60, corresponding to the first minute of light
exposure and AUC240−300 that corresponds to the last minute of
light exposure within a 5min light stimulus. AUC was expressed
as “arbitrary units” (A.U./AU) (Figure 4). Pupil diameter 6-s after
light offset (6-s PIPR) was calculated in Study B.

Statistical Analysis
All statistical analyses were carried out using SPSS 25 (SPSS
Inc., Chicago, IL, USA). When not all participants received all
light conditions, missing parameters were replaced by the average
parameter under that light condition. For parameters that
did not have a normal distribution Friedman’s non-parametric
test for related samples (post-hoc Wilcoxon) was performed
instead of repeatedmeasures ANOVA (Bonferroni post-hoc). The
significance level was set at p < 0.05. Bonferroni correction was
applied after post-hoc pairwise comparisons. When only two
conditions were compared, a paired or unpaired Student’s t-
test (or Mann-Whitney U) was performed. All the results were
expressed as mean± standard error of the mean (SEM).

Photoreceptor Activation
The photoreceptor activation was assessed for each light
condition using the Irradiance Toolbox (v1.), developed by Lucas
et al. (47), that calculates the α-opic lux parameter, which in
turn represents the excitation of each of the 5 photoreceptors
under different light spectra. This calculation is based on the
estimated sensitivity curves for each photoreceptor (47). Both
absolute values (obtained directly from the toolbox) and the
relative and absolute contribution for each photoreceptor were
assessed.
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FIGURE 4 | Parameters assessed for PLR. 1: Maximum constriction; 2: Area under the curve from 0 to 60 s of light exposure (AUC0−60, yellow); 3: Area under the

curve from 240 to 300 s of light exposure (AUC240−300, red), expressed in A.U.; 4: Time from light onset to the minimum pupil diameter reached during constriction;

5: 6-s PIPR. Gray areas indicate lights off.

RESULTS

Study A
Monochromatic purple (437 nm; n = 3), blue (479 nm; n = 9),
and red (627 nm; n = 8) light stimuli and the combinations
“purple + red” (PR; n = 7) and “blue + red” (BR; n = 9), were
tested (photon densities indicated in Figure 2A). Figures 5A,B
show the average pupil recordings for each light condition. As
expected, under all tested light conditions, pupil constriction
reached its minimum relative diameter within the first 10-s after
light onset (transient response) (Figure 5C), re-dilating in a rapid
manner during the following 50-s (escape), followed by the
sustained part (steady state photoequilibrium) of the PLR.

There were no significant differences in the maximum pupil
constriction following the light stimuli. Constriction under blue
479 nm light (57.5 ± 3.7%) > red 627 nm light (54.4 ± 2.3%) ≈
purple 437 nm light (54.2 ± 3.7%). Although the time needed to
reach the minimum diameter tended to be shorter under the blue
light condition, there were no significant differences between
the different light stimuli. The velocity of pupil constriction,
however, was significantly faster (one-way repeated measures
ANOVA, F = 51.168, df = 2.065, p < 0.001) with blue light (27.9
± 10.3%/s) than with the red (14.6± 1.7%/s) and purple (15.7±
1.1%/s) light (Bonferroni post-hoc test, p < 0.001).

The AUC of two PLR periods (first, AUC0−60, and
last, AUC240−300, minute of light exposure) was calculated
(Figure 6A), to evaluate the transient and sustained response,
respectively. As expected AUC0−60 was always higher (thus,
smaller diameter during the transient response) than the
AUC240−300 for all light conditions (Wilcoxon post-hoc, p <

0.017). There were no significant differences in the AUC0−60

(transient response) between the light conditions, with the
highest value found under the blue + red light condition (2,720
± 223A.U.). Similarly, in the sustained response (AUC240−300)
there were no significant differences between the different light
conditions (although significant overall effect, Friedman’s test,

χ
2 = 10.8, df = 4, p = 0.029), although blue light alone or

in combination tended to produce a more sustained higher
amplitude response (blue, 1,908 ± 241A.U.; blue + red, 2,076
± 260) than purple (purple 1,350± 191A.U.; purple+ red 1,740
± 222A.U.) or red (1,456± 311A.U.) light wavelengths.

The retinal photoreceptor excitations were obtained for
each light condition (Figure 6B) by calculating the α-opic lux
parameter, a parameter which represents each photoreceptor
excitation [Irradiance Toolbox (47)]. In the case of purple
light, the highest activation was for S-cones (67.3 cyanopic lux,
absolute value; 68.4% of the total), while for blue light, melanopic
excitation was highest (39.0 melanopic lux, absolute value;
35.2% of the total). For red light, as expected, the predominant
excitation corresponded to L-cones (41.8 erythropic lux, absolute
value; 78.7% of the total) with less excitation of M-cones (10.7
chloropic lux, absolute value; 20.1% of the total). Rod activation
was also highest under blue light, both alone (B) (27.7 rhodopic
lux, absolute value; 25% of the total) and in combination with red
light (BR) (28.2 rhodopic lux, absolute value; 17.2% of the total).

Study B
Nine monochromatic light stimuli in 10 nm increments peaking
between 420 and 500 nm were tested (peaks of emission at 420 (n
= 15), 430 (n= 14), 440 (n= 15), 450 (n= 15), 460 (n= 15), 470
(n= 15), 480 (n= 13), 490 (n= 14), and 500 (n= 13) nm) at the
photon densities indicated in the Table (Figure 3A). The average
PLR for each light condition is shown in Figure 7 (for clarity, the
nine wavelengths tested have been represented in two separate
graphs, Figures 7A,B). As expected, typical PLR dynamics were
obtained in all cases, reaching the maximum pupil constriction
within the first 10-s of light exposure (Figure 7C).

Themaximum relative rapid pupil constriction under the light
stimuli was achieved with the longer light wavelengths (one-
way repeated measures ANOVA, F = 5.204, df = 5.841, p <

0.001), reaching the greatest pupil constriction at 470 nm (50.2
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FIGURE 5 | Average pupil recordings (A) for purple (437 nm; n = 3), blue (479 nm; n = 9), and red (627 nm; n = 8) light at 1.2 × 1013 photons/cm2/s (purple and

blue), and 5.13 × 1013 photons/cm2/s (red), and (B) for purple + red (PR; n = 7) and blue + red (BR; n = 9) at 6.33 × 1013 photons/cm2/s. SEM bars have been

omitted for clarity. Averaged first 10 s of pupil constriction (C) with error bars omitted for clarity.
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FIGURE 6 | Area under the curve (AUC, expressed in A.U.) during two time

windows: from 0 to 60 s of light exposure (0–60 s; first minute of light

exposure, in yellow) and from 240 to 300 s of light exposure (240–300 s; last

minute of 5-min light exposure, in red). Two-way repeated measures ANOVA

showed an overall significant difference between 0–60 and 240–300 s (p <

0.05), but not between wavelengths nor interaction between both factors.

Paired-sample t-tests revealed significant differences (indicated by *) between

AUC0−60 and AUC240−300 under all the light conditions (p < 0.05) (A).

Activation of the different photoreceptors under each light condition used,

assessed by the α-opic lux parameter calculated by the Irradiance toolbox (47)

(B). P indicates purple (437 nm; n = 3); B indicates blue (479 nm; n = 9); R

indicates red (627 nm; n = 8); PR indicates purple + red (n = 7); and BR

indicates blue + red (n = 9).

± 1.6%), and the smallest constriction at 430 nm (42.7 ± 1.9%).
According to pairwise comparisons (Bonferroni post-hoc, p <

0.05), only the constriction at 430 nm (not at 420 nm nor 440 nm)
was significantly smaller than that found at 470 nm (50.2± 1.6%),
480 nm (49.9 ± 1.8%), 490 nm (49.4 ± 1.8%), and 500 nm (49.7
± 1.2 %).

It took less time to reach the minimum pupil diameter with
480 nm (3.7 ± 0.2 s) and 490 nm (3.8 ± 0.4 s) light than with
420 nm (4.6 ± 0.5 s) light, although these differences were not
statistically significant. However, the velocity of constriction was
different (Friedman test, χ

2 = 29.417, df = 8, p < 0.001)
with the 480 nm light stimulus eliciting the most rapid pupil
constriction (14.3± 0.9%/s), while the slowest pupil constriction
was observed with 430 nm light (9.9 ± 1.1%/s) (Wilcoxon post-
hoc, p= 0.002).

Regarding the AUC (A.U.) during the transient (first minute
of light exposure, AUC0−60), and sustained response (last minute
of light exposure, AUC240−300) (Figure 8A), again as expected,
AUC0−60 was always greater than AUC240−300 for all light
conditions and wavelengths (Wilcoxon post-hoc, p = 0.001),
although an interaction between both factors was evident (p
= 0.032). Accordingly, transient and sustained responses were

analyzed separately. The transient response (AUC0−60) tended
to increase from 420 nm (1,517 ± 141A.U.) to 490 nm (2,007 ±
147A.U.), decreasing again at 500 nm (1,778 ± 108A.U.) (one-
way repeated measures ANOVA, F = 4.861, df = 8, p < 0.001).
By contrast the greatest AUC240−300 occurred with 460 nm (880
± 131A.U.) and 480 nm (838 ± 100A.U.) light (Friedman test,
χ
2 = 17.102, df = 8, p = 0.029), the latter being significantly

different when compared to the 420 nm light stimulus (lowest,
with 567± 100A.U.) (Wilcoxon post-hoc, p= 0.005).

The 6-s PIPR could only be measured in Study B, since no
recording of the post-illumination response was performed in
Study A. The pupil constriction 6 s after the end of light stimulus
was greater at the longer wavelengths within the 420–500 nm
range (Friedman test, χ

2 = 17.227, df = 8, p = 0.028), being
maximum at 490 nm (6.82 ± 1.88%) vs. the minima at 420 (1.61
± 1.93%) (Wilcoxon post-hoc, p = 0.001) and 440 nm (1.37 ±

1.82%).
Retinal photoreceptor activation was assessed [Irradiance

Toolbox, (47)] as shown in Figure 8B. Melanopic activation was
lowest when exposed to 420 nm (0.3 melanopic lux, absolute
value; 8.7%), increasing at every exposure, reaching its peak
at 490 nm light (2.6 melanopic lux, absolute value; 38.2%),
after which it decreased again at 500 nm (2.4 melanopic lux,
absolute value; 35.5%), thus showing the same pattern as the
transient response (AUC0−60) (R = 0.924, p < 0.01). There
was also a significant correlation between the sustained response
(AUC240−300) and melanopic activation (R= 0.699, p= 0.036).

Photon Flux Comparison
The effect of light intensity on the PLR was compared for purple
(∼440 nm) and blue (∼480 nm) light considering the highest
(Study A, 1.2 × 1013 photons/cm2/s or ∼13 log quanta/cm2/s)
and lowest (Study B, 8 × 1011 and 9.2 × 1011 photons/cm2/s,
respectively or∼12 log quanta/cm2/s) photon fluxes.

Figure 9 represents the average PLR recording for each
wavelength (Figure 9A, purple light; Figure 9B, blue light) at
∼13 log quanta/cm2/s and ∼12 log quanta/cm2/s photon fluxes.
As expected, higher photon fluxes produced a greater transient
and sustained pupillary constriction for both wavelengths than
lower photon fluxes. The rapid pupil constriction was greater at
higher compared to lower photon fluxes for both purple (54.2
± 3.7 vs. 46.8 ± 2.3%, differences not statistically significant)
and blue (57.5 ± 3.7 vs. 49.9 ± 1.8%, Mann-Whitney U test, Z
= −2.147, p = 0.032) lights (Figure 9, central panel). Also as
expected, it tended to take less time to reach the minimum pupil
diameter under higher compared to lower photon flux for both
purple (3.75 ± 0.62 vs. 4.10 ± 0.40 s) and blue (3.58 ± 1.36 vs.
3.74 ± 0.24 s) light conditions, although the differences did not
reach statistical significance.

The integrative parameter “velocity of constriction” was
significantly faster under higher photon fluxes for blue light
(27.9 ± 10.3 higher vs. 14.3 ± 0.9%/s lower photon flux, p =

0.035). Purple light also tended to be faster, although statistical
significance was not reached (15.7 ± 1.1 higher vs. 12.2 ±

1.4 %/s lower photon flux, p = 0.207). The velocity of pupil
constriction was significantly affected by both wavelength (one-
way repeated measures ANOVA, F = 5.007, df = 1, p = 0.038)
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FIGURE 7 | Average pupil recordings at 420 nm (n = 15), 440 nm (n = 15), 460 nm (n = 15), 480 nm (n = 13), and 500 nm (n = 13) light (A) and at 430 nm (n = 14),

450 nm (n = 15), 470 nm (n = 15), and 490 nm (n = 14) light (B). SEM bars have been omitted for clarity. See Methods and Figure 3A for photon flux details of the

light stimuli. Averaged first 10 s of pupil constriction (C) with error bars omitted for clarity.

and photon flux (F = 5.466, df = 1, p = 0.031), interaction
between these factors was not significant (one-way mixed design
ANOVA).

Both the transient (AUC0−60; Figure 10A) and sustained
(AUC240−300; Figure 10B) responses were greater under
higher photon fluxes for both the purple and blue
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FIGURE 8 | Area under the curve (AUC, expressed in A.U.) over two time windows: from 0 to 60 s of light exposure (0–60 s; first minute of light exposure, in yellow)

and from 240 to 300 s of light exposure (240–300 s; last minute of light exposure, in red). Paired-sample t-tests revealed significant differences between AUC0−60 and

AUC240−300 for all the wavelengths tested (p < 0.05). Two-way repeated measures ANOVA showed an overall significant difference between 0–60 and 240–300 s (p

< 0.001), wavelength (p < 0.001), and a significant interaction between both factors for all light conditions. U indicates statistically significant differences (Wilcoxon

post-hoc, p ≤ 0.001) in AUC0−60 vs. 430 nm. ◦ indicates a statistically significant differences (Wilcoxon post-hoc, p < 0.005) in AUC240−300 vs. 420 nm. Plots of the

ipRGC and rod normalized sensitivities are superimposed (A). Activation of the different photoreceptors according to each light tested, determined by the α-opic lux

parameter calculated by the Irradiance toolbox (47) (B).

light conditions (Mann-Whitney U-test, Z = −2.371,
p < 0.016).

DISCUSSION

We aimed to better characterize the human PLR under
high resolution, 5-min monochromatic light stimuli (10 nm
increments) alone and in combination. Our results show higher
responsiveness of the pupil to blue light stimuli, alone or in
combination with red light, considering rapid pupil constriction,
transient, sustained and post-illumination pupil responses, and
velocity of pupil constriction. Higher light intensities also
produced, as expected, higher responsiveness.

Traditionally when evaluating the PLR, single monochromatic
lights have been tested. Some studies, however, have used
combined monochromatic light stimuli (LEDs of various
bandwidths) or spectrally tunable light sources, that have
provided good evidence to understand the contributions and
interactions of the retinal photoreceptors in the PLR (13, 15,

16, 20, 48–54), as well as regarding light-induced melatonin
suppression (35). In the present study blue and purple
monochromatic lights were combined with red at the same
final intensity. In agreement with previous reports (32, 55) the
smallest pupil diameter tended to occur in the presence of blue
light (∼480 nm alone or combined with red). According to
the hypothesis of bistability, melanopsin may switch from a M
state (not responsive to 480 nm light) to a R state (responsive
to 480 nm light) by absorbing longer wavelength photons (32,
56, 57), the retinal epithelium being required for melanopsin
regeneration (58). Thus, it may be plausible that red light
(627 nm), when present, could elicit this conformational change,
increasing the sustained response, not only due to the increased
light intensity, but also to its effect on melanopsin. Although
the differences did not reach statistical significance, red light
tended to produce a greater effect in combination with purple
light (compared to purple light alone) than with blue light
(compared to blue light alone), probably because blue light can
elicit the maximal intrinsic photoresponse on its own, while with
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FIGURE 9 | Average PLR recordings under purple light (∼440 nm) at 9.2 × 1011 photons/cm2/s (∼12 log quanta/cm2/s, discontinuous line) and 1.2 × 1013

photons/cm2/s (∼13 log quanta/cm2/s, continuous line) (A). Average PLR recordings under blue light (∼480 nm) at 8.0 × 1011 photons/cm2/s (∼12 log

quanta/cm2/s, discontinuous line) and 1.2 × 1013 photons/cm2/s (∼13 log quanta/cm2/s, continuous line) (B). Error bars indicate SEM. Averaged first 10 s of pupil

constriction are shown in the central panel.

purple 440 nm light, although the melanopsin is stimulated, its
activation is not maximal (45, 59). This tendency, however, could
also be explained by the previously described spectral opponency
between S-cones and both L- cones and ipRGCs (49, 50, 54).
Thus, red (activating L-cones) plus blue (activating melanopsin)
light would produce a summation in the pupil constriction (13),
while the combination red plus purple light would activate L-
and S-cones, respectively, thus producing opponency instead
of summation, resulting in smaller constriction amplitude
(49, 50, 54). Other studies, however, suggest linear/non-linear
summation of the 5 types of photoreceptors stimulation (51),
which contradicts the opponency hypothesis. Although both
light combinations were delivered at the same photon flux, the
differences in pupil response due to different colors (driven

by chromatic pathways) have been previously described as
being 3-fold larger than those driven by luminance pathways
(16).

In our study, the velocity of pupil constriction was
significantly faster under blue light than under red and
purple light stimuli. However, based on previous studies, the
melanopsin-ipRGCs intrinsic photoresponse would produce
slow and sustained pupil constrictions, while the extrinsic
pathway (mainly cone-driven) would produce fast and relatively
transient responses (22, 25). The findings with blue light
are thus not in agreement with the expected slow response
produced by the melanopsin-ipRGCs (22, 25). The delayed
response previously attributed to melanopsin-ipRGCs has
also been questioned in a study using a square-wave pulse,
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FIGURE 10 | Area under the curve (AUC, expressed in A.U.) over two time

windows: from 0 to 60 s of light exposure (0–60 s; first minute of light

exposure) (A) and from 240 to 300 s of light exposure (240–300 s; last minute

of light exposure) (B) at higher (∼13 log quanta/cm2/s) and lower (∼12 log

quanta/cm2/s) intensity purple (440 nm) and blue (480 nm) light. Error bars

indicate SEM. *statistically significant differences (Mann Whitney U-test, p <

0.016).

suggesting a mechanism possibly associated with cone-
mediated signals (20). In addition, we could speculate that
an overlapping action of S-cones may produce this more
rapid response, although considering the previously described
S-cone opponency, this may not be a plausible explanation
(49, 50, 54).

The post-illumination pupil response (PIPR) after short
light stimuli (e.g., 1-s) has been suggested as a good marker
for estimating the melanopsin function (12). However, in this
study we used longer duration light stimuli (5-min) in order
to assess the overall PLR dynamics. Thus in order to assess
the contribution of each photoreceptor we used mathematical
modeling [Irradiance Toolbox (v1) application, developed by
Lucas et al. (47)], which provided the theoretical photoreceptor
activation under each light condition. From these results we
observed that under blue light stimuli there appears to be
a summation of intrinsic (melanopsin-ipRGCs) and extrinsic
(rods and cones) activation, which may explain the faster pupil
constriction under blue light than under red or purple light
stimuli, since the latter mainly involves cone activation with little
intrinsic melanopsin activation.

When evaluating the PLR under a high resolution wavelength
range (namely every 10 nm) from 420 to 500 nm, the highest
pupil responsiveness was observed between 470–490 nm
(depending on the PLR parameter analyzed). When looking at
the transient response (AUC0−60) a progressive increase (i.e.,

greater pupillary constriction) was observed from 420 to 490 nm.
These PLR results are in agreement with Gooley et al. (28), who
found in a blind subject with degeneration of the outer retina
while the inner retina remained intact, that pupillary constriction
was short-wavelength sensitive with a fitted peak sensitivity of
490 nm. The shorter (purple) wavelengths (420–440 nm) would
activate S-cones so the lower amplitude pupil response found
with these wavelengths may also be due to spectral opponency
(49, 50, 54), these lights thus producing less constriction than
the longer wavelengths with melanopsin activation. The 6-s
PIPR parameter, calculated after 5-min light stimuli, also showed
greater constriction (smaller diameters) with longer wavelengths,
again the maximum pupil constriction being at 490 nm. 6-s PIPR
has previously been found to be a good marker for melanopsin
activation after 1-s light stimuli (12), so for the first time,
as far as we know, this parameter has been calculated after
longer light exposures. Our results also support the hypothesis
that ipRGCs contribute significantly, not only to the pupillary
sustained response (AUC240−300) (23, 28) (which tended to be
greater at 460 nm), but also to the transient part of the reflex
(AUC0−60). The transient responses showing a similar pattern
to the theoretical melanopic activation further supports this
idea.

The role of rods, however, cannot be excluded since rods (i)
have been found to contribute to the sustained response (23) [as
well as to the PIPR (24)], (ii) have a peak of sensitivity at 498 nm
(60), and (iii) are partially activated under 480 nm light (as
presented in Figure 8B). Cones, however, according to previous
studies, contribute little to the sustained response (23, 28), since
they quickly adapt to long duration light stimuli.

The PLR has been widely shown to increase with higher light
intensities (18, 61, 62). In our studies (A and B) the light stimuli
were similar, allowing us to compare very close wavelengths at
different photon fluxes (13.08 vs. 11.93 log quanta/cm2/s from
Study A and B, respectively). Thus, at ∼440 and ∼480 nm, as
expected, higher photon fluxes produced a greater sustained
pupillary response at both wavelengths and faster velocity of
pupil constriction. Overall these results are in accordance with
a higher contribution of ipRGCs at higher photon fluxes (since
their activation threshold is higher) and at longer duration light
stimuli (23), while cone photoreceptors would contribute to
non-visual light responses at the beginning of light exposure (63).

Although pupillometry has become a useful tool to evaluate
non-visual light responses, it is not problem free. The PLR
has been shown to depend on wake and circadian phase (64).
Thus, experiments need to be controlled for time of day,
wake up time and circadian phase of the participants. In the
present study performing experiments during the morning at
the same clock time for each participant, as well as controlling
the sleep/wake cycle of the participants 7 days prior to the
PLR assessments, was designed to minimize the differences
between different days, time of day and wake status. PLR
could also be influenced by other processes such as changes in
accommodation states, in the state of arousal or even cognitive
activity (23), thus even when participants are instructed to
refrain from alcohol, caffeinated drinks, bright lights, excessive
exercise, and non-steroidal anti-inflammatory drug intake as
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in the present study, there may be additional confounding
factors. Despite these limitations, a close association between
the observed pupillary responses and the melatonin suppression
response with monochromatic lights has been reported (9, 35,
41, 46). In addition, a relationship between circadian status
and PLR has been recently proposed (10). Overall this suggests
that pupillometry may, in future with more evidence from
different approaches, become a practical tool to evaluate the
efficiency of light sources on circadian system activation in a
quick, non-invasive, and relatively inexpensive way [reviewed in
(65)].

Thus, if we consider pupillometry as a proxy to evaluate
circadian effects of light and considering that monochromatic
blue light is most effective at suppressing melatonin (8, 9, 44),
we propose that substitution of blue light by purple light in
polychromatic light sources may be a solution for nocturnal
illumination to minimize non-visual light responses. In order
to test this it will be necessary to determine, not only whether
the color discrimination is acceptable under these spectra, but
also the specific effects of purple light on melatonin synthesis,
sleep and alertness in humans, not only isolated, (9, 46) or in
combination with blue (66) or red (35) light, but also by replacing
blue light within more complex light spectra (67). In this sense,
further studies about the potential risks of using purple light at
the intensities required should also be conducted.
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