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Abstract: In this paper, an in situ piezoelectric-fiber hybrid sensor network was developed to monitor
the life-cycle of carbon fiber-reinforced plastics (CFRPs), from the manufacturing phase to the life in
service. The piezoelectric lead-zirconate titanate (PZT) sensors were inserted inside the composite
structures during the manufacturing process to monitor important curing parameters, including the
storage modulus of resin and the progress of the reaction (POR). The strain that is related to the storage
modulus and the state of resin was measured by embedded fiber Bragg grating (FBG) sensors, and
the gelation moment identified by the FBG sensors was very close to those determined by dynamic
mechanical analysis (DMA) and POR. After curing, experiments were conducted on the fabricated
CFRP specimen to investigate the damage identification capability of the embedded piezoelectric
sensor network. Furthermore, a modified probability diagnostic imaging (PDI) algorithm with
a dynamically adaptive shape factor and fusion frequency was proposed to indicate the damage
location in the tested sample and to greatly improve the position precision. The experimental results
demonstrated that the average relative distance error (RDE) of the modified PDI method was 68.48%
and 46.97% lower than those of the conventional PDI method and the PDI method, respectively, with
an averaged shape factor and fusion frequency, indicating the effectiveness and applicability of the
proposed damage imaging method. It is obvious that the whole life-cycle of CFRPs can be effectively
monitored by the piezoelectric-fiber hybrid sensor network.

Keywords: composite structures; structural health monitoring; hybrid sensor network; progress of
reaction; probability diagnostic imaging

1. Introduction

Carbon fiber-reinforced plastics (CFRPs) have gained increasing applications in the
aerospace and automobile fields due to their extraordinary performance such as high spe-
cific strength and stiffness, corrosion resistance, and strong designability [1,2]. Thermoset
CFRPs are commonly manufactured by stacking prepregs, and then heat and pressure are
applied to them to cure the resin and exclude air voids [3]. For mass production of compos-
ite materials, vacuum bag molding technology is gaining interest due to its simplicity, cost
competitiveness, and short production time. However, the curing reaction of the resin is
complicated, especially for co-cured large-scale composite materials, and can potentially
induce molding defects, such as dry spots, voids, or delamination, along with the mechani-
cal property reduction of the final parts induced by improper manufacturing conditions,
such as cure temperature and preservation time [4–6]. Borrero et al. [7] compared five
curing conditions on the durability and compressive strength of concrete to recommend the
most effective curing conditions on concrete’s characteristics. Daneshvar et al. [8] investi-
gated the dynamic behavior of five small-scale FRP-strengthened corroded steel-reinforced
concrete (RC) slabs experimentally and numerically. The experimental results showed
that FRP strengthening helps to improve the dynamic performance of the corroded plate.
With the increasing demand for the performance of composite structures, many structural
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health monitoring (SHM) methods are required to be incorporated into life-cycle moni-
toring plans to obtain higher optimal quality [9]. Accordingly, a number of sensing and
measurement technologies have emerged such as optical fiber sensing [10–13], ultrasonic
sensing [14–17], electromechanical impedance [18–20], thermometers [21,22], and pressure
transducers [23,24]. According to these sensing technologies, they enable one to follow
manufacturing parameters such as the progress of the reaction, the residual stress, the
development of the resin complex modulus, and the events during the curing cycle such as
gelation and vitrification. To monitor the curing parameters, ultrasonic testing is an effec-
tive method, which is sufficiently sensitive to structural status changes. Koissin et al. [25]
adopted a nonlinear ultrasonic immersion technique to monitor the resin curing in an
aluminum-adhesive-aluminum laminate. Khadka et al. [26] embedded a fiber Bragg grat-
ing (FBG) sensor and thermocouple in an epoxy system cured at 12 ◦C to determine its
curing characteristics. However, they neglected the impact of the fiber on the resin, which
would lead to inaccurate measurement results. The actual trend in research deals with the
application of the embedded sensor network to perform in situ monitoring, with real-time
and auto-checking abilities [27]. The embedded smart system is beneficial to reveal the
complex physical phenomena inside materials and can be integrated permanently with
the molded composite materials to provide information about the structural performance
changes during its whole life-cycle. For achieving life-cycle monitoring of composite struc-
tures, Eum et al. [28] used optical fiber sensors to monitor both the manufacturing process
and the strain of composite structures for quality assurance and integrity assessment. Fur-
thermore, Minakuchi et al. [27] performed life-cycle monitoring of a large-scale CFRP by
fiber-optic-based distributed sensing. However, these measurement methods stated above
pose the problem of localized sensing and the limitations of curing parameter monitoring.
In contrast to these sensing technologies, piezoelectric sensors have a large-scale sensing
ability due to their long-distance propagation and can achieve in situ process monitoring
and in-service inspection based on ultrasonic propagation.

Therefore, a piezoelectric-fiber hybrid sensor network was proposed to monitor more
curing parameters and improve the reliability and accuracy of the monitoring results during
the curing process, and it can be further used to achieve online health monitoring when
it is in service. In the hybrid sensor network, PZT sensors encapsulated in the Stanford
Multiactuator-Receiver Transduction (SMART) are used to monitor the storage modulus of
resin and the progress of reaction of a large-area structure, and it can be integrated with
the composite structures after curing. The distributed FBG sensors were used to measure
the strain during the curing process and to identify the moment of gelation in the curing
reaction to verify the correctness of the ultrasonic measurements.

For service inspection of the molded composite structures, guided waves-based struc-
tural health monitoring is a promising method because of the large monitoring area,
relatively low attenuation, and high execution efficiency [29–31]. In a typical guided waves-
based SHM system, the PZT sensors are the most commonly used to stimulate and receive
guided waves for damage identification. The sensor layer (that is SMART layer) with a PZT
sensor network was embedded into the composite laminate during the fabrication. It can
serve as an active way to provide detailed information about the structural status changes
and to realize damage assessment with high accuracy. In addition to damage detection,
many researchers are dedicated to imaging methods to locate damage more intuitively and
efficiently. Among the damage imaging methods, the probability-based diagnostic imaging
(PDI) algorithm is the most commonly used method due to its conceptual simplicity, easy
implementation, and no requirement about the prior knowledge of guided waves [32–34].
In the PDI method, the shape factor is a parameter used to control the affected area, which
is determined empirically and remains constant for all actuator-sensor paths. Improper
shape factors may lead to inaccurate or even wrong imaging results when using the conven-
tional PDI method [35,36]. Consequently, it is highly required to propose a variable shape
factor to adjust the affected area of each sensing path and enhance the imaging precision
of the PDI method. In this paper, a dynamically adaptive shape factor was proposed to
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adjust the affected area of all sensing paths in real-time based on the damage index. The
experimental results showed that the damage location ability can be improved significantly
by the modified PDI method.

Cure monitoring in the manufacturing stage and damage identification in the service
stage are two vital parts in the whole life-cycle monitoring of CFRPs. In this paper, a
piezoelectric-fiber hybrid sensor network was developed to determine the initial quality
and assess the structural integrity of composite structures. The first wave packet of guided
waves was extracted to monitor the storage modulus and loss factor of the resin and the
progress of the reaction in order to better determine the curing conditions. The FBG sensors
were used to measure the strain and identify the gelation moment. Another positive
point is that the embedded PZT sensor network remains operational after demolding,
so it can perform in situ and real-time SHM for the fabricated specimen. Furthermore,
a modified PDI method with a dynamically adaptive shape factor was developed to
improve the damage location accuracy effectively. The experimental results indicated
that the piezoelectric-fiber hybrid sensor network can realize the life-cycle monitoring of
composite materials and provide important technical support to realize the intelligence of
composite materials.

2. Cure Monitoring
2.1. Experimental Setup for Cure Monitoring

Figure 1 shows the experimental setup for guided waves measurement on the preform
during the curing process. The experimentally fabricated specimen used in the experiment
was an eight-layer unidirectional CFRP prepreg with a size of 400 mm × 400 mm × 1.835 mm,
which is shown in Figure 1b. A breather was placed on the top of the CFRP to ensure
even airflow, and then the release film and the vacuum bag were placed on the breather
sequentially. It was known in advance that the CFRP was wrapped easily when cured with
the vacuum bag molding (VBM) technology without a tool plate, which would affect the
measurement accuracy and the molded part performance. Therefore, a 6061-aluminum
plate with a size of 600 mm × 600 mm × 2 mm was adopted and the CFRP plate was
placed on the tool plate. In the experiment, three sensor layers with nine PZT sensors were
inserted between the first layer and the second layer of the specimen. Studies have shown
that under certain conditions, the embedded sensor layer would not degrade the integrity
of the host structure, by introducing a piezoelectric elements network supported on a thin
flexible printed circuit substrate. The size of the PZT transducers was φ8 mm × 0.33 mm
and their relative properties are described in Table 1. The distance between the actuator and
the sensor was 150 mm. Moreover, one atmospheric pressure was applied to the stacked
prepregs so that the transducers had good contact with the tested material, allowing better
propagation of the guided wave through the aluminum plate. The scene picture of the
experiment is shown in Figure 2. It can be found that the embedded sensor layer was
hollowed out to minimize the damage to the CFRP plate. During the curing process, the
transmitter was excited by a five-cycle Hamming windowed sinusoidal waveform supplied
by Scan Genie II. Measurements of the receivers were also acquired by the system. The
excitation voltage was 75 V and the signals were acquired by performing a frequency
scan over each of the sensing paths. Upon the above experimental setup, the CFRP
plate was gradually cured and guided wave signals of all sensing paths were recorded at
regular intervals.
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Figure 1. The experimental setup for cure monitoring based on ultrasonic guided waves. (a) Schematic diagram of prepreg
molding process based on the VBM technology. (b) The detailed sensor layout. (c) Guided waves measurement system.
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Table 1. The characteristic properties of circular PZT sensors.

Items. Parameters Values

s11
E (×10−12 m2/N) Compliance coefficient 10.417

s12
E (×10−12 m2/N) In-plane compliance coefficient −3.333

η Mechanical loss factor 0.025
ε33

T/ε0 (Farad/m) Relative dielectric constant 1920
δ Dielectric loss factor 0.01

d31 (C/N) Piezoelectric strain constant −200
ν Poisson’s ratio 0.32

ρ (kg/m3) Density 7750
h (×10−3 m) Thickness 0.33
r (×10−3 m) Radius 4

2.2. DMA Test

Conventionally, the dynamic mechanical analysis (DMA) test is a common method
used to accurately measure the dynamic storage modulus and loss modulus of resin in
the curing process. In this paper, the specimens were tested with the DMA test under
double cantilever support, and the temperature rose and remained at 10 ◦C with a periodic
oscillating force. The curing behavior of composites characterized by the DMA test is
shown in Figure 3. As can be seen from Figure 3, the DMA results contained the variation
curve of the storage modulus Em

′, loss modulus Em ′′ , and loss factor tgδ. The storage
modulus is relative to the degree of cure (DOC), and it increased as the resin cured and
arrived at the final value of approximately 8.4 GPa. Therefore, this parameter has the
capability to identify several crucial steps including the gel point and vitrification point.
On the contrary, the loss factor, the specific value of Em

′/Em ′′ , showed a decreasing trend
as the cure continued, and it eventually tended to a minimum value of about 0.053. This
parameter can be used to estimate the energy variation throughout the curing process when
the experimental specimen was cured at a constant temperature of 105 ◦C. The intersection
of the loss factor and storage modulus curves is the point with the largest slope. At this
point, the decreasing rate of the loss factor and the increasing rate of the storage modulus of
the resin was fastest, indicating that the curing rate of the resin reached the maximum. The
parameter of Em ′′ indicates the energy loss of irreversible deformation in the curing process.
It can be found that it was not positively correlated with time. It increased gradually with
time for the first approximately 75 min until it reached a local maximum. Then, the loss
modulus decreased with time until it reached a minimum value.

Figure 3. DMA testing curves of T300 prepregs.
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2.3. Results and Discussion of the Cure Monitoring Process

As mentioned above, the DMA test can represent the dynamic characteristics of resin
in the curing process but poses the problem of not real-time measurements and the neglect
of the impact of environmental factors on the results. The actual trend in research deals
with the application of in situ smart sensors, with real-time acquisition capability. Due to
the flexibility and reliability of the guided wave-based method, it can facilitate in situ and
real-time cure monitoring of carbon fiber-reinforced composite plates manufactured by the
VBM technology.

After the experimental preparation was completed, the regrading preform was placed
into a heating cabinet for curing, and the recommended curing temperature profile is
shown in Figure 4. The entire experiment process was carried out at a constant temperature
of 105 ◦ C for 3 h. In the heating-up stage, the temperature rose from room temperature to
105 ◦C in the first 20 min, and then the temperature remained at 105 ◦C. Preceding studies
have shown that the temperature and degree of cure field were evenly distributed in the
curing process for thin CFRP plates (less than 2 mm), and the gradient of temperature
and degree of cure can be ignored in the thickness scale. Therefore, the strain reduction is
attributable to the chemical shrinkage of the resin rather than the exothermic reaction in the
curing process. The strain field shown in Figure 5a was monitored by the distributed FBG
sensor with three sensing points shown in Figure 5b, and the measurement of the strain
signals was from the isothermal cure stage (20 min to 180 min). In the first 20 min to 58 min,
the viscosity of the epoxy resin decreased and was prone to flow, resulting in an increase in
strain. As the curing process continued, the curing shrinkage started and transferred to
the FBG sensor. From this time, the strains measured by the FBG sensor began to decrease
and the moment was determined as the gel point. It can be seen from Figure 5a that the
gelation moments measured by the FBG sensors were consistent, indicating the uniformity
of the curing degree and the correctness of the measurement results.

Figure 4. Recommended heating profile of the T300 prepreg provided by the manufacturer.

The amplitude and attenuation of guided waves were obtained by signal processing
on the received waveforms. The Hilbert transform, as a reliable signal processing method,
is easy to perform and can compensate for the effect of phase difference. Figure 6 shows the
Hilbert transform results on the received waveforms at different curing moments of one
sensing path. As can be seen, there was a distinct wave packet in the collected signal, which
varies with curing time. The amplitude signals of the sensing path P7_4 (PZT 7 serves as
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an actuator and PZT 4 serves as a sensor) obtained in the experiment was processed and
is further shown in Figure 7. The first 20 min was the heating-up stage, and the signal
amplitude reduced with the increase in temperature and reached the minimum values.
After that, the amplitude started to increase followed by a stable tendency.
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Figure 7. The variation amplitude of the P7_4 sensing path over time.

Considering that the curing of resin is an irreversible and gradual process, the am-
plitude of path P7_4 was integrated to estimate the progress of the reaction (POR) by the
following equation [37]:∫ tn

t1

Xdt ≈∑n−2
i=1

1
2
(ti+1 − ti)(|xi+2 − xi+1|+ |xi+1 − xi|) (1)

where X is the integral variable, that is the signal amplitude. xi denotes the amplitude of
guided waves at time ti. The POR development of the sensing path P7_4 was calculated
and is plotted in Figure 8, which demonstrated the changing regularity of the whole curing
process. According to Figure 8, the curing process was divided into three sections for
analysis. In the initial stage (0–50 min), the temperature rose and the curing reaction had just
begun with a slow reaction rate, which is why the POR value increased subtly. As the curing
reaction proceeded, the viscosity of the resin increased sharply from 51 min to 90 min, and
the POR value increased with a rapid speed accordingly because the cross-linking reaction
inside the resin formed a netlike structure. Finally, the POR value continued to increase at
a slow rate until it reached the maximum value.

By making a comparison between Figure 8 and the storage modulus curve of the DMA
test in Figure 3, it can be observed that the tendency of the POR curve was consistent with
the storage modulus variation of the resin, and the first and the second characterization
points that occurred in the curing progress were approximately equal to those of DMA
results. Consequently, the presented POR curve can approximately characterize the change
in storage modulus of the resin under the actual curing environment. To represent the
degree of cure, the first and the second characterization points were approximated as
the gel point and vitrification point. It can also be seen from the comparison between
Figures 5 and 8 that they almost had the same gel point, demonstrating the correctness of
the determination of the crucial steps.
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Figure 8. The POR curve of path P7_4 versus curing time.

As described in Figure 3, the storage modulus continued to increase versus curing
time, but the variation tendency of the loss factor was inverse to that of the storage modulus.
As the resin cured, the loss factor continued to decrease until it reached a minimum, which
means the continuous reduction in the system energy loss. Therefore, the energy variation
index (EVI) can be used to characterize the changes in the system energy during the curing
process, which is determined below:

EVI = 1−

√√√√√ ∫ tc
tb
(si

2(t) + ei
2(t))∫ tc

tb
(bi

2(t) + ci
2(t))

(2)

where tb and tc are the initial and the end moment of integration, respectively. bi(t) is the
signature of the i-th sensing path in the initial time, and ci(t) is the Hilbert transform of
bi(t). si(t) = ai(t)− bi(t) is the scattering signal obtained by subtracting the baseline signal
bi(t) from the current signal ai(t), and ei(t) is the Hilbert transform of si(t). Based on the
EVI equation, the normalized EVI of the sensing path P7_4 with excitation frequencies
of 190 kHz was calculated and is plotted in Figure 9. According to Figure 9, the EVI
curve expressed a pronounced downtrend. In the initial stage of curing, the resin had
the largest loss modulus corresponding to the maximum EVI value. Then, the energy
variation continued to decrease, which means that the curing process nearly completed.
The estimated EVI was compared with the loss factor in the DMA test to assess the
effectiveness of the proposed characteristic parameter. It can be seen that the characteristic
point defined based on the EVI was very close to that determined by the loss factor curve
in the DMA test. Hence, the EVI variation was able to assess the loss factor of the resin
during the curing process.
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Figure 9. The schematic diagram of the calculated EVI of the sensing path P7_4.

Furthermore, a quasi-isotropic CFRP plate with layup [0/45/90/−45]2s was fabri-
cated and monitored to further validate the effectiveness of the characteristic parameters,
including POR and EVI, and the schematic diagram of the specimen is shown in Figure 10.
Similarly, the first wave packet of the received waveforms was extracted by the Hilbert
transform method, and the processing results are shown in Figure 11. A similar procedure
of comparison was made between Figures 7 and 11, as well as Figures 8 and 12. It can be
seen that although the guided waves propagated on the CFRP plate with a different lay-up,
the amplitude variation had a very similar tendency. With the prolongation of curing time,
the amplitude of ultrasonic guided waves decreased first and then increased steadily. For
ease of analysis, the POR curve was calculated for the signal amplitude of the sensing
path P4 s_6 s using Equation (1), and the variation trend is shown in Figure 12. It can be
observed that the approximate gel point and glass transition point that appeared in the
POR curve almost coincided with that in the storage modulus curve provided by the DMA
test. Similarly, the EVI curve of the sensing path P4 s_6 s for the quasi-isotropic specimen
and the loss factor of the DMA test have been merged into Figure 13 for comparison. It can
also be easily discovered that the EVI curve expressed a high similarity to the DMA result.
The variation tendency indicated that the variation in storage modulus and loss factor in
the curing progress can be effectively assessed by the proposed parameters of POR and
EVI, respectively. Moreover, several key steps including the gel point and glass transition
point can also be correctly identified with the help of the POR curve.
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Figure 10. The schematic diagram of the fabricated specimen with layup [0/45/90/−45]2s.

Figure 11. The amplitude variation of the sensing path P4s_6s over time.
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Figure 12. The POR curve of the sensing path P4s_6s for the quasi-isotropic specimen.

Figure 13. The EVI curve of the sensing path P4s_6s for the quasi-isotropic specimen.

It can be known from the above experimental results that the proposed hybrid
piezoelectric-fiber sensor network was integrated with composite structures during the
VBM process and can be used to monitor the progress of the reaction, storage modulus,
and loss factor of resin, strain, and the crucial steps. It should be noted that both POR and
the development of the storage modulus of resin had a great impact on the performance
of composite structures and can be used to represent the degree of cure of the resin. The
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higher the degree of cure, the more the mechanical properties of the fabricated products can
be fully exploited. In addition, the development of POR and storage modulus can identify
the chemo-physical transformation of the curing matrix for revealing physical phenomena
inside materials, such as gelation and vitrification. The determination of each step by the
method proposed in this paper can provide a data basis for improving the curing process.

3. Service Monitoring

After the CFRP is demolded, the embedded piezoelectric-fiber hybrid sensor net-
work can be permanently integrated with the structure to perform in situ and real-time
structural health monitoring applications as it makes the composite part “smart”. In this
section, damage identification and location were performed to assess the effectiveness
of the embedded PZT sensor network, and a modified probability imaging method was
proposed to deal with the disadvantage of the conventional PDI method and to improve
the accuracy of damage imaging. The damage identification experiments were conducted
on the demolded CFRP plate based on the modified PDI method. A simulated damage
with a size of φ20 mm× 2 mm was attached to the CFRP surface at different locations.
A diagrammatic sketch of the sensing paths is shown in Figure 14.

Figure 14. The sensing paths of the fabricated CFRP plate.

3.1. Probability Damage Imaging with the Averaged Shape Factor

The PDI method is an imaging method based on the damage index and the weight
distribution function to estimate the damage probability of each point in the monitoring
area. The damage probability of each pixel can be determined using the equation below [38]:

Pr(x, y) =
N

∑
r=1

fr ·Wr[Lr(x, y)] (3)

where N is the number of the transducers for damage identification. fr is the damage-
sensitive index of the rth sensing path. The weight distribution function Wr is a function of
the relative distance Lr(x, y), and can be expressed as:

Wr[Rr(x, y)] =

{
1− Lr(x,y)

β , Lr(x, y) < β

0, Lr(x, y) ≥ β
(4)

where β is a shape factor that controls the affected area. Lr(x, y) is the relative distance be-
tween the pixel (x, y) and the r-th sensing path, which is defined by the following equation:
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Lr(x, y) =
Da,r(x, y) + Ds,r(x, y)

Dr
− 1 (5)

in which Dr is the distance from the actuator and the transmitter of the r-th sensing path.
Da,r(x, y) is the distance between the estimated point (x, y) and the actuator. Ds,r(x, y) is
the distance between the estimated point (x, y) and the sensor.

The damage index used in this paper can be written as:

DI =

∫ T
0 (Cr(t)− Br(t))

2dt∫ T
0 Br2(t)dt

(6)

where Cr(t) and Br(t) denote the current signal and baseline signal of the r-th sensing path,
respectively. T is the length of the intercepted signal. From the derivation of Equation (4),
it can be found that regardless of whether the damage is located on the direct sensing
path, the estimated probability is largest on the sensing path, and it decreases with the
distance. Furthermore, the parameter β is empirically chosen and remains constant, which
means the same elliptic affected region for all sensing paths. Considering that the sensor
configuration and the distance of damage away from each sensing path are different, it is
not reasonable for the parameter β to remain unchanged, which would make the imaging
results inaccurate or even completely wrong. In order to improve the accuracy of damage
location, the range of β was set from 0.05 to 0.3 with a step size of 0.05 in this paper. The
imaging associated with multiple values of shape factor β were respectively calculated,
and then the results were averaged to obtain the averaged fusion image reconstructed
results. It should be noted that in the traditional PDI method, each sensing path only has
a single excitation frequency. However, not every excitation frequency is sensitive to the
damage. Therefore, it is necessary to select frequencies that are sensitive to damage for
service monitoring, which are 50 kHz, 60 kHz, and 70 kHz. Based on the above analysis, a
fused PDI method with averaged β and three fusion frequencies was proposed to improve
the consequence of one simulated damage imaging.

To investigate the effectiveness of the fused PDI method, a detailed analysis was
conducted. Figures 15 and 16 show the comparison results achieved by the fused and the
conventional PDI method in the presence of one simulated damage at (150 mm, 230 mm)
and (162 mm, 155 mm), respectively. The red circle and the black plus represent the
actual damage and the identified damage, respectively. The white circle denotes the PZT
transducer. Through observing Figures 15 and 16, it can be easily found that the accuracy
of damage detection and identification of the fused PDI method significantly improved
compared with the conventional PDI method, indicating the applicability of the proposed
method and the embedded PZT sensor network.

3.2. Probability Damage Imaging with the Dynamically Adaptive Shape Factor

Although the PDI method with the averaged shape factor and multi-frequency fusion
can identify the damage location, the image reconstructed results are still unsatisfactory
and need to be further improved. As stated above, the traditional way is to select multiple
β values, and the imaging results were further fused to improve the imaging accuracy.
However, the artificially selected β values may not match each sensing path well. Therefore,
it is of great value to dynamically adjust the parameter β of each sensing path to improve
the accuracy of damage location. It can be known that the shape factor is used to control
the elliptical distribution area affected by the actuator-sensor path. Therefore, it is related
to the distance from the damage to the actuator-sensor path, and this distance can be
reflected and described by the DI value. Thus, it can be deduced that the shape factor is
associated with the DI value and the relationship between the DI and shape factor can
be established. It is universally known that when the damage is closer to one sensing
path, the damage index corresponding to the sensing path is larger than other sensing
paths. Conversely, when the damage index of the sensing path is smaller, it means that the
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damage is further away from the sensing path. With that in mind, a dynamically adaptive
factor βadp was proposed to adjust the affected region of each sensing path in real-time
based on the damage index. A smaller shape factor was applied to the sensing path with a
larger DI because the damage was closer to the current sensing path, while a sensing path
with a smaller DI should be imposed with a larger shape factor so that the damage can be
included in the affected region, as shown in Figure 17.

Figure 15. The imaging results of one virtual damage at location (150 mm, 230 mm) obtained by (a) the fused PDI method
and (b) the conventional PDI method.

Figure 16. The imaging results of one virtual damage at location (162 mm, 155 mm) obtained by (a) the fused PDI method
and (b) the conventional PDI method.



Sensors 2021, 21, 8213 16 of 21

Figure 17. Damage identification based on the PDI method with variable shape factor.

Based on the above analysis, the dynamically adaptive factor βadp was negatively
correlated with the damage factor of each sensing path. The value of this parameter was
smaller than 1.0. However, the minimum value of parameter βadp cannot be zero according
to Equation (4), and it was set to 0.1 in this paper. Therefore, the dynamically adaptive
factor βadp can be defined as follows:

βr
adp = 1− 0.9 · Norm(DIr

adp) (7)

in which the symbol of Norm(·) means the normalization of DI between 0 and 1. DIr
adp

represents the dynamic damage index of the r-th sensing path, which is defined as follows:

DIr
adp = DIr · SortDI(Wr)

Wr = e[−20( r
N )α ] (8)

where N is the number of the sensing paths. Wr represents the weighting factor that is
assigned to the r-th path. α is a constant, representing the exponential decay rate of DI.
It can be seen from Figure 18 that the relationship between the weighting factor Wr and
the sensing path r tended to flatten as α increased. Meanwhile, the proportion of larger
Wr values increased and the proportion of smaller Wr values decreased, which is not
conducive to highlight the actuator-sensor paths associated with the damage. Furthermore,
a comparison was conducted on the damage location results when α was set to 2, 4 and 6,
and the reconstructed image results showed that it had a higher location accuracy when
α was set to 2. SortDI(·) represents that a specific weight is assigned to the sensing path
according to the order of the DI value. By re-sorting, a larger DI corresponds to a larger
weight, and a smaller DI has a smaller weight for highlighting the critical path adjacent to
damage. The DI variation of all sensing paths before and after applying the weighted factor
is shown in Figure 19. It can be seen that the progressive weakening of DI was realized by
applying the weighting factor to the corresponding sensing path. Finally, the dynamically
adaptive shape factor can be determined by Equation (7).
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Figure 18. The relationship between the sensing path r and the calculated weight W.

Figure 19. DI variation of all sensing paths before and after applying the weighted factor.

Subsequently, an investigation on damage localization was performed to verify the
effectiveness of the modified PDI method. Figures 20–22 compare the damage location
accuracy of the conventional PDI method, the fused PDI method, and the modified PDI
method in the presence of one simulated damage at (238 mm, 245 mm), (162 mm, 155 mm),
and (150 mm, 230 mm). It can be seen from the comparison of the three PDI methods
that the fused PDI method showed a better prediction performance in damage location
than the conventional PDI method. However, the modified PDI results demonstrated in
Figures 20a, 21a and 22a expressed a significant improvement in damage location com-
pared with the other two PDI methods. To quantify the damage location accuracy of the
three PDI methods, the Euclidean distance and absolute error (AE) between the identi-
fied damage and the actual damage were calculated and are enumerated in Table 2. The
Euclidean distance was used to calculate the relative distance error (RDE) between the
damage center and the center predicted by the imaging method. AE is also a good statistic
indicator for measuring the performance of an imaging algorithm, reflecting the deviation
in the predicted value from the true value. According to Table 2, it can be deduced that the
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proposed PDI method had a great improvement in damage location accuracy compared
with the conventional PDI method. For virtual damage at location (238 mm, 245 mm), the
RDE value of the modified PDI method was 6 mm, which was 50.70% and 63.94% lower
than the fused PDI method and the conventional PDI method, respectively. Furthermore,
the AE value of the modified PDI method was 50% and 55% lower than those of the other
two PDI methods. Similarly, it is easy to observe from Table 2 that the modified PDI method
had the minimum AE and RDE, indicating the superior performance and applicability of
the modified PDI algorithm in damage identification and the effectiveness of the proposed
dynamically adaptive shape factor. Furthermore, the damage imaging results also showed
that the embedded PZT sensor network can continuously perform real-time structural
health monitoring for the fabricated composite material.

Figure 20. The imaging results of one virtual damage at location (238 mm, 245 mm) obtained by (a) the modified PDI
method, (b) the fused PDI method, and (c) the conventional PDI method.

Figure 21. The imaging results of one virtual damage at location (162 mm, 155 mm) obtained by (a) the modified PDI
method, (b) the fused PDI method, and (c) the conventional PDI method.
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Figure 22. The imaging results of one virtual damage at location (150 mm, 230 mm) obtained by (a) the modified PDI
method, (b) the fused PDI method, and (c) the conventional PDI method.

Table 2. Comparisons of localization accuracy between different damage imaging algorithms.

Actual
Damage

Modified
PDI AE/mm RDE/mm Fused

PDI AE/mm RDE/mm Conventional
PDI AE/mm RDE/mm

(150,200) (149,201) 1 1.41 (151,201) 1 1.41 (141,202) 9 9.22
(238,245) (241,245) 6 6.00 (252,241) 12 12.17 (255,237) 14 16.64
(162,155) (155,164) 9 11.40 (144,167) 18 21.63 (142,173) 20 26.91
(275,290) (274,291) 1 1.41 (276,287) 3 3.16 (283,287) 8 8.54
(250,170) (260,165) 10 8.25 (264,163) 14 15.65 (268,161) 18 21.09
(125,200) (127,201) 2 2.23 (128,203) 3 4.243 (133,204) 8 8.94
(150,230) (146,232) 4 4.472 (143,234) 7 8.062 (133,241) 17 20.25

4. Conclusions

In this paper, a piezoelectric-fiber hybrid sensor network was developed to perform
life-cycle monitoring for composite materials manufactured by the VBM technology. The
PZT sensor network and the distributed FBG sensor were inserted inside the composite
structures during the manufacturing process to monitor the curing parameters. Further-
more, the PZT sensor network was further used to perform damage identification for
composite structures after curing. During the curing process, the signals of guided waves
propagating in a plate structure composed of a tool plate, CFRP, release films, and vacuum
bag were measured. The amplitude of the first wave packet was obtained by applying
the Hilbert transform to the received waveforms. A sharp increase in amplitude could be
observed after gelation. In the curing duration, changes in POR and EVI were synchronized
with the development of the storage modulus and the loss factor of the resin measured
by the DMA test. It first decreased with the temperature and then increased followed
by a stable tendency. Furthermore, the distributed FBG sensor was embedded into the
unidirectional CFRP to identify the gel point. By observing the strain development, it was
found that the gelation time was approximately equal to those of DMA and POR results,
indicating the correctness of gelation measurement. The real-time monitoring of the resin
curing process and storage modulus could be achieved with the POR curves, and that of
the loss factor could be achieved with the EVI curves.

After the curing process was complete, the piezoelectric-fiber hybrid sensor network
was integrated permanently with the CFRP plate, and online structural health monitoring
was achieved by the PZT-based guided waves monitoring technology. Experiments were
conducted on the fabricated CFRP plate to investigate the applicability of the embedded
PZT sensors. Furthermore, a modified PDI approach was developed to improve the poor
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damage identification ability of the conventional PDI method. Two achievements were
made in improving the performance of the conventional PDI method. At the first step, the
conventional PDI method was modified by applying the fusion frequency and averaged
β to assess the health status of composite materials. Some experiments performed on the
CFRP plate showed that this modification increased the accuracy of damage localization.
In the next step, a dynamically adaptive shape factor and the fusion frequency were
applied to the conventional PDI method, and the performance of the proposed method in
damage location was evaluated. The images’ reconstructed results from the experimental
measurement data showed a significant improvement in damage localization ability of
the modified PDI method compared with the conventional PDI and fused PDI methods,
indicating the effectiveness of the dynamically adaptive shape factor. The average RDE of
the modified PDI method was 68.48% and 46.97% lower than those of the conventional PDI
and fusion PDI methods, and the average AE of the modified PDI method was also 64.89%
and 43.10% lower than those of the other two PDI methods. Consequently, cure monitoring
and in-service inspection are expected to be realized by the embedded piezoelectric-fiber
hybrid sensor network.
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25. Koissin, V.; Demčenko, A.; Korneev, V.A. Isothermal epoxy-cure monitoring using nonlinear ultrasonics. Int. J. Adhes. Adhes. 2014,

52, 11–18. [CrossRef]
26. Khadka, S.; Hoffman, J.; Kumosa, M. FBG monitoring of curing in single fiber polymer composites. Compos. Sci. Technol. 2020,

198, 108308. [CrossRef]
27. Minakuchi, S.; Takeda, N.; Takeda, S.-i.; Nagao, Y.; Franceschetti, A.; Liu, X. Life cycle monitoring of large-scale CFRP VARTM

structure by fiber-optic-based distributed sensing. Compos. Part A Appl. Sci. Manuf. 2011, 42, 669–676. [CrossRef]
28. Eum, S.H.; Kageyama, K.; Murayama, H.; Uzawa, K.; Ohsawa, I.; Kanai, M.; Kobayashi, S.; Igawa, H.; Shirai, T. Structural

health monitoring using fiber optic distributed sensors for vacuum-assisted resin transfer molding. Smart Mater. Struct. 2007, 16,
2627–2635. [CrossRef]

29. Nokhbatolfoghahai, A.; Navazi, H.M.; Groves, R.M. Using the hybrid DAS-SR method for damage localization in composite
plates. Compos. Struct. 2020, 247, 112420. [CrossRef]

30. Huang, L.; Zeng, L.; Lin, J. Baseline-free damage detection in composite plates based on the reciprocity principle. Smart Mater.
Struct. 2018, 27, 015026. [CrossRef]

31. Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors
2019, 19, 545. [CrossRef] [PubMed]

32. Liu, K.; Ma, S.; Wu, Z.; Zheng, Y.; Qu, X.; Wang, Y.; Wu, W. A novel probability-based diagnostic imaging with weight
compensation for damage localization using guided waves. Struct. Health Monit. Int. J. 2016, 15, 162–173. [CrossRef]

33. Wu, Z.; Liu, K.; Wang, Y.; Zheng, Y. Validation and evaluation of damage identification using probability-based diagnostic
imaging on a stiffened composite panel. J. Intell. Mater. Syst. Struct. 2014, 26, 2181–2195. [CrossRef]

34. Wang, D.; Ye, L.; Su, Z.; Lu, Y.; Li, F.; Meng, G. Probabilistic Damage Identification Based on Correlation Analysis Using Guided
Wave Signals in Aluminum Plates. Struct. Health Monit. 2010, 9, 133–144. [CrossRef]

35. Jin, H.; Yan, J.; Liu, X.; Li, W.; Qing, X. Quantitative defect inspection in the curved composite structure using the modified
probabilistic tomography algorithm and fusion of damage index. Ultrasonics 2021, 113, 106358. [CrossRef] [PubMed]

36. Liu, Y.; Hong, X.; Zhang, B. A novel velocity anisotropy probability imaging method using ultrasonic guided waves for composite
plates. Measurement 2020, 166, 108087. [CrossRef]

37. Liu, X.; Li, Y.; Zhu, J.; Wang, Y.; Qing, X. Monitoring of resin flow front and degree of cure in vacuum-assisted resin infusion
process using multifunctional piezoelectric sensor network. Polym. Compos. 2020, 42, 113–125. [CrossRef]

38. Zhu, J.; Qing, X.; Liu, X.; Wang, Y. Electromechanical impedance-based damage localization with novel signatures extraction
methodology and modified probability-weighted algorithm. Mech. Syst. Signal Process. 2021, 146, 107001. [CrossRef]

http://doi.org/10.1016/j.compstruct.2017.04.051
http://doi.org/10.1016/j.compscitech.2015.12.020
http://doi.org/10.3390/s150818229
http://www.ncbi.nlm.nih.gov/pubmed/26225970
http://doi.org/10.3390/s18103332
http://www.ncbi.nlm.nih.gov/pubmed/30301156
http://doi.org/10.3390/ma6093783
http://doi.org/10.3390/s90504005
http://www.ncbi.nlm.nih.gov/pubmed/22412347
http://doi.org/10.1179/1743289811Y.0000000052
http://doi.org/10.1088/1361-665X/aaeea4
http://doi.org/10.1016/j.conbuildmat.2019.07.179
http://doi.org/10.1177/1475921715586625
http://doi.org/10.1016/j.compositesb.2020.108241
http://doi.org/10.1111/ffe.13388
http://doi.org/10.1016/j.compscitech.2006.09.011
http://doi.org/10.3390/s150407499
http://doi.org/10.1016/j.ijadhadh.2014.01.003
http://doi.org/10.1016/j.compscitech.2020.108308
http://doi.org/10.1016/j.compositesa.2011.02.006
http://doi.org/10.1088/0964-1726/16/6/067
http://doi.org/10.1016/j.compstruct.2020.112420
http://doi.org/10.1088/1361-665X/aa9cc1
http://doi.org/10.3390/s19030545
http://www.ncbi.nlm.nih.gov/pubmed/30696061
http://doi.org/10.1177/1475921715627491
http://doi.org/10.1177/1045389X14549873
http://doi.org/10.1177/1475921709352145
http://doi.org/10.1016/j.ultras.2021.106358
http://www.ncbi.nlm.nih.gov/pubmed/33561637
http://doi.org/10.1016/j.measurement.2020.108087
http://doi.org/10.1002/pc.25811
http://doi.org/10.1016/j.ymssp.2020.107001

	Introduction 
	Cure Monitoring 
	Experimental Setup for Cure Monitoring 
	DMA Test 
	Results and Discussion of the Cure Monitoring Process 

	Service Monitoring 
	Probability Damage Imaging with the Averaged Shape Factor 
	Probability Damage Imaging with the Dynamically Adaptive Shape Factor 

	Conclusions 
	References

