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a b s t r a c t 

Brain function relies on a precisely coordinated and dynamic balance between the functional integration and 

segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions 

to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian 

method for characterizing community structure-based latent brain states and showcase a novel strategy based on 

posterior predictive discrepancy using the latent block model to detect transitions between community structures 

in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a 

latent label vector that assigns network nodes to communities, and also block model parameters that reflect 

the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we 

also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 

healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance 

show appropriate lags between external task demands and change-points between brain states, with distinctive 

community patterns distinguishing fixation, low-demand and high-demand task conditions. 
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. Introduction 

Identifying changes in functional brain networks over time, under

arious cognitive states, can provide insights into dynamical organisa-

ion of the human brain. However, the definition of discrete brain states

nd the methods for identifying these states have not been commonly

greed ( Kringelbach and Deco, 2020; Lurie et al., 2020 ). Experiments

argeting unconstrained spontaneous ‘resting-state’ fMRI ( Allen et al.,

014; Aquino et al., 2020; Calhoun et al., 2014; Friston et al., 2021;

014; Hutchison et al., 2013; Lurie et al., 2020; Parkes et al., 2018;

ower et al., 2017; Razi and Friston, 2016; Razi et al., 2015; 2017 )

ave limited ability to infer latent brain states or determine how the

rain segues from one state to another, because the cognitive or vigi-

ance states are unpredictable and there is no ground truth regarding

he transient changes of cognition during resting state. A recent study

ith naturalistic movie stimuli used a hidden Markov model to explore
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ynamic jumps between discrete brain states and found that the vari-

tions in the sensory and narrative properties of the movie can evoke

iscrete brain processes ( Meer et al., 2020 ). However, the dynamics of

rain states and functional networks are not induced only by external

timuli, but also by unknown intrinsic latent mental processes ( Lurie

t al., 2020; Taghia et al., 2018 ). Task-fMRI studies with external stim-

li have demonstrated that functional connectivity exhibits variation

uring motor learning ( Bassett et al., 2011 ) and anxiety-inducing speech

reparation ( Cribben et al., 2012 ). Task-fMRI experiments can, to a large

xtent, delineate the external stimuli (e.g., the onset and duration of

timuli in experiments with block design), which can be used to validate

ethods for identifying latent discrete brain states. Although task-based

MRI constitutes reference points against which to identify changes in

he observed signal, this information does not precisely determine the

iming and duration of the latent brain state relative to psychological

rocesses. For example, an emotional stimulus may trigger a latent cog-
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itive response which is delayed relative to stimulus onset and which

ersists for some time after stimulus offset. Therefore, the development

f noninvasive methods for identifying transitions of latent brain states

uring both task performance and task-free conditions is necessary for

haracterizing the spatiotemporal dynamics of brain networks. 

Change-point detection in multivariate time series is a statistical

roblem that has clear relevance to identifying transitions in brain

tates, particularly in the absence of knowledge regarding the experi-

ental design. Several change-point detection methods based on spec-

ral clustering ( Cribben and Yu, 2017; Luxburg, 2007 ) and dynamic

onnectivity regression (DCR) ( Cribben et al., 2012 ) have been previ-

usly developed and applied to the study of fMRI time series, and these

ave enhanced our understanding of brain dynamics. However, change-

oint detection with spectral clustering only evaluates changes to the

omponent eigenstructures of the networks but neglects the weighted

onnectivity between nodes, while the DCR method only focuses on

he sparse graph but ignores the modules of the brain networks. Other

hange-point detection strategies include a frequency-specific method

 Schröder and Ombao, 2019 ), applying a multivariate cumulative sum

rocedure to detect change-points using EEG data, and methods which

ocus on large scale network estimation in fMRI time series ( Cho and

ryzlewicz, 2015; Frick et al., 2014; Park et al., 2018; Wang and Sam-

orth, 2017 ). Many fMRI studies use sliding window methods for char-

cterizing the time-varying functional connectivity in time series anal-

sis ( Allen et al., 2014; Chang and Glover, 2010; Handwerker et al.,

012; Jeong et al., 2016; Lurie et al., 2020; Monti et al., 2014; Za-

esky et al., 2014 ). Methods based on hidden Markov models are also

idely used to analyze transient brain states ( Vidaurre et al., 2018;

016; 2017 ). 

A community is defined as a collection of nodes that are densely con-

ected in a network. The problem of community detection is a topi-

al area of network science ( Jin, 2015; Sporns and Betzel, 2016; Wang

nd Bickel, 2017 ). How communities change or how the nodes in a

etwork are assigned to specific communities is an important problem

n the characterization of networks. Although many community detec-

ion problems in network neuroscience are based on modularity ( Bassett

t al., 2013; 2011; Newman, 2006 ), recently a hidden Markov stochastic

lock model combined with a non-overlapping sliding window was ap-

lied to infer dynamic functional connectivity for networks, where edge

eights were only binary and the candidate time points evaluated were

ot consecutive ( Robinson et al., 2015 ). More general weighted stochas-

ic block models ( Aicher et al., 2015 ) have been used to infer structural

onnectivity for human lifespan analysis ( Faskowitz et al., 2018 ) and to

nfer functional connectivity in the mesoscale architecture of drosophila,

ouse, rat, macaque, and human connectomes ( Betzel et al., 2018 ).

owever, these studies using the weighted stochastic block model only

xplore the brain network over the whole time course of the experi-

ent and neglect dynamic properties of networks. Weighted stochastic

lock models ( Aicher et al., 2015 ) are described in terms of exponential

amilies (parameterized probability distributions), with the estimation

f parameters performed using variational inference ( Blei et al., 2017;

offman et al., 2013 ). Another relevant statistical approach introduces

 fully Bayesian latent block model ( Nobile and Fearnside, 2007; Wyse

nd Friel, 2012 ), which includes both a binary latent block model and a

aussian latent block model as special cases. The Gaussian latent block

odel is similar to the weighted stochastic block model, but different

ethods have been used for parameter estimation, including Markov

hain Monte Carlo (MCMC) sampling. 

Although there is a broad literature exploring change-point detec-

ion, and also many papers that discuss community detection, relatively

ew papers combine these approaches, particularly from a Bayesian

erspective. In this paper, we develop Bayesian methods which unify

hange-point detection and community detection to explore when and

ow the community structure of discrete brain state changes at differ-

nt time points. The methods are validated using extensive synthetic

ata and working memory task fMRI data under different external de-
2 
ands. There are several advantages of our approach compared to ex-

sting change-point detection methods. Compared to the methods like

pectral clustering ( Cribben and Yu, 2017; Luxburg, 2007 ) and DCR

 Cribben et al., 2012 ), which either ignore characterizing the weighted

onnectivity or the community patterns, the fully Bayesian framework

nd Markov chain Monte Carlo method provide flexible and powerful

trategies that have been under-used for characterizing the latent prop-

rties of brain networks, including the dynamics of both the commu-

ity memberships and weighted connectivity properties of the nodal

ommunity structures. The change-point detection method based on

tochastic block model uses non-overlapping sliding windows and is ap-

lied only to binary brain networks ( Robinson et al., 2015 ). In contrast

o the binary latent block model used in time-varying network study

 Bian et al., 2020 ), the Gaussian latent block model used in this pa-

er considers the correlation matrix as an observation without impos-

ng any arbitrary thresholds, so that all the information contained in

he time series is preserved, resulting in more accurate detection of

hange-points. Moreover, unlike methods based on fixed community

emberships over the time course ( Ting et al., 2021 ), our methods con-

ider both the community memberships and parameters related to the

eighted connectivity to be time varying, which results in more flexi-

le estimation of both community structure and connectivity patterns.

urthermore, our Bayesian change-point detection (BCPD) method uses

verlapping sliding windows that assess all of the potential candidate

hange-points over the time course, which increases the resolution of

he detected change-points compared to method using non-overlapping

indows ( Robinson et al., 2015 ). Finally, the proposed BCPD is compu-

ationally efficient, scaling to whole-brain networks potentially covering

undreds of nodes within a reasonable time frame in the order of tens

f minutes. 

Our paper presents four main contributions, namely: (i) we quanti-

atively characterize discrete brain states of community structure with

eighted connectivity and time-dependent community memberships,

sing the latent block model within a temporal interval between two

onsecutive change-points; (ii) we propose a new Bayesian change-point

etection method based on posterior predictive discrepancy (PPD) ( Bian

t al., 2020; Gelman et al., 1996 ) to estimate transition locations be-

ween brain states, using a Bayesian model fitness assessment; (iii) in

ddition to the locations of change-points, we also infer the community

rchitectures of discrete brain states, which we show are distinctive for

-back, 0-back, and fixation conditions in a working-memory task-based

MRI experiment, and; (iv) we further empirically find that the estimated

hange-points between brain states show appropriate lags compared to

he external working memory task conditions. 

. Material and methods 

.1. The framework of Bayesian change-point detection 

An overview of the BCPD framework is shown in Fig. 1 a. We con-

ider a collection of 𝑁 nodes { 𝑣 1 , … , 𝑣 𝑁 

} representing brain regions for

 single subject, and suppose that we observe a collection of 𝑁 time

eries Y ∈ ℜ 

𝑁×𝑇 where Y = ( y 1 , y 2 , … , y 𝑇 ) , and 𝑇 is the number of time

oints. Different background colors represent different latent network

ommunity architectures. The nodes in the networks are assumed to be

lustered into communities and the different colors of the nodes repre-

ent the different community memberships. A more detailed example

f changes in network architectures with 16 nodes is shown in Fig. 1 b,

here the community memberships are defined as a latent label vec-

or z and 𝐾 is the number of communities. A transition or change-point

s defined as a time point at which the community structure changes.

orrelations between time series suggest interactions between the cor-

esponding brain regions; we therefore first process the time series to

onstruct a sequence of graphs in which temporal correlations between

ime series are represented by an edge connecting the corresponding

odes. 
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Fig. 1. The framework for identifying brain states, tran- 

sitions and communities. a Schematic of the proposed 

Bayesian change-point detection (BCPD) method. Three 

different background colors represent three brain states 

of individual subjects with different community archi- 

tectures. The colors of the nodes represent community 

memberships. A sliding window of width 𝑊 centered at 

𝑡 is applied to the time series. The different colored time 

series correspond to BOLD time series for each node. 

The sample correlation matrix x 𝑡 (i.e., an observation 

for our Bayesian model) is calculated from the sample 

data Y 𝑡 within the sliding window. We use the Gaus- 

sian latent block model to fit the observations and eval- 

uate goodness of fit between model and the observa- 

tions to obtain the posterior predictive discrepancy in- 

dex (PPDI). We then calculate the cumulative discrep- 

ancy energy (CDE) from the PPDI and use the CDE as 

a scoring criterion to estimate the change-points of the 

community architectures. b Dynamic community mem- 

berships of networks with 𝑁 = 16 nodes. A latent la- 

bel vector z contains the labels ( 𝑘 ) of specific commu- 

nities for the nodes. Nodes of the same color are lo- 

cated in the same community. The dashed lines repre- 

sent the (weighted) connectivity between communities 

and the solid lines represent the (weighted) connectiv- 

ity within the communities. c Model fitness assessment. 

The observation is the realized adjacency matrix; dif- 

ferent colors in the latent block model represent dif- 

ferent blocks with the diagonal blocks representing the 

connectivity within a community and the off-diagonal 

blocks representing the connectivity between communi- 

ties. To demonstrate distinct blocks of the latent block 

model, in this schematic we group the nodes in the same 

community adjacently and the communities are sorted. 

In reality, the labels of the nodes are mixed with re- 

spect to an adjacency matrix. The term 𝝅𝑘𝑙 represents 

the model parameters in block 𝑘𝑙. 
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We apply a sliding window of width 𝑊 (even numbered) to the time

eries as shown in Fig. 1 a. The sliding windows overlap and the centers

f the windows are located at consecutive time points. Change-points

ay occur only at times 𝑡 ∈ { 𝑊 

2 + 1 , … , 𝑇 − 

𝑊 

2 } where 𝑊 

2 is a margin

ize used to avoid computational and statistical complications. The ad-

antage of using overlapping windows is that we can potentially detect

ransitions in network architecture at any time during the time course

except the margin area). For each time point 𝑡 ∈ { 𝑊 

2 + 1 , … , 𝑇 − 

𝑊 

2 } ,
e define Y 𝑡 = { y 

𝑡 − 𝑊 2 
, … , y 𝑡 , … , y 

𝑡 + 𝑊 2 −1 
} as the data in the sliding win-

ow at time 𝑡 and calculate a sample correlation matrix x 𝑡 within this

indow. We interpret this correlation matrix as a weighted adjacency
3 
atrix. This means for each 𝑡 , we obtain a sample adjacency matrix x 𝑡 .

ubsequently, instead of time series Y , we use the sample adjacency

atrix x 𝑡 as the realized observation at time 𝑡 . 

Fig. 1 c provides a schematic illustrating the posterior predictive

odel fitness assessment. Specifically, we propose to use the Gaussian

atent block model ( Wyse and Friel, 2012 ) to quantify the likelihood

f a network, and the MCMC allocation sampler ( Nobile and Fearn-

ide, 2007; Wyse and Friel, 2012 ) to infer a latent label vector z from a

ollapsed posterior distribution 𝑝 ( z |x , 𝐾) derived from this model. The

odel parameters 𝝅 for each block are sampled from a posterior distri-

ution 𝑝 ( 𝝅|x , z ) , conditional on the sampled latent label vector z . The



L. Bian, T. Cui, B.T. Thomas Yeo et al. NeuroImage 244 (2021) 118635 

p  

v  

t  

d  

j  

fi  

p  

d

2

 

p  

h  

I  

b  

o  

F  

i  

m  

b  

s  

a  

t  

n  

t  

w  

b  

m  

p  

p  

t  

s  

t  

t  

s  

z

2

 

p  

t  

e  

a  

t  

b  

a  

m  

2  

r  

u  

s  

M  

F  

s  

1  

𝝅

2

 

fi  

fi  

e  

t

2

 

s  

c  

c  

t  

m  

n  

t  

a  

t  

i  

t  

o

2

 

a  

c  

o  

b  

s  

𝐾  

T  

s  

s

2

 

d  

t  

m  

c

𝑃  

M  

𝑃  

 

p  

p  

a  

t  

v  

d  

a  

r  

a

 

m  

t  

t  

p  

x  

t  

d  

p  

m

𝛾  

F  

m

a

𝛾  
roposed model fitness procedure draws parameters (both latent label

ectors and model parameters) from posterior distributions and uses

hem to generate a replicated adjacency matrix x 𝑟𝑒𝑝 . It then calculates a

isagreement index to quantify the difference between the replicated ad-

acency matrix x 𝑟𝑒𝑝 and realized adjacency matrix x . To evaluate model

tness, we use the parameter-dependent statistic called the posterior

redictive discrepancy index (PPDI) by averaging the disagreement in-

ex. More thorough discussion of PPDI is provided later in Section 2.5 . 

.2. The latent block model 

The latent block model (LBM) ( Wyse and Friel, 2012 ) is a random

rocess generating networks on a fixed number of nodes 𝑁 . The model

as an integer parameter 𝐾, representing the number of communities.

dentifying a suitable value of 𝐾 is a model fitting problem that will

e discussed in Section 2.4 ; here we assume 𝐾 is given. A schematic

f a latent block model is shown in the brown box on the right side of

ig. 1 c. A defining feature of the model is that nodes are partitioned

nto 𝐾 communities, with interactions between nodes in the same com-

unity having a different (usually higher) probability than interactions

etween nodes in different communities. The latent block model first as-

igns the 𝑁 nodes into the 𝐾 communities resulting in 𝐾 

2 blocks, which

re symmetric, then generates edges with a probability determined by

he community memberships. The diagonal blocks represent the con-

ectivity within the communities and the off-diagonal blocks represent

he connectivity between different communities. In our previous work,

e developed the change-point detection algorithm based on stochastic

lock model where the edges are binary ( Bian et al., 2020 ) and the block

odel parameter matrix only contains the blocks of mean. In this pa-

er, we consider the edges between nodes to be weighted, so the model

arameter matrix 𝝅 consists of the means and variances that determine

he connectivity in the blocks. We treat the correlation matrix as an ob-

ervation, thus preserving more information from the BOLD time series

han using binary edges. Given a sampled z we can draw 𝝅 from the pos-

erior directly. For mathematical illustration of the latent block model,

ee SI Section 1.1 and 1.2 . Methods for sampling the latent label vector

 will be discussed next. 

.3. Sampling from the posterior 

The posterior predictive method we outline below involves sampling

arameters from the posterior distribution. The sampled parameters are

he latent label vector z and model parameter matrix 𝝅. There are sev-

ral methods for estimating the latent labels and model parameters of

 latent block model described in the literature. One method evaluated

he model parameters by point estimation but considered the latent la-

els in z as having a distribution ( Daudin et al., 2008 ), making this

pproach similar to an EM algorithm. Another method used point esti-

ation for both the model parameters and latent labels ( Zanghi et al.,

008 ). We sample the latent label vector z from the collapsed poste-

ior 𝑝 ( z |x , 𝐾) (see detailed derivation of 𝑝 ( z |x , 𝐾) in SI Section 1.3 ). We

se the Markov chain Monte Carlo (MCMC) ( Hastings, 1970 ) method to

ample the latent label vector from the posterior using Gibbs moves and

3 moves (see SI Section 5 for details on the M3 move) ( Nobile and

earnside, 2007 ) for updating z . The details of the MCMC allocation

ampler and the computational complexity are illustrated in SI Section

.4 . After sampling the latent label vector z , we then separately sample

from the density 𝑝 ( 𝝅|x , z ) (See SI Section 1.2 for the details). 

.4. Model fitting 

Model fitting procedures are applied at two levels in this paper. At

rst, we perform BCPD, at an individual level, which we called global

tting . Then we perform local fitting , at the group level, which is used to

stimate the community structure of discrete states. Next, we describe

hese two model fitting procedures in detail. 
4 
.4.1. Global fitting 

Global fitting uses a latent block model to fit the adjacency matrix de-

cribed by a (sliding) window for each time point over the entire time

ourse for each individual. For global fitting, we consider the number of

ommunities, 𝐾, in our latent block model to be fixed over the length of

he whole experiment. We detect the change-points based on Bayesian

odel comparison using posterior predictive discrepancy, which does

ot determine whether the model is ‘true’ or not, but rather quantifies

he preference for the model given the data. One can imagine the model

s a moving ruler under the sliding window, and the observation at each

ime step as the object to be measured. The discrepancy increases signif-

cantly if there is a change-point located within the window. We repeat

he inference with different values of 𝐾 and compare the performance

f our change-point detection method. 

.4.2. Local fitting 

Local fitting uses a latent block model to fit the adjacency matrix of

 discrete brain state at the local minimum of a group-averaged CDE

urve. Local fitting involves selecting a model (i.e., choosing a value

f 𝐾) that best fits the group-averaged adjacency matrix of a discrete

rain state. Then we estimate the community memberships that con-

titute the discrete brain state, which we call local inference . We treat

as constant for this local inference (see more details in Section 2.7 ).

he number of communities 𝐾 can potentially be inferred using the ab-

orption/ejection move ( Nobile and Fearnside, 2007 ) in the allocation

ampler, an innovation that will be explored in future research. 

.5. Posterior predictive discrepancy 

Given inferred values of z and 𝝅 under the model 𝐾, one can

raw a replicated adjacency matrix x 𝑟𝑒𝑝 from the predictive distribu-

ion 𝑃 ( x 𝑟𝑒𝑝 |z , 𝝅, 𝐾) as shown in Fig. 1 c. Note that the realized adjacency

atrix (i.e., an observation) and the replicated adjacency matrix are

onditionally independent, 

 ( x , x 𝑟𝑒𝑝 |z , 𝝅, 𝐾) = 𝑃 ( x 𝑟𝑒𝑝 |z , 𝝅, 𝐾) 𝑃 ( x |z , 𝝅, 𝐾) . (2.1)

ultiplying both sides of this equality by 𝑃 ( z , 𝝅|x , 𝐾)∕ 𝑃 ( x |z , 𝝅, 𝐾) gives

 ( x 𝑟𝑒𝑝 , z , 𝝅|x , 𝐾) = 𝑃 ( x 𝑟𝑒𝑝 |z , 𝝅, 𝐾) 𝑃 ( z , 𝝅|x , 𝐾) . (2.2)

Here we use a replicated adjacency matrix in the context of posterior

redictive assessment ( Gelman et al., 1996 ) to evaluate the fitness of a

osited latent block model to a realized adjacency matrix. We gener-

te a replicated adjacency matrix by first drawing samples ( z , 𝝅) from

he joint posterior 𝑃 ( z , 𝝅|x , 𝐾) . Specifically, we sample the latent label

ector z from 𝑝 ( z |x , 𝐾) and model parameter 𝝅 from 𝑝 ( 𝝅|x , z ) and then

raw a replicated adjacency matrix from 𝑃 ( x 𝑟𝑒𝑝 |z , 𝝅, 𝐾) . We compute

 discrepancy function to assess the averaged difference between the

eplicated adjacency matrix x 𝑟𝑒𝑝 and the realized adjacency matrix x , as

 measure of model fitness. 

In Gelman et al. (1996) , the 𝜒2 function is used as the discrepancy

easure, where the observation is considered as a vector. However, in

he latent block model, the observation is a weighted adjacency ma-

rix and the sizes of the sub-matrices can vary. In this paper, we pro-

ose a new discrepancy index to compare adjacency matrices x 𝑟𝑒𝑝 and

 . We define a disagreement index to evaluate the difference between

he realized adjacency matrix and the replicated adjacency matrix. This

isagreement index is denoted by 𝛾( x 𝑟𝑒𝑝 ; x ) and can be considered as a

arameter-dependent statistic. In mathematical notation, the disagree-

ent index 𝛾 is defined as 

( x 𝑟𝑒𝑝 ; x ) = 

∑𝑁 

𝑖 =1 ,𝑗=1 |x 𝑖𝑗 − x 
𝑟𝑒𝑝 

𝑖𝑗 
|

𝑁 

2 , (2.3)

or the evaluation of model fitness, we generate 𝑆 replicated adjacency

atrices and define the posterior predictive discrepancy index (PPDI) 𝛾

s follows. 

= 

∑𝑆 

𝑖 =1 𝛾( x 
𝑟𝑒𝑝 𝑖 ; x ) 

. (2.4)

𝑆 
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The computational cost of the posterior predictive discrepancy pro-

edure in our method depends mainly on two aspects. The first is the

terated Gibbs and M3 moves used to update the latent label vectors.

he computational cost of these moves is discussed in SI Section 1.4 .

he second aspect is the number of replications 𝑆 needed for the predic-

ive process. Posterior predictive assessment is not sensitive to the repli-

ation number 𝑆, but 𝑆 linearly impacts the computational cost, that

s, the computational complexity of model fitness assessment is 𝑂( 𝑆) .
here is a natural trade-off between increasing the replication number

nd reducing the computational speed. 

.6. Cumulative discrepancy energy 

Our proposed strategy to detect network community change-points

s to assess the fitness of a latent block model by computing the posterior

redictive discrepancy index (PPDI) 𝛾𝑡 for each 𝑡 ∈ { 𝑊 

2 + 1 , … , 𝑇 − 

𝑊 

2 } .
he key insight here is that the fitness of the model is relatively worse

hen there is a change-point within the window used to compute x 𝑡 . If

here is a change-point within the window, the data observed in the left

nd right segments are generated by different network architectures, re-

ulting in poor model fit and a correspondingly high posterior predictive

iscrepancy index. 

In practice, we find that the PPDI fluctuates severely. To identify

he most plausible position of a change-point, we use another window

ith window size 𝑊 𝑠 to accumulate the PPDI time series. We obtain the

umulative discrepancy energy (CDE) 𝐸( 𝑡 ) , given by 

( 𝑡 ) = 

𝑡 + 𝑊 𝑠 2 −1 ∑
𝑖 = 𝑡 − 𝑊 𝑠 2 

𝛾𝑖 . (2.5)

e take the locations of change-points to be the local maxima of the cu-

ulative discrepancy energy, where those maxima rise sufficiently high

bove the surrounding sequence. The change-point detection algorithm

s summarized in SI Section 6.1 . 

Note that the posterior predictive discrepancy index and cumulative

iscrepancy energy for change-point detection are calculated under the

onditions of global fitting. For group analysis, we average CDE curves

cross subjects to obtain the group-averaged CDE. The resulting group-

veraged CDE may contain obvious false positives (FP) of local extrema,

hen multiple local minima or local maxima are located very close to-

ether. These false positives are removed using a time distance threshold

(See SI Section 6.2 for the proposed algorithm). There is a trade off

etween the value of 𝜏 and the number of false positives removed. A

arge value of 𝜏 can remove as many false positives, but may result in

alse negatives. In contrast, a small value of 𝜏 may not discard enough

alse positives. After discarding false positives, a change-point is taken

o be at each local maximum and a discrete state is inferred from the

ata segment in a window whose center time point is located at each

ocal minimum of group-averaged CDE. 

.7. Discrete brain state and local inference 

In this paper, a discrete brain state is defined as a network of static

ommunity structure in a time interval between two estimated change-

oints. The issue is how to determine the correlation matrix correspond-

ng to a discrete brain state? The correlation matrix, corresponding to a

iscrete brain state, can be calculated from the data segment between

wo change-points. However, different task conditions may have differ-

nt block sizes (e.g., the length of fixation block is usually smaller than

n n-back block in a working memory paradigm), hence the distance

etween two consecutive estimated change-points also varies. In order

o make a fair comparison between inferred networks of regions corre-

ponding to different task conditions, we define the data segments of

ask states to have the same length. Specifically, we use the data within

 window 𝑊 𝑙 , whose center point is located at the estimated local min-

mum of the CDE curve. The reason for choosing a local minimum as
5 
he center of the window is that this time point represents the best fit

f the model and data, since it reflects data generated from a putative

ingle brain state. The length of the window 𝑊 𝑙 is chosen to be the same

s the length of the shortest block in the paradigm. In brief, we assume

hat every time point, between two consecutive change-points, is the

bservation of the same discrete brain state estimated from the data in

 𝑙 . We then use local fitting to select 𝐾 using the latent block model

or estimating community structure for each brain state. 

.8. Working memory task fMRI data processing 

.8.1. tfMRI data acquisition 

We used working memory task fMRI data from 100 unrelated adults

articipating in the Human Connectome Project (HCP) ( Barch et al.,

013 ). All participants provided informed consent, and no additional

nstitutional review board (IRB) approval is required. The whole brain

cho-planar imaging (EPI) was acquired with a 32 channel head coil on

 modified 3T Siemens Skyra with TR = 0.72 s, TE = 33.1 ms, flip an-

le = 52 degrees, BW = 2290 Hz/Px, in-plane FOV = 208 × 180 mm,

2 slices with isotropic voxels of 2 mm with a multi-band acceleration

actor of 8. Two runs of the tfMRI were acquired (one right to left, the

ther left to right). The original experiment involved a version of an

-back task, used to assess working memory/cognitive control. In the

orking memory task, each block of tasks consisted of trials with pic-

ures of faces, places, tools and body parts. A specific stimulus type was

resented in each block within each run. In 2-back blocks, the subjects

udged whether the current stimulus is the same as the stimulus previ-

usly presented “two back ”. In 0-back blocks, the subjects were given a

arget cue at the beginning of each task block, and judged whether any

timulus during that block is the same as the target cue. There were 405

rames (with 0.72 s repetition time - TR) in the time course with four

locks of 2-back working memory tasks (each for 25 s), four blocks of

-back working memory tasks (each for 25 s) and four fixation blocks

each for 15 s). 

.8.2. tfMRI data preprocessing 

The tfMRI data in HCP are minimally preprocessed including gradi-

nt unwarping, motion correction, fieldmap-based EPI distortion correc-

ion, brain-boundary-based registration of EPI to structural T1-weighted

can, non-linear (FNIRT) registration into MNI152 space, and grand-

ean intensity normalization. The data analysis pipeline is based on

SL (FMRIB’s Software Library) ( Smith et al., 2004 ). Further smoothing

rocessing is conducted by Volume-based analysis and Grayordinates-

ased analysis, the details of which are illustrated in the corresponding

ections of Barch et al. (2013) . 

.8.3. GLM analysis 

The general linear model (GLM) analysis in this work includes 1st-

evel (individual scan run), 2nd-level (combining multiple scan runs for

n individual participant) and 3rd-level (group analysis across multiple

articipants) analyses ( Woolrich et al., 2004; 2001 ). At 1st-level, fixed

ffects analyses are conducted to estimate the average effect size of runs

ithin sessions, where the variation only contains the within-subject

ariance. At 2nd-level, we also use fixed effects analysis, averaging the

wo sessions within the individuals. At 3rd-level, mixed effects analyses

re conducted, with the subject effect size considered to be random.

he estimated mean effect size is across the population and the between

ubject variance is contained in the group level of GLM. We can set up

ifferent contrasts to compare the activation with respect to the memory

oad or stimulus type. We applied cluster-wise inference and set up the

luster defining threshold (CDT) to be 𝑍 = 3.1 ( 𝑃 = 0.001) to avoid

luster failure problems as described in Eklund et al. (2016) , with a

amily-wise error-corrected threshold of 𝑃 = 0.05. 

.8.4. Time series extraction 

We created spheres of binary masks with radius 6 mm (the center

f each sphere corresponded to the coordinates of locally maximum z
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tatistics, and the voxel locations of the centers were transferred from

NI coordinates in FSLeyes) and extracted the eigen time series of 35

egions of interest from the 4-D functional images. We obtained 100 sets

f time series from 100 unrelated subjects using the same masks. 

. Results 

Our proposed method is capable of identifying transitions between

iscrete brain states and infer the patterns of connectivity between brain

egions that underlie those brain states by modeling time-varying dy-

amics in BOLD signal under different stimuli. In this section, we val-

date our proposed methodology by applying BCPD and network esti-

ation to both synthetic data and real fMRI data. We first use synthetic

ultivariate Gaussian data for extensive validation and critically eval-

ate the performance of our change-point detection and sampling algo-

ithms. For real data analysis, we use working memory task fMRI (WM-

fMRI) data from the HCP. We extracted the time series of 35 nodes

hose MNI coordinates were determined by significant activations ob-

ained via clusterwise inference using FSL ( Smith et al., 2004 ). 

.1. Method validation using synthetic data 

In this section, we perform a set of simulations with, (i) various sig-

al to noise ratios (SNRs); (ii) various degrees of inter-individual vari-

tion (DIIV) and; (iii) haemodynamic response function (HRF) to vali-

ate BCPD and parameter estimation. Each dataset of these simulations

s a collection of time series of 100 virtual subjects simulated from a

enerative model. The simulated states of segments between two true

hange-points in the synthetic data can be repeating or all different, de-

ending on the setting of the parameters in the generative model. Firstly,

e perform simulations with multivariate Gaussian data with different

evels of SNR, but without considering the inter-individual variations

f community structures between virtual subjects. In the second set of

imulation, we use generative models that can characterize the inter-

ndividual variations in community structures by setting up different

egrees of inter-individual variation (DIIV) of true latent labels in the

enerative model. Here, DIIV is defined as the number of nodes that

ave different label assignments at the subject level. The last set of sim-

lations is performed with multivariate Gaussian data with a haemody-

amic response function. The details of the generative model, how to

enerate these three sets of simulations and, the definition of DIIV are

llustrated in SI Section 8 . 

.1.1. Effect of SNR on Bayesian change-point detection 

We first perform simulations with various SNRs (for further details

ee SI Section 8.1 ) to evaluate the effect of different levels of SNR on

he performance of our BCPD algorithm. There is no inter-individual

ariation of community structure between subjects (DIIV = 0) and no

RF, so we can ensure that the performance of BCPD will only be af-

ected by SNR in this experiment. We first apply the change-point detec-

ion algorithm to each subject to obtain the individual-level CDE curves

ia global fitting. The group-level CDE curve is calculated by averaging

ver the individual-level CDE curves. The resulting CDE curves using

ifferent levels of SNR and a latent block model with the number of

ommunities 𝐾 = 6 are shown in Fig. 2 a–c. The multi-color scatter plots

how the CDE of individuals and the black solid curve is the group-

veraged CDE. The local maxima (red dots) of the group-averaged CDE

ndicate the locations of change-points and the local minima (blue dots)

orrespond to the center of the windows that form the distinct states

hat differ in their community architectures. The local maxima and lo-

al minima of individual-level CDE curves are shown in Fig. 2 d–f with

NR = 10 dB, 5 dB, and 0 dB respectively. We find that there are obvious

nter-individual variations between CDE curves and their local extrema

or different levels of SNR. To quantify the effect of SNR on this varia-

ion, we calculated the time deviation between the individual-level local

xtrema and group-averaged local extremum. For each group-averaged
6 
ocal extremum (a local maximum or local minimum), we calculated

he averaged horizontal time distance between individual extrema and

he group-averaged local extremum in a segment between time points

f two neighbouring extrema. Fig. 2 g and h show the effect of SNR on

he time deviations of local maxima and local minima respectively. We

nd that smaller SNR increases the inter-individual variations between

DE curves. 

Next, we analyse the effects of choosing the number of communities

of latent block model on the performance of BCPD. We demonstrate

he results with SNR = 5 dB in the main text. Further simulation results

ith SNR = 10 dB, SNR = 0 dB, and SNR = -5 dB are provided in SI

igures 1, 2, and 3 . The resulting cumulative discrepancy energy (CDE)

cores using models with different values of 𝐾 are shown in Fig. 3 a.

e use a latent block model to fit the adjacency matrix at consecutive

ime points for change-point detection, which we call global fitting. We

nd that the local maxima (red dots) are located very close to the true

hange-points in all of the graphs (in Fig. 3 a) which means that the

lobal fitting has good performance for 𝐾 = 3, 4, 5, and 6 at SNR = 5 dB.

ere we clarify that global fitting is used to estimate the locations of

he change-points or transitions of brain states, and local fitting is used

o select a latent block model to estimate the community structures of

iscrete brain states (refer to Section 2.4 for the detailed explanation of

lobal and local fitting). 

Using the global fitting results, with 𝐾 = 6 and 𝑊 = 20, where 𝑊 is

he width of the sliding (rectangular) window, we find the local minima

the blue dots) locations to be 𝑡 = {36, 66, 91, 116, 146}, where each lo-

ation corresponds to a discrete state. Next, we use local fitting to select

 model (i.e. 𝐾 for local inference) to infer the community memberships

nd model parameters relating to the connectivity of the discrete states.

or local inference, the group-averaged adjacency matrix is considered

s the observation. We assess the goodness of fit between observation

nd a latent block model with various values of 𝐾 (from 𝐾 = 3, ... ,

8) using posterior predictive discrepancy for each local minimum, as

hown in Fig. 3 b. We selected the value of 𝐾 at which the curve starts

o flatten as the preferred model. We find that the model assessment

urves for states 1, 2, 4, and 5 flatten at 𝐾 = 4, whereas the model as-

essment curve for state 3 is flat over the entire range (from 𝐾 = 3 and

p). Therefore the selected models are 𝐾 = {4, 4, 3, 4, 4}for states 1 to

, respectively. 

To validate the MCMC sampling of the density 𝑝 ( z |x , 𝐾) , we com-

are the estimate of the latent label vector to the ground truth of the

ode memberships. Fig. 3 c shows the inferred community architec-

ures of the discrete states including the estimated latent label vectors

nd the model parameters of block mean and variance. The true label

ectors that determine the covariance matrix in the generative mod-

ls are also included in this figure. We use the most frequent latent

abel vectors in the Markov chain after the burn-in steps as the esti-

ate. Note that label-switching occurs in the MCMC sampling, which

s a well-known problem in Bayesian estimation of mixture models

 Stephens, 2000 ). In the results presented here, the node memberships

ave been relabelled to correct for label switching. The algorithm used

or this purpose is described in SI Section 7 . We find that the esti-

ated latent label vectors are (largely) consistent with the ground truth

f labels that determined the covariance matrix. The discrepant ‘True’

nd ‘Estimation’ patterns with respect to states 2 and 4 are due to

he bias induced by the selected model ( 𝐾 = 5 for the ground truth

nd 𝐾 = 4 for the selected model). Although the colors of the la-

els in the ‘True’ and ‘Estimation’ patterns are discrepant, we can see

hat the values of the labels are largely consistent, with some labels

f 𝑘 = 5 missing in the ‘Estimation’ pattern compared to the ‘True’

attern. 

Given the estimated latent label vector, we then draw samples of the

lock mean and variance from the posterior 𝑝 ( 𝝅|x , z ) conditional on the

stimated latent label vector z . However, there is no ground truth for

he block mean and variance when we generate the synthetic data. In

rder to evaluate the estimation of block mean and variance, we first
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Fig. 2. Effect of different levels of SNR on inter-individual variations of CDE curves. a –c CDE of the multivariate Gaussian data with SNR = 10 dB, 5 dB, and 0 dB 

respectively. Here, the degree of inter-individual variation (DIIV) of community structure is 0 and the dataset is simulated without HRF. The number of communities 

is 𝐾 = 6 for all of the experiments in this figure and the black plot is the group-averaged CDE curve. d –f The extrema of the individual-level CDE curves with different 

levels of SNR. The red dots are the local maxima and the blue dots are the local minima of 100 virtual subjects. The black plot is the group-averaged CDE curve. g 

The time deviation of local maxima of individual-level CDE curves compared to the local maximum of the group-averaged CDE curve with different levels of SNR. 

h The time deviation of local minima of individual-level CDE curves compared to the local minimum of the group-averaged CDE curve with different levels of SNR. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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imulate a synthetic adjacency matrix with ground truth of block mean

nd variance, then we estimate the block mean and variance by drawing

amples from the posterior density to validate the sampling algorithm.

he synthetic adjacency matrix and the validation of sampling model

ean and variance are illustrated in SI Figure 4 . 

.1.2. Effects of inter-individual variations of community structures and 

RF on Bayesian change-point detection 

In this section, we evaluate the effects of inter-individual variations

f community structures and HRF on the variations of CDE curves. We

se a set of experiments (by varying DIIV, but without HRF) simulated

rom the generative model with DIIV = 0, 5, and 10 respectively, and

e take SNR = 5 dB for all of the experiments in this section. The sim-

lation results of evaluating the effects of DIIV and HRF using datasets

f SNR = 10 dB and 0 dB are provided in SI Figures 5 and 6 . The CDE

urves and local extrema are shown in Fig. 4 a–c and d–f respectively.
7 
o imitate the empirical working memory task fMRI data, we perform

nother set of experiments to evaluate the effect of applying HRF, along

ith varying DIIV, on our inference method. The experimental results

re shown in Fig. 4 g–l. We also demonstrate the effect of HRF on the

nter-individual variations in CDE by comparing time deviations of lo-

al extrema by varying DIIV without HRF and also by varying DIIV and

ith HRF in Fig. 4 m and n. 

Results obtained for simulations by varying DIIV, but without HRF,

how that both the variations of CDE curves in Fig. 4 a–c and the devi-

tions of local extrema in Fig. 4 d–f are very small. The results of the

orizontal time deviation for SNR = 5 dB and by varying DIIV = 0, 5,

nd 10 also show very similar values for both local maxima in Fig. 4 m

nd local minima in Fig. 4 n. These results indicate that there is almost

o effect of DIIV on the inter-individual variation of CDE curves. 

For simulated experiments by varying DIIV and with HRF, we find

hat the CDE curves show appropriate lags in Fig. 4 g–i, although some
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Fig. 3. Results of change-point detection with different values of 𝐾 and local inference. a CDE of the multivariate Gaussian data with SNR = 5 dB using different 

models ( 𝐾 = 6, 5, 4, and 3). The sliding window size for converting from time series to correlation matrices sequence is 𝑊 = 20, whereas (for smoothing) the sliding 

window size for converting from PPDI to CDE is 𝑊 𝑠 = 10. The vertical dashed lines are the locations of the true change-points ( 𝑡 = 20, 50, 80, 100, 130, and 160). 

The multi-color scatterplots in the figures are the CDEs of individual (virtual) subjects and the black curve is the group-level CDE (averaged CDE over 100 subjects). 

The red dots are the local maxima and the blue dots are the local minima. b Local fitting with different models (from 𝐾 = 3 to 18) for synthetic data (SNR = 5 dB). 

Different colors represent the PPDI values of different states with the true number of communities 𝐾 

𝑡𝑟𝑢𝑒 . c The estimation of community constituents for SNR = 5 dB 

at each discrete state: 𝑡 = 36, 66, 91, 116, 146 for brain states 1 to 5, respectively. The estimations of the latent label vectors ( Estimation ) and the label vectors 

( True ) that determine the covariance matrix in the generative model are shown as bar graphs. The strength and variation of the connectivity within and between 

communities are represented by the block mean and variance matrices within each panel. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

8 
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Fig. 4. Effects of DIIV and HRF on the inter-individual variations of CDE curves. a –c CDE of the multivariate Gaussian data with DIIV = 0, 5, and 10 respectively. The 

SNR = 5 dB and the number of communities 𝐾 = 6 for all experiments. d –f The extrema of the individual-level CDE curves with different levels of DIIV. The red dots 

are the local maxima and the blue dots are the local minima of 100 virtual subjects. g –i CDE curves of the multivariate Gaussian data applied with haemodynamic 

response function (HRF). j –l The extrema of the individual-level CDE curves with HRF. m The time deviation of local maxima of individual-level CDE curves compared 

to the local maximum of the group-averaged CDE curve with different levels of DIIV and HRF. n The time deviation of local minima of individual-level CDE curves 

compared to the local minimum of the group-averaged CDE curve with different levels of DIIV and HRF. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

9 
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Fig. 5. Results of local inference for the multivariate Gaussian data with HRF. a Local fitting with different models (from 𝐾 = 3 to 18) for synthetic data (SNR = 5 dB) 

with HRF. Different colors represent the PPDI values of different states with the true number of communities 𝐾 

𝑡𝑟𝑢𝑒 . b The estimation of community constituents for 

the data with HRF at each discrete state, the centres of the state window are 𝑡 = 44, 74, 98, 130, 154 for brain states 1 to 5, respectively. The estimations of the 

latent label vectors ( Estimation ) and the label vectors ( True ) that determine the covariance matrix in the generative model are shown as colored bars. The strength 

and variation of the connectivity within and between communities are represented by the block mean and variance matrices within each panel. 
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fitness. 
f the lags occur irregularly. The corresponding local extrema become

ore disperse as shown in Fig. 4 j–l compared to the results for sim-

lations in Fig. 4 d–f. In Fig. 4 m and n, we see that the time devia-

ions of local extrema of experiments with HRF are larger than those

ithout. 

Therefore, we draw the conclusion that the inter-individual varia-

ions of CDE are mainly due to the different SNR levels and HRF. A

maller SNR and applying HRF will increase the inter-individual vari-

tions in CDE. Applying HRF to time series results in appropriate lags

sometimes the local extrema occur irregularly) of CDE curves, we find

hat there are almost no effects of inter-individual variations of commu-

ity structures on the inter-individual variations in CDE. 

Next, we evaluate whether the performance of local inference is

ffected by HRF. We demonstrate the results of local inference using

NR = 5 dB, DIIV = 0, and with HRF as shown in Fig. 5 . We find that

he estimation of 𝐾 using local fitting in Fig. 5 a reflects the ground truth

 

𝑡𝑟𝑢𝑒 accurately. The estimates of latent labels from states 1 to 5 are also

argely consistent with the true label vectors in the generative models

ith synthetic data. These results indicate that applying HRF does not

educe the accuracy of local inference. 

For estimating the community structure in task block-designed ex-

eriment, one may consider to directly infer the community structure

iven the known time boundaries of the task blocks; i.e., we calculate the

djacency matrices within the blocks directly without Bayesian change-

oint detection. Although the block-designed task-based fMRI time se-

ies provides the time boundaries of the task blocks which can be con-

idered as the reference points of the locations of the latent brain states,

hese time boundaries may not represent the exact latent states. For

xample, the delay induced by the HRF as shown in our previous exper-
10 
ments. The question is that it is not clear how much delay causes differ-

nces in the inter-regional correlations and thus community structure.

s the community structure is (highly) dependent on the estimation of

he number of communities, here we evaluate the sensitivity of the com-

unity structure due to the errors in detection of delay. For doing this,

e compare the sensitivity of model fitness using group-averaged adja-

ency matrix of BCPD-based states with that using the adjacency matrix

f block-based states. We evaluate the sensitivity of model fitness us-

ng synthetic data with SNR = 5 dB. The differences of estimation of

using BCPD-based states and block-based states where the adjacency

atrix is calculated from the window 𝑊 𝑙 , whose center point is located

t the middle of the block, are shown in Fig. 6 a and b. We find that

he estimation of 𝐾 of BCPD-based states is 𝐾 = {4, 5, 3, 5, 4}, which is

onsistent with the ground truth. Although the estimation of 𝐾 of block-

ased states is also largely consistent with the ground truth, except State

 which is not consistent enough, we can see that the overall values of

PDI in Fig. 6 a are smaller than those in Fig. 6 b, which means that the

stimation of the number of communities using the BCPD-based discrete

tates is more accurate and less noisy than that using the block-based

djacency matrices. The results of the comparison using synthetic data

ith HRF (SNR = 10 dB) are shown in Fig. 6 c and d. We observed a sim-

lar difference of sensitivity of model fitness as we did for SNR = 5 dB.

verall, we conclude that the estimation of the number of communi-

ies of the discrete states is more accurate by using BCPD than when

sing the block-based states. For block-based states, the data segment

ithin the window located at the center of the task block may have

een generated from two latent network architectures due to the error

f delays caused by HRF, which will in turn result in the worse model
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Fig. 6. Comparison of the sensitivity of model fitness of BCPD-based states with that of block-based states using synthetic data. a Local fitting using the group- 

averaged adjacency matrix of BCPD-based discrete states (States 1 to 5 at time points 𝑡 = 44, 74, 98, 130, 154) with HRF and SNR = 5 dB. b Local fitting using the 

group-averaged adjacency matrix of block-based states (States 1 to 5 at time points 𝑡 = 35, 65, 90, 115, 145) with HRF and SNR = 5 dB. c Local fitting using the 

group-averaged adjacency matrix of BCPD-based discrete states (States 1 to 5 at time points 𝑡 = 43, 75, 98, 125, 154) with HRF and SNR = 10 dB. d Local fitting 

using the group-averaged adjacency matrix of block-based states (States 1 to 5 at time points 𝑡 = 35, 65, 90, 115, 145) with HRF and SNR = 10 dB. Different colors 

represent the PPDI values of different states with the true number of communities 𝐾 

𝑡𝑟𝑢𝑒 . All experiments use the window 𝑊 𝑙 = 20 for calculating the adjacency 

matrices. 
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.2. Method validation using working memory (WM) task-fMRI data 

In this analysis, we used preprocessed working memory (WM)-tfMRI

ata obtained from 100 unrelated healthy adult subjects under a block

esigned paradigm, available from the Human Connectome Project

HCP) ( Barch et al., 2013 ). We mainly focused on the working mem-

ry load contrasts of 2-back vs. fixation, 0-back vs. fixation, or 2-back

s. 0-back, and determine the brain regions of interest from the GLM

nalysis. After group-level GLM analysis, we obtained cluster activations

ith locally maximum Z statistics for different contrasts. The results in

he form of thresholded local maximum Z statistic (Z-MAX) maps are

hown in SI Figure 7 . The light box views of thresholded local max-

mum Z statistic with different contrasts are provided in SI Figure 8 .

ignificant activations obtained by clusterwise inference and the cor-

esponding MNI coordinates with region names are shown in Table 1 .

e finally extracted the time series of 35 brain regions corresponding to

he MNI coordinates. Refer to Section 2.8 for the details of experimental

esign, GLM analysis and time series extraction. 

.2.1. Change-point detection for tfMRI time series 

In the main text, we illustrate the results using the HCP working

emory data of session 1, i.e. with the polarity of Left to Right (LR).

he replication of results obtained by using session 2 (RL) are demon-

trated in SI Figures 12 to 17 and SI Table 1 . We compare the brain

tates of different working memory loads for a specific kind of picture

tool, body, face, and place) involved in the experiments. As there is
11 
o repetition of task conditions in a single session, the estimated pat-

erns of brain states do not recur in LR session. One can compare the LR

nd RL session for the recurrence of a specific task condition. To detect

hange-points in the extracted time series, we first converted each time

eries into a sequence of correlation matrices for each subject. We then

odeled this sequence of correlation matrices for each subject using

he latent block model and evaluated posterior predictive discrepancy

PPD) to assess the model fitness. Next, we converted the resulting PPD

ndex (PPDI) to a CDE score for each subject. For group-level analysis,

e averaged the resulting individual-level CDE scores over 100 subjects

o obtain a sequence of group-averaged CDE as shown in Fig. 7 with

ifferent window sizes 𝑊 = 22, 26, 30, 34 ( Fig. 7 a–d) and different val-

es of 𝐾 ( Fig. 7 c, e, and f). We chose the window size for converting

rom PPDI to CDE to be a constant 𝑊 𝑠 = 10 for all of the assessments.

n the upper panels, the multi-colored scatterplots in the figures are the

ndividual-level CDE scores of 100 subjects, and the black curves are the

roup-averaged CDE. The bottom panels show the group-averaged CDE

urve after removing false positives. With the same number of commu-

ities 𝐾 = 3, we found there are more false positives with window size

 = 22 compared to 𝑊 = 26, 𝑊 = 30 and 𝑊 = 34. This is because there

re fewer sample data contained in the sliding window if the window

ize is smaller. We also tried different models with 𝐾 = 4 and 𝐾 = 5. We

ound that there are more false positives with larger values of 𝐾. Larger

alues of 𝐾 imply more blocks in the model, which gives rise to rela-

ively better model fitness. In this situation, there will be less distinction

etween relatively static brain states and transition states with change-
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Table 1 

Significant activations of cluster wise inference (cluster-corrected 𝑍 > 3.1, 𝑃 < 0.05). Activations 

are described in terms of local maximum Z ( Z -MAX) statistic within each cluster including the 

activations of all contrast maps among 2-back, 0-back, and fixation. 

MNI coordinates Voxel locations 

Node number Z -MAX x y z x y z Region name 

1 4.97 48 − 58 22 21 34 47 Angular Gyrus 

2 9.61 36 8 12 27 67 42 Central Opercular Cortex 

3 8.27 − 36 4 12 63 65 42 Central Opercular Cortex 

4 6.48 40 34 − 14 25 80 29 Frontal Orbital Cortex 

5 7.83 − 12 46 46 51 86 59 Frontal Pole 

6 4.84 54 32 − 4 18 79 34 Inferior Frontal Gyrus 

7 6 52 38 10 19 82 41 Inferior Frontal Gyrus 

8 4.38 − 52 40 6 71 83 39 Inferior Frontal Gyrus 

9 6.05 52 − 70 36 19 28 54 Inferior Parietal Lobule PGp R 

10 7.26 − 48 − 68 34 69 29 53 Inferior Parietal Lobule PGp L 

11 6.18 44 − 24 − 20 23 51 26 Inferior Temporal Gyrus 

12 9.54 36 − 86 16 27 20 44 Lateral Occipital Cortex 

13 8.04 − 30 − 80 − 34 60 23 19 Left Crus I 

14 7.6 − 8 − 58 − 52 49 34 10 Left IX 

15 6.9 − 22 − 48 − 52 56 39 10 Left VIIIb 

16 14.5 6 − 90 − 10 42 18 31 Lingual Gyrus 

17 10.3 30 10 58 30 68 65 Middle Frontal Gyrus 

18 6.61 66 − 30 − 12 12 48 30 Middle Temporal Gyrus 

19 4.53 − 68 − 34 − 4 79 46 34 Middle Temporal Gyrus 

20 14.5 18 − 88 − 8 36 19 32 Occipital Fusiform Gyrus 

21 5.06 − 12 − 92 − 2 51 17 35 Occipital Pole 

22 9.87 6 40 − 6 42 83 33 Paracingulate Gyrus 

23 12 42 − 16 − 2 24 55 35 Planum Polare 

24 11.3 − 40 − 22 0 65 52 36 Planum Polare 

25 9.03 38 − 26 66 26 50 69 Postcentral Gyrus 

26 8.31 − 10 − 60 14 50 33 43 Precuneus Cortex 

27 5.7 46 − 60 − 42 22 33 15 Right Crus I 

28 8.34 32 − 80 − 34 29 23 19 Right Crus I 

29 10.9 32 − 58 − 34 29 34 19 Right Crus I 

30 6.41 10 − 8 − 14 40 59 29 Right Hippocampus 

31 6.19 32 − 52 2 29 37 37 Right Lateral Ventricle 

32 7.69 24 − 46 16 33 40 44 Right Lateral Ventricle 

33 6.13 0 10 − 14 45 68 29 Subcallosal Cortex 

34 10.7 48 − 44 46 21 41 59 Supramarginal Gyrus 

35 4.23 − 50 − 46 10 70 40 41 Supramarginal Gyrus 
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oints in the window. The false positives among the local minima and

ocal maxima are also influenced by the window size 𝑊 𝑠 used for trans-

orming from PPDI to CDE. A larger window size (for example 𝑊 𝑠 = 30)

educes the accuracy of the estimates and results in false negatives. Too

mall a value of 𝑊 𝑠 increases the false positive rate. We found that 𝑊 𝑠 

 10 works well for all of the real data analyses. Here, we suggest a rule

f thumb for choosing the window sizes 𝑊 and 𝑊 𝑠 , and the model 𝐾 for

hange-point detection in fMRI data analysis. The window 𝑊 should be

ess than or equal to the task blocks, but as large as possible (usually,

e select 𝑊 to be the same as the length of the shortest task block in

he paradigm). The window for converting from PPDI to CDE is set to

e 𝑊 𝑠 = 10. The model 𝐾 = 3 is usually appropriate for BCPD for task

MRI data. We use the algorithm provided in SI Section 6.2 with time

istance threshold 𝜏 = 7 to remove any false positives. The change-point

etection results after removing false positives are provided in the bot-

om panels. We find that there are still some unexpected local extrema

emaining in Fig. 7 a, b and e in the first task block and some false neg-

tives in Fig. 7 b, d, e and f. The extrema of Fig. 7 c best align with the

ime boundaries of the task blocks. 

After removing false positives, we note that the onsets of the stimuli

recede the inferred local maxima, and the local minima also show ap-

ropriate lags (for example, about 10 frames, or 7 s as shown in Fig. 7 c)

ompared to the mid-points of the working memory blocks. For fixa-

ion blocks, the local maxima show lags compared to the mid-points of

he blocks. In our results obtained from simulations with HRF, we ob-

erved similar lags between the true time boundaries of Gaussian data

egments and the time points of estimated extrema. We suggest that the

ags, which are estimated using working memory task fMRI data, are
 W  

12 
ikely due to the delay introduced by the haemodynamic response. Our

ata-driven method based on the latent block model, without any neuro-

iological constraint, appears sufficient to account for these lags. Never-

heless, the change-point detection algorithm, in combination with gen-

rative methods based on the dynamic and biophysical models that ex-

licitly characterize neural dynamical systems ( Lurie et al., 2020 ) might

xplain if such lags have any neurobiological explanation. Regarding the

omputational cost, the time spent to run the posterior predictive assess-

ent on each subject ( 𝑇 = 405 frames, posterior predictive replication

umber 𝑆 = 50, 𝐾 = 3, and the window size 𝑊 = 30) by using a 2.6 GHz

ntel Core i7 processor unit was about 10 min. 

The ‘local inference’ is defined as a way to estimate the discrete brain

tate via Bayesian modeling. The group-averaged dynamic functional

etworks were analyzed by performing ‘local inference’ as follows. In

his experiment, we used results obtained by change-point detection for

= 3 and 𝑊 = 30 (see Fig. 7 c). The resulting estimated change-point

ocations (the time points of local maxima) are at 𝑡 = {68, 107, 165, 206,

65, 306, 356}, and the estimated time points of the windows regarding

he discrete brain states (the time points of local minima) are at 𝑡 = {41,

6, 140, 175, 239, 278, 334, 375}. A summary of comparison between

he detected change-points and condition blocks for working memory

fMRI data using 𝑊 = 30 and 𝐾 = 3 are shown in Fig. 8 . 

.2.2. Local inference for discrete brain states in tfMRI 

For ‘local inference’, we first calculated the group-averaged adja-

ency matrix with a window of 𝑊 𝑙 = 20, for all brain states. The center

f the window is located at the time point of the local minimum value.

e evaluated the goodness of fit for models with different values of
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Fig. 7. The results of BCPD for working memory tfMRI data (session 1, LR). The upper panels are the cumulative discrepancy energy (CDE) with different sliding 

window sizes ( 𝑊 = 22, 26, 30, and 34; a –d under the model 𝐾 = 3) and different models ( 𝐾 = 3, 4, and 5; c, e and f using a sliding window of 𝑊 = 30). 𝑊 𝑠 is width 

of the sliding window used for converting from PPDI to CDE. The vertical dashed lines are the times of onset of the stimuli (which were provided in the EV.txt files 

in the released data). The multi-color scatter plots in the figures represent the CDEs of individual subjects and the black curve is the group-level CDE (averaged over 

100 subjects). The red dots are the local maxima, which are taken to be the locations of change-points, and the blue dots are the local minima, which are used for 

local inference of the discrete brain states. The bottom panels show the estimated group-averaged CDE where false positives (FP) are removed using time distance 

threshold 𝜏 = 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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( Fig. 9 ). The results demonstrate that the goodness of fit trends to

at at 𝐾 = 6. To avoid empty communities, 𝐾 = 6 is then selected as

he number of communities in local inference. Note that the value of

is unchanged in Markov chain Monte Carlo estimation, but an empty

ommunity containing no labels may take place. In the remainder of this

ection, we used the model with 𝐾 = 6 for all brain states. The times

pent to run the estimation for latent label vector and model parameters

or a single discrete brain state (MCMC sampling number 𝑆 𝑠 = 200, 𝐾

 6, and the window size 𝑊 𝑙 = 20) by using a 2.6 GHz Intel Core i7

rocessor unit were about 1.85 and 1.25 s respectively. 

The inferred community structures are visualized using BrainNet

iewer ( Xia et al., 2013 ) and Circos maps ( Krzywinski et al., 2009 )

s shown in Fig. 10 . Estimated latent label vectors are visualized us-
13 
ng different colors to represent different communities. The community

abels of nodes of different states also show inconsistencies (i.e., the

abel-switching phenomenon). Here, we used the relabelling algorithm

s described in SI Section 7 to reassign the labels across different states.

he nodes are connected by weighted links at a sparsity level of 10% (we

lso visualized the brain states with sparsity levels of 20% and 30%: SI

igures 9 and 10 ). The density and variation of connectivity within and

etween communities are characterized by the estimated block mean

atrix and block variance matrix in SI Figure 11 for LR session and SI

igure 17 for RL session. We first describe the working memory tasks

nvolving the 2-back tool ( Fig. 10 a), 0-back tool ( Fig. 10 e), and fixation

 Fig. 10 c, f, i). The locations of fixation states are considered as the loca-

ions of the change-points at 107, 206, and 306 (we consider the fixation
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Fig. 8. Detected change-points and locations of the windows regarding the brain states matching the task blocks for working memory tfMRI data (session 1, LR) with 

𝐾 = 3, and 𝑊 = 30. The numbers at the top of rectangles are the boundaries of the external task demands, the rectangles with background colors are the different 

task conditions, and the blue and red bars with specified numbers are the estimated locations of the windows for the discrete brain states and change-points. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Local fitting between averaged adjacency matrix and models from 𝐾 = 
3 to 18. Different colors represent the PPDI values of different brain states. 
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tate as a transition buffer between two working memory blocks). We

ound that the connectivity between the inferior parietal lobule (node

) and middle frontal gyrus (node 17), and the connectivity between

he inferior parietal lobule (node 9) and supramarginal gyrus (node 34)

re increased significantly both in 2-back and 0-back working memory

ompared to fixation. 

For 2-back face ( Fig. 10 d) and 0-back face ( Fig. 10 j), The connectiv-

ty between inferior parietal lobule (node 9) and supramarginal gyrus

node 34) and the connectivity between angular gyrus (node 1) and

upramarginal gyrus (node 34) are increased in 2-back compared to 0-

ack and fixation. There is reduced connectivity between the lateral

ccipital cortex (node 12), occipital fusiform gyrus (node 20), and oc-

ipital pole (node 21) in 2-back and 0-back compared to fixation. 

For task blocks with body parts pictures ( Fig. 10 g and b), we found

hat the connectivity between inferior parietal lobule (node 9) and mid-

le frontal gyrus (node 17), and the connectivity between inferior pari-

tal lobule (node 9) and supramarginal gyrus (node 34) are increased

ignificantly both in 2-back and 0-back working memory compared to

xation. The connectivity between angular gyrus (node 1) and supra-

arginal gyrus (node 34) is increased in 2-back compared to 0-back

nd fixation. There is reduced connectivity between the lateral occipital

ortex (node 12), occipital fusiform gyrus (node 20), and occipital pole

node 21) in 2-back and 0-back compared to fixation. 
14 
Finally, we compare 2-back place ( Fig. 10 h), 0-back place ( Fig. 10 k),

nd fixation. We found that the connectivity between lateral occipital

ortex (node 12) and occipital pole (node 21), and the connectivity be-

ween occipital fusiform gyrus (node 20) and occipital pole (node 21)

re reduced in 2-back compared to 0-back and fixation. 

It is clear from Fig. 10 that nodes are clustered into communities

ith different connectivity densities within and between communities.

he mean and variance of the connectivity within and between com-

unities are reported as block mean and variance matrices in SI Figure

1 . We find that there are strong connections in communities 𝑘 = 3,

, and 6 and weak connections in communities 𝑘 = 1, 2, and 5 for a

ajority of the states. The Circos map provides a different perspective

n the community pattern of the brain state. We summarise the com-

on community pattern for specific working memory load or fixation

n Table 2 . 

. Discussion 

We proposed a Bayesian change-point detection method for identify-

ng transitions and characterising brain states between two consecutive

ransitions. The method is validated by extensive simulations and block

esigned task fMRI data with known time boundaries of task blocks.

he transitions between brain states identified by the BCPD method ex-

ibit consistency and appropriate lags compared to the external task

emands. This indicates the feasibility of BCPD, and also a significant

ifference between the temporal boundaries of external task demands

nd the transitions of latent brain states. We also estimated the commu-

ity memberships of brain regions that interact with each other to give

ise to the brain states. Furthermore, we showed that the estimated pat-

erns of community architectures show distinct networks for 2-back and

-back working memory load and fixation. After validation using work-

ng memory task-based fMRI data, the BCPD can be applied to fMRI

ith naturalistic stimuli (e.g. movie-watching, music listening) where

he time boundaries may be uncertain and indistinguishable, or the rest-

ng state fMRI which has relatively less distinct switching of brain states.

n movie-watching experiment, the sensory and narrative cues may be

onsidered as referential information, while there is no referential infor-

ation in resting-state fMRI data. The BCPD was just applied to locate

he relatively static brain states occurring in block designed task fMRI

ata. In future work, we aim to apply the method to explore the dynamic

haracteristics of event-related task fMRI, where applying a sliding win-

ow approach may be difficult, as the changes of the states will be the

ulses. 

The dynamics of the brain states are not only induced by external

timuli, but also the latent mental process, such as motivation, alert-

ess, fatigue, and momentary lapse ( Taghia et al., 2018 ). Crucially, for
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Fig. 10. Community structure of the discrete brain states. The figures with blue frames represent brain states corresponding to working memory tasks (2-back tool 

at 𝑡 = 41; 0-back body at 𝑡 = 76; 2-back face at 𝑡 = 140; 0-back tool at 𝑡 = 175; 2-back body at 𝑡 = 239; 2-back place at 𝑡 = 278; 0-back face at 𝑡 = 334; and 

0-back place at 𝑡 = 375 in a - k ) and those with red frames represent brain states corresponding to fixation (fixation at 𝑡 = 107, 206, and 306 in c, f , and i ). Each 

brain state shows connectivity at a sparsity level of 10%. The different colors of the labels represent community memberships. The strength of the connectivity is 

represented by the colors shown in the bar at the right of each frame. In Circos maps, nodes in the same community are adjacent and have the same color. Node 

numbers and abbreviations of the corresponding brain regions are shown around the circles. In each frame, different colors represent different community numbers. 

The connectivity above the sparsity level is represented by arcs. The blue links represent connectivity within communities and the red links represent connectivity 

between communities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

15 
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Table 2 

A table of community detection with session 1 (LR). This table summarises the nodes commonly located in a 

specific community 𝑘 for all of the picture types in the working memory tasks. 

2-back 0-back Fixation 

Community Node number Community Node number Community Node number 

𝑘 = 1 𝑘 = 1 𝑘 = 1 
𝑘 = 2 15 30 𝑘 = 2 𝑘 = 2 15 31 32 

𝑘 = 3 16 20 𝑘 = 3 16 20 21 𝑘 = 3 12 16 20 21 

𝑘 = 4 1 9 17 34 𝑘 = 4 𝑘 = 4 1 9 25 

𝑘 = 5 11 14 𝑘 = 5 𝑘 = 5 3 11 14 

𝑘 = 6 8 19 35 𝑘 = 6 19 𝑘 = 6 5 8 10 19 

t  

r  

n  

o  

s  

w  

t  

r  

T  

p  

i  

a

 

e  

T  

g  

i  

p  

l  

i  

n  

g  

p  

m  

a  

n  

f  

p  

d  

d

 

a  

t  

t  

m  

m  

1  

C  

L  

t  

t  

r

 

t  

a  

f  

p  

t  

W  

t

 

d  

l  

p  

e  

p  

i  

t  

l  

w  

w  

t  

t  

s  

d  

p  

s  

o  

c  

fi  

b

 

t  

A  

e  

H  

d  

g  

t  

a  

c  

s  

b  

t  

m

 

e  

t  

i  

a  

d  

G  

i  

v  

t  

i  

l  

c  

e  

m  

(  

t

 

(  

i  

t  
ask-based fMRI, directly using the temporal boundaries (onsets and du-

ation) associated with predefined task conditions to infer the functional

etworks may not be sufficiently rigorous and accurate. The boundaries

f the task demand are not the timing and duration of the latent brain

tate. The estimated change-points in our experiments are consistent

ith the working memory task demands but show a delay relative to

he onsets of the task blocks or the mid-points of fixation blocks. These

esults reflect the delay involved due to the haemodynamic response.

he delay may also arise from other factors such as neurobiologically

lausible delays introduced when performing certain tasks, or record-

ng of the data using the fMRI scanner, and between signal emission

nd reception. 

We defined a new criterion named cumulative discrepancy en-

rgy (CDE) to estimate locations of these change-points or transitions.

he main idea underlying this novel strategy is to recognize that the

oodness-of-fit between the model and observation is reduced if there

s a change-point located within the current sliding window (the sam-

le data in the window can be considered as being generated from two

atent brain network architectures in this case), resulting in a signif-

cant increase in CDE. The individual-level CDE curves are extremely

oisy due to the high level of noise in fMRI dataset. In this paper, the

roup-averaged CDE is proposed as a core criterion to infer the change-

oints. The unpredictable intrinsic mental process in task-free experi-

ent may have severe effect on the dynamics of brain networks. Aver-

ging over CDE at group level may alleviate the effect of intrinsic cog-

itive process, but may also neglect the variability between subjects. In

uture, the hierarchical Bayesian modeling will be proposed for change-

oint detection, which will evaluate the variability of dynamics of in-

ividual latent brain networks for both task-based and task-free fMRI

esigns. 

The posterior predictive discrepancy (PPD) based on model fitness

ssessment combined with sliding window analysis is proposed to de-

ect change-points in various functional brain networks and to infer

he dynamics when a brain changes state. Posterior predictive assess-

ent is a method based on Bayesian model comparison. Other Bayesian

odel comparison methods including Bayes factors ( Kass and Raftery,

995; West, 1986 ), the Bayesian information criterion (BIC) ( Neath and

avanaugh, 2012 ), and Kullback–Leibler divergence ( Kullback and

eibler, 1951 ) are also widely used in mixture modeling. One advan-

age of the posterior predictive assessment is that the computation for

he assessment is a straightforward byproduct of the posterior sampling

equired in the conventional Bayesian estimation. 

We used overlapping, rectangular, and fixed size sliding windows so

hat all of the time points are included. Although fixed sliding windows

re used in this paper, there is another method based on the adaptive

orgetting windows which may yield improved performance when ap-

lied to change-point detection. In this adaptive windowing method, a

ime varying window can be learnt automatically ( Monti et al., 2017a ).

e will explore different shapes of windows (e.g., Gaussian windows,

apered window etc), and adaptive windowing in future research. 

The results of the task fMRI data analysis show that the change-point

etection algorithm is sensitive to the choice of model. We found that a

ess complex model (with smaller 𝐾) for global fitting gave fewer false
16 
ositives, so it had better change-point detection performance than mod-

ls with larger 𝐾. Selecting a suitable window size 𝑊 is also very im-

ortant for our method. Too small a window size results in too little

nformation being extracted from the data within the window, causing

he calculated CDE to fluctuate more, making it difficult to discriminate

ocal maxima and local minima in the CDE score time series. Too large a

indow size (larger than the task block length) reduces the resolution at

hich the change-points can be distinguished. In the working memory

ask fMRI dataset, the length of the task block is around 34 frames and

he fixation is about 20 frames. Therefore, we made the sliding window

ize 𝑊 at most 34 frames to ensure all potential change-points can be

istinguished, and at least 20 frames to ensure the effectiveness of the

osterior predictive assessment. In our experiments, we used window

izes 𝑊 = 22, 26, 30, and 34, which were all larger than the length

f the fixation block. This means it was not possible to detect the two

hange-points at both ends of fixation blocks, so we consider the whole

xation block as a single change-point (i.e., a buffer between two task

locks). 

Empirical fMRI datasets have no ground truth regarding the loca-

ions of latent transitions of the brain states and network architectures.

lthough the task data experiments include the timings of stimuli, the

xact change-points between discrete latent brain states are uncertain.

ere, we used the multivariate Gaussian model to generate synthetic

ata (ground truth) to validate our proposed algorithms by comparing

round truth to the estimated change-points and latent labels. With ex-

ensive experiments using synthetic data, we demonstrated the very high

ccuracy of our method. The multivariate Gaussian generative model

an characterize the community patterns via determining the member-

hips of the elements in the covariance matrix, but it is still an unrealistic

enchmark. In the future, we will integrate the clustering method into

he dynamic causal modeling ( Friston et al., 2003; 2019 ) to simulate

ore biologically realistic synthetic data to validate the algorithm. 

The latent block model provides a flexible approach to modeling and

stimating the dynamical assignment of nodes to a community. Note

hat the latent block model was fitted to the adjacency matrix of each

ndividual subject in global fitting, and was fitted to the group-averaged

djacency matrix in the local fitting. Different choices of 𝝅 can generate

ifferent connection patterns in the adjacency matrix. The likelihood is

aussian and the connectivity is weighted, both of which facilitate treat-

ng the correlation matrix as an observation, without losing much rele-

ant information from the time series. We treat both the latent label vec-

or and block model parameters as quantities to be estimated. Changes

n community memberships of the nodes are reflected in changes in the

atent labels, and changes in the densities and variations in functional

onnectivity are reflected in changes in the model parameters. For mod-

ling brain networks, we used non-informative prior in the latent block

odel. In the future, we will explore the empirical Bayesian framework

 Mejia et al., 2018 ) for the latent block model at the subject level where

he prior is estimated from the data. 

There are still some limitations of the MCMC allocation sampler

 Nobile and Fearnside, 2007; Wyse and Friel, 2012 ) which we use to

nfer the latent label vectors. When Markov chains are generated by

he MCMC algorithm, the latent label vectors typically get stuck in local
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B  
odes. This is in part because the Gibbs moves in the allocation sampler

nly update one element of the latent label vector at a time. Although

he M3 move updates multiple elements of the latent label vector, the

pdate is conditional on the probability ratio of a single reassignment,

hich results in similar problems to the Gibbs move. Improving the

CMC allocation sampler so that it can jump between different local

odes, without changing the value of 𝐾, is a topic worth exploring. Cur-

ently, we use an MCMC sampler with a Gibbs move and an M3 move

or local inference as well, keeping 𝐾 constant. In future work, we will

xtend the sampler using an absorption/ejection move, which is capable

f sampling 𝐾 along with latent labels directly from the posterior distri-

ution. The label-switching phenomenon does not happen frequently if

he chain is stuck in a local mode. However, the estimated labels in the

atent label vector do switch in some experiments. To correct for label

witching, we permute the labels in a post-processing stage. 

Next, we discuss the results of the brain states inferred from the WM-

fMRI data and discuss the estimated patterns of connectivity for differ-

nt blocks of working memory tasks after local inference. We find that

here are distinct connectivity differences between 2-back, 0-back, and

xation. We first compare the working memory and the fixation con-

itions, with particular reference to the middle frontal gyrus (node 17)

nd inferior parietal lobule (node 9) which includes the angular gyrus

node 1) and supramarginal gyrus (node 34). The middle frontal gyrus

s related to manipulation, distractor resistance, refreshing, selection for

ction and monitoring, and the inferior parietal lobule is related to focus

ecognition and long-term recollection ( Nee et al., 2013 ). In our results,

e find that the connectivity between the middle frontal gyrus and infe-

ior parietal lobule is increased in the working memory tasks compared

o the fixation state. The connectivity between the lateral occipital cor-

ex (node 12) and occipital fusiform cortex (node 21) is strong and stable

n fixation compared to the working memory tasks, and a higher work-

ng memory load may increase the instability of this connectivity. 

Regarding the difference between 2-back and 0-back working mem-

ry tasks, we focus on the angular gyrus and supramarginal gyrus. In

ur experimental results, we find that there is increased connectivity

etween the angular gyrus (node 1) and supramarginal gyrus (node 34)

n 2-back compared to 0-back working memory task blocks. The angu-

ar gyrus is located in the posterior part of the inferior parietal lobule.

he inferior parietal cortex, including the supramarginal gyrus and the

ngular gyrus, is part of a “bottom-up ” attentional subsystem that me-

iates the automatic allocation of attention to task-relevant information

 Seghier, 2013 ). Previous work has shown that activation of the inferior

arietal lobe is involved in the shifting of attention towards particular

timuli ( Gottlieb, 2007 ). The right inferior parietal lobule including an-

ular gyrus is related to attention maintaining and salient event encod-

ng in the environment ( Singh-Curry and Husain, 2009 ). These research

ndings are consistent with and justify our results. 

The visualization of discrete brain states in this paper demonstrated

he group-averaged connectivity and community structure of brain net-

orks. There are several existing methods that are able to character-

ze the differences across subjects rather than over time ( Monti et al.,

017b; Monti and Hyvärinen, 2018 ). Evaluating the variability between

ubjects as well as over time in dynamic functional connectivity is an im-

ortant topic. In this paper, we only treat the group-averaged adjacency

atrix as an observation in local inference, which neglects variation

etween subjects ( Betzel et al., 2019; Friston et al., 2016 ). As a future

ork, we propose to use hierarchical Bayesian modeling to estimate

he community architecture at the group level. In the local inference,

e will model the individual adjacency matrix using the latent block

odel, and infer the number of communities along with the latent la-

el vectors via an absorption/ejection strategy. At the group level, we

ill model the estimated number of communities of the subjects using

 Poisson-Gamma conjugate pair and model the estimated latent label

ectors using a Categorical–Dirichlet pair. The posterior distribution of

he number of communities will be modeled using a Gamma distribution

nd the posterior distribution of the latent label vector will be modelled
17 
sing a Dirichlet distribution. The estimated label assignment probabil-

ty matrix of the Dirichlet posterior distribution will characterize the

rain networks at the group level. 
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