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Early life stress (ELS) is a known antecedent for the development of mood disorders
such as depression. Orexin neurons drive arousal and motivated behaviors in response
to stress. We tested the hypothesis that ELS alters orexin system function and leads
to an altered stress-induced behavioral phenotype in adulthood. We also investigated
if voluntary exercise during adolescent development could reverse the ELS-induced
changes. Male and female Wistar rats were subjected to maternal separation stress on
postnatal days (PND) 2-14. A subset of animals was given access to running wheels in late
adolescence (1hr/day, PND40-70). In adulthood, rats were exposed to restraint stress and
then tested on the open field (OF) and elevated plus maze (EPM). Brains were processed
for Fos-protein and orexin or tyrosine hydroxylase immunohistochemistry. Restraint stress
stimulated Fos-protein expression in perifornical area orexin cells, the paraventricular
hypothalamic nucleus, and paraventricular thalamic nuclei, but this neuronal response was
dampened in male and female rats exposed to ELS. ELS also reduced exploration in the OF,
without affecting EPM behavior. These neural and behavioral changes are consistent with a
depressive-like phenotype. Adolescent exercise reversed the orexin and behavioral deficits
in ELS males. Exercise was not protective in females, although this may be due to sex
differences in running behavior. Our findings highlight the inherent plasticity of the orexin
system—a trait that may lead to a state of pathological rewiring but could also be treated
using non-pharmacological approaches. We also highlight a need to better understand the
sex-specific changes in orexin circuits and stress-related pathology.
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INTRODUCTION
Early life stress (ELS) is a major risk factor for the emergence
of mood-related disorders such as depression and anxiety in
adulthood (Danese et al., 2008). Preclinical studies show that sep-
aration of rat pups from their mother during the neonatal period
(known as maternal separation) also increases vulnerability to
anxiety- and depression-like behavior in adulthood (Winslow
and Insel, 1991). The impact of ELS on the brain is dramatic
and includes maladaptations to the neuroendocrine hypotha-
lamus (i.e., the paraventricular nucleus; PVN) and associated
feedback circuits (Meaney et al., 1996, 2007). Importantly, other
hypothalamic systems are known to influence autonomic, neu-
roendocrine, and behavioral responses to stress, but there have
been few studies addressing the impact of ELS on these non-
neuroendocrine cell groups. For example, cell groups within the
lateral hypothalamus (LH) have the capacity to influence a num-
ber of stress-relevant behavioral adaptations, including changes in
arousal and reward status (Harris and Aston-Jones, 2006; Furlong
et al., 2009). Dysregulation of these LH systems by ELS could
significantly increase the risk for development of anxiety and
depression in later life.

Of particular interest in this context are the orexin (hypocre-
tin) neurons that are now known to be central to LH-mediated
changes in arousal and motivational states (Harris and Aston-
Jones, 2006; James et al., 2011, 2012; Johnson et al., 2012). Acute
stress robustly increases activation of orexin neurons (Ida et al.,
2000; Furlong et al., 2009), whereas chronic stress appears to have
an opposite effect (Lutter et al., 2008; Nocjar et al., 2012). The
ability of chronic stress to restrict orexin activity is particularly
interesting, as evidence has recently emerged linking low orexin
system function with depressive symptoms in humans (Brundin
et al., 2007, 2009). Surprisingly, the effect of ELS on orexin neuron
function in adulthood has not been directly tested. Therefore, the
primary aim of this study was to investigate the effects of ELS on
orexin system function following psychological stress exposure in
adulthood.

Non-pharmacological approaches to produce or augment
antidepressant/anxiolytic action have significant clinical rele-
vance and appeal. Both clinical and preclinical studies suggest
that physical activity or exercise can produce antidepressant-like
effects (Greenwood et al., 2003; Lapmanee et al., 2013). At present
however, it is unclear whether the antidepressant or anxiolytic
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effects of physical activity might be linked to improvement in
LH-orexin system function. Thus, a secondary aim of the present
study was to investigate the possible preventative effects of phys-
ical activity on ELS-induced maladaptive orexin cell responses to
stress in adulthood. Finally, because very few studies have exam-
ined the sex-specific effects of exercise on stress-related behavior,
we carried out our experiments in both male and female rats.

METHODS AND MATERIALS
ETHICS STATEMENT
All procedures performed were approved by the University of
Newcastle Animal Care and Ethics Committee, and were car-
ried out in accordance with the New South Wales Animal
Research Act.

ANIMALS
Ten experimentally naïve Wistar dams were obtained from the
University of Newcastle Animal house and bred with two exper-
imentally naïve males in the University of Newcastle vivarium.
A total of 34 male and 39 female offspring were included in the
study. As per previous studies (Caldji et al., 2000; Weaver et al.,
2007; Nakamura et al., 2011), litters were not standardized to a
fixed number of pups or male/female ratio; rather, these variables
were accounted for during data analysis (see Data Analysis section
below). On postnatal day 1 (PND1), animals from each litter were
randomly allocated to the ELS or control (no ELS) condition.
ELS allocated litters underwent maternal separation procedures
(detailed below) between PND2-14. On PND21, animals were
weaned and separated into same-sex housing, with 2 animals/cage
(41.5 × 28 × 22 cm cages; Mascot Wire Works, Sydney). Food
(Rat and Mouse Pellets, Glen Forest, Western Australia) and water
were available ad libitum and rats were maintained on a 12-h light
(0600–1800): 12 h dark cycle. Temperature was maintained at
20 ± 2◦C and humidity was kept at 34 ± 2%.

EARLY LIFE STRESS
An overview of the experimental design is outlined in Figure 1.
The maternal separation procedure was performed as per previ-
ously published procedures in our laboratory (Nakamura et al.,
2011), that were based on earlier studies (Plotsky and Meaney,
1993). Briefly, from PND2-14, litters in the ELS condition were
removed from their home cage and individually placed in clear
separation containers (13 × 13 × 7 cm) in an alternate temper-
ature controlled room (30–34◦C) for 3 h each day, from 0900
to 1200 h. Pups in the control condition remained undisturbed
during this period except for weekly weighing. Bedding was left
undisturbed for one week after birth, after which it was changed
on a weekly basis.

EXERCISE
A subgroup of animals exposed to ELS (males n = 6; females
n = 9) was allowed access to a running wheel located in a separate
room between PND40–70 (85 × 7.5 cm, 94 × 12 cm; Transoniq;
for 1hr/day, 5days/week between 1800 and 2100 h). Only animals
exposed to ELS were given access to exercise wheels, as pilot stud-
ies indicated that wheel running had no behavioral consequences
for animals not exposed to ELS. (i.e., ELS+exercise group did
not differ significantly from no-ELS+exercise; see Supplementary
Material 1). A rotation counter attached to each wheel quan-
tified distance traveled. Food intake was estimated across all
groups during the exercise period by weighing food daily and
dividing the change in food weight by the number of animals
per cage.

ADULT STRESS EXPOSURE
Pilot studies revealed that maternal separation had no effect on
open field (OF) behavior in the absence of an additional stressor
in adulthood (see Supplementary Material 2). As such, between
PND75-79, all animals were exposed to 30 min restraint stress
prior to behavioral testing. Animals were removed from their
home cage and were placed inside a soft wire mesh restrainer
(25 × 20 cm) that was folded around the animal and secured with
butterfly clips. This procedure has been previously demonstrated
to produce a pattern of Fos-activity centered on amygdaloid and
brainstem catecholamine nuclei that is distinct from physical
stressors (Dayas et al., 1999). Females were tested only in the
diestrous phase, monitored using a rat vaginal impedance device
(Muromachi Kikai, Tokyo), as described elsewhere (Walker et al.,
2010).

BEHAVIORAL TESTING
Both OF and EPM testing was conducted in darkness using
infrared lighting. Time and event data for both apparatuses was
recorded using a computer-automated behavioral tracking sys-
tem (Motion Mensura Ltd., Australia). Immediately following
restraint stress, animals were placed in a square 1 × 1 m open
field task apparatus enclosed by 40 cm high walls for 10 min.
Exploratory variables measured were total distance traveled and
time in immobility. Immediately following OF testing, approxi-
mately half of the animals (males n = 18; females n = 24) were
tested on the EPM apparatus whilst the remaining animals (males
n = 16; females n = 15) were returned to their home cage.
Animals were transferred to a separate room where they were
placed on an EPM apparatus. The EPM was painted black, and
consisted of two open and two closed arms (45 cm length × 10 cm
width) as well as a central square (10 × 10 cm). The primary mea-
sures on this assay included the time spent in the open arms,

FIGURE 1 | A schematic illustration of the experimental design. Neonatal
treatment consisted of either early life stress (maternal separation) for 3hrs/day
from postnatal days (PND) 2-14, or no early life stress. A subgroup of animals
was given access to running wheels for 1 hr/day, 5days/week from PND40-70.

All animals were subjected to restraint stress in adulthood (PND75-79) for
30 min. Immediately following restraint, animals underwent behavioral testing
in the open field test (10 min) and elevated plus maze (5 min). Ninety minutes
following restraint stress, animals were euthanized and brains collected.
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an index of anxiety-related behavior, and the number of closed
arm entries, a measure of overall locomotor activity (Richardson
et al., 2006). We also measured number of entries into the open
arms and center square, as well as latency to enter the open and
closed arms. Importantly, EPM-challenged animals did not dif-
fer from non-EPM-challenged animals in terms of Fos-protein
expression in any of the regions studied, and therefore data from
these animals were combined.

BRAIN TISSUE HARVESTING AND IMMUNOHISTOCHEMISTRY
Two hours following the initiation of restraint stress (1hr
20min following OF; 1hr 15min following EPM), rats were
deeply anesthetized with sodium pentobarbitone (200 mg/kg; i.p.;
Virbac, Australia). Animals were then perfused with 200 mL
of 0.1 M Phosphate Buffered Saline followed by 500 mL of 4%
paraformaldehyde (pH 9.5). Brains were removed and postfixed
in 4% paraformaldehyde at 4◦C overnight and then stored in
12.5% sucrose until sectioning. Serial rostral forebrain (40-µm)
and caudal midbrain (50-µm) sections were cut using a freezing
microtome (Leica Microsystems, SM2000R) and a 1-in-4 series
of all sections were processed for immunohistochemical detec-
tion of Fos-protein (72 h, 1:5000, rabbit polyclonal, Santa Cruz
Biotechnology, CA, USA) as described previously in detail (Smith
and Day, 1993; Dayas et al., 2008). Hypothalamic sections were
dual-labeled for orexin A (48 h, 1:15000, Orexin A antibody, goat
polyclonal, Santa Cruz Biotechnology) or in the case of ventral
tegmental area (VTA) sections, tyrosine hydroxylase (TH; 48 h,
1:10000, TH antibody, mouse polyclonal, Millipore). An equal
number of animals from each treatment group were included in
each individual immunohistochemistry run.

Bilateral counts of single-labeled Fos-positive cells were made
in the perifornical area (PFA) and lateral hypothalamus (LH;
bregma −2.28 to −3.24), paraventricular thalamus (PVT; −2.76
to −3.24) and medial parvocellular PVN (mpPVN; −1.46
to −1.94). Fos-only cell counts in the PVN and PVT were quan-
tified using Metamorph Imaging System Software (Version 7.5;
Molecular Devices Analytical Technologies) at 10× total mag-
nification (Olympus CX40). The number of Fos-positive cells
was determined by creating a region of interest around each
structure and a thresholding procedure was used to quantify Fos
expression. Counts of Fos-positive orexin neurons in the LH and
Fos-positive TH cells in the VTA (−5.30 to −5.94) were made by
one observer blind to treatment using a 20× objective (Olympus
CX40). In the LH, cell counts were made in the PFA and the LH
divisions, as these sections have previously been shown to contain
the highest concentration of orexin neurons (Dayas et al., 2008).
The PFA was defined as the area surrounding the fornix and the
LH was defined as the area from the lateral side of the PFA to the
optic tract (Laorden et al., 2012). Cells in the VTA were quantified
in the parabrachial pigmented nucleus (PBP) region of the VTA.
All brain coordinates were based on the Paxinos and Watson atlas
(Paxinos and Watson, 2007).

DATA ANALYSIS
All statistical analyses were conducted using IBM SPSS V19. Male
and female animals were analyzed separately. ANCOVA revealed
no significant effect of litter size and male to female ratio for all

comparisons. Body weight of treatment groups was compared on
PND72 using a one-way between-subjects ANOVA. Food intake
and behavioral data were compared across treatment groups
using a one-way between-subjects ANOVA and subsequent least
significant differences (LSD) post-hoc analyses where appropriate.
For immunohistochemical analyses, all cell counts were averaged
across each animal for each rostrocaudal level of each brain region
examined. To minimize the effects of variability across multiple
immunohistochemistry runs, counts for each treatment group
were calculated as a fold change relative to control animals pro-
cessed in the same run. These fold changes were averaged across
the rostral-caudal extent of each brain region and were compared
across groups using one-way ANOVAs. These analyses were fol-
lowed by LSD post-hoc analyses where appropriate. An alpha value
of 0.05 was adopted for all statistical tests. All figures depict means
and standard errors.

RESULTS
EFFECT OF ELS ON BODY WEIGHT AND FOOD INTAKE
On PND72, male animals from each treatment group did not
differ significantly in terms of their body weight [F(2, 31) =
2.366, p = 0.106], or food intake across the experimental
period [F(2, 14) = 2.554, p = 0.113]. Similarly, body weight
of females was indistinguishable between treatment groups
[F(2, 36) = 0.026, p = 0.975] as was their food intake [F(2, 20) =
0.302, p = 0.743]. Interestingly, wheel rotations were on average
approximately three times higher in females than male animals in
each exercise session [F(1, 13) = 19.429, p < 0.001; Figure 2].

ELS WAS ASSOCIATED WITH A REDUCED PERCENTAGE OF
FOS-POSITIVE OREXIN CELLS AFTER PSYCHOLOGICAL STRESS:
PROTECTIVE EFFECT OF EXERCISE ONLY IN MALES
In male rats there was no effect of treatment on the number of
orexin immunoreactive cells in either the PFA or LH subdivi-
sions of the hypothalamus [F(2, 18) = 0.292, p = 0.750; F(2, 18) =
1.648, p = 0.220 respectively, data not shown]. To assess the effect
of ELS on the reactivity of orexin neurons to stress in adult-
hood, we quantified the percentage of orexin cells expressing
Fos-protein following psychological stress. ANOVA revealed a
significant effect of treatment on the percentage of orexin cells
expressing Fos protein in the PFA [F(2, 18) = 17.646, p < 0.001],
and a trend toward significance in the LH [F(2, 18) = 3.248, p =
0.062]. Post-hoc analyses revealed that ELS animals displayed a
significantly lower percentage of orexin neurons that expressed
Fos-protein after psychological stress compared to controls in
the PFA (p = 0.002). Interestingly, ELS animals given access to
running wheels displayed a pattern of Fos/orexin immunoreac-
tivity in the PFA that was significantly greater than that of other
treatment groups (p = 0.042 compared to controls, p < 0.001
compared to ELS; Figure 3).

Similar to males, orexin cell numbers did not differ across
treatment groups in female rats in both the PFA and LH
[F(2, 18) = 0.141, p = 0.87; F(2, 18) = 0.166, p = 0.849, respec-
tively; data not shown]. There was a significant main effect of
treatment on the percentage of orexin cells that displayed Fos-
like immunoreactivity in response to restraint stress in the PFA
[F(2, 18) = 26.907, p < 0.001] and LH [F(2, 18) = 14.292, p <
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FIGURE 2 | Effect of early life stress (ELS) on body weight and food

intake; and sex differences in wheel running. There was no effect of
treatment on body weight at postnatal day 72 in both male and female
rats. Males: No ELS: n = 13; ELS: n = 15; ELS + Ex: n = 6. Females:
No ELS: n = 16; ELS: n = 14; ELS + Ex: n = 9 (A). Similarly, ELS had

no effect on food intake. Males: No ELS: n = 6; ELS: n = 6; ELS + Ex:
n = 5. Females: No ELS: n = 7; ELS: n = 7; ELS + Ex: n = 9 (B).
Female rats engaged in significantly greater amounts of wheel running
per day compared to male rats. Males: n = 6; Females: n = 9 (C).
∗∗∗p < 0.001.

0.001]. Consistent with male animals, post-hoc analyses showed
that ELS females exhibited a significantly lower percentage of
Fos-positive orexin cells compared to control animals in the PFA
(p = 0.018) and a similar trend in the LH (p = 0.094). In contrast
to males however, access to running wheels tended to exacerbate
the effect of treatment on orexin cell reactivity as assessed by Fos-
labeling in the PFA (p < 0.001 compared to controls and ELS)
and LH (p < 0.001 compared to controls, p < 0.01 compared to
ELS; Figure 3).

ELS WAS ASSOCIATED WITH A REDUCTION IN FOS-PROTEIN
EXPRESSION IN PVN AND PVT NEURONS FOLLOWING
PSYCHOLOGICAL STRESS: PROTECTIVE EFFECT OF EXERCISE IN MALE
BUT NOT FEMALE RATS
In addition to orexin neurons we assessed the level of Fos-like
immunoreactivity in the VTA, PVN and PVT following restraint
stress in adulthood. In males, the percentage of Fos-positive
TH cells in the VTA did not differ significantly between treat-
ment groups [F(2, 15) = 1.369, p = 0.284; Figure 4]. There was
a significant main effect of treatment on Fos-immunoreactivty
in the PVN [F(2, 15) = 9.316, p = 0.002], with post-hoc analy-
ses revealing a significant reduction in Fos-positive cells in ELS
animals compared to controls (p = 0.008). Access to voluntary
exercise significantly increased the number of Fos-positive PVN
cells compared to ELS-exposed animals (p < 0.001). There was
no significant difference between exercised males and controls in
this region (p = 0.287; Figure 4). In the PVT, there was a sig-
nificant main effect of treatment on Fos-positive cells [F(2, 19) =
5.248, p = 0.015]. Post-hoc analyses revealed a significant increase
in Fos-immunoreactivity in the PVT of animals given access to
running wheels (p = 0.023 compared to controls, and p = 0.006
compared to ELS; Figure 4). No significant difference was found
in the number of Fos-positive cells in the ELS group compared to
controls in this region (p = 0.602).

In females, there was no significant main effect of treatment
on the number of TH-positive cells that expressed Fos-protein
[F(2, 18) = 1.415, p = 0.269; Figure 4]. In the PVN, ANOVA
revealed a significant main effect of treatment on the number of

Fos-positive cells [F(2, 19) = 8.27, p = 0.003]. Post-hoc analyses
revealed no significant difference between controls and ELS (p =
0.152). However, access to running wheels significantly reduced
the number of Fos-positive PVN cells (p < 0.001 compared to
controls, p = 0.016 compared to ELS; Figure 4). In the PVT, there
was a significant main effect of treatment on Fos-protein expres-
sion [F(2, 19) = 6.409, p = 0.008]. Post-hoc analyses revealed that
there was no significant difference in the number of Fos-positive
cells in ELS animals compared to controls (p = 0.156). A signif-
icant reduction in Fos-positive PVT cells was observed in rats
given access to running wheels (p = 0.002 compared to controls,
p = 0.041 compared to ELS; Figure 4).

ELS ANIMALS HAD LOWER EXPLORATORY BEHAVIOR IN THE OPEN
FIELD FOLLOWING PSYCHOLOGICAL STRESS IN ADULTHOOD:
PROTECTIVE EFFECT OF EXERCISE IN MALE BUT NOT FEMALE RATS
In males, one-way ANOVA revealed a main effect of treatment
on the distance traveled in the OF [F(2, 31) = 2.66, p = 0.043].
Post-hoc comparisons revealed that ELS-exposed animals trav-
eled significantly less distance compared to controls (p = 0.026).
This effect was reversed when ELS animals were given access to
voluntary exercise throughout adolescence (p = 0.044, compared
to ELS group; Figure 5). Analyses also showed a trend toward
the ELS group exhibiting increased time spent in immobility
as compared to the control group, with this effect again being
reversed by exercise intervention [F(2, 31) = 2.21, p = 0.063, data
not shown).

In females, there was a significant main effect of treatment in
terms of distance traveled [F(2, 36) = 7.13, p = 0.001]. Similar to
males, maternally separated animals exhibited locomotor hypoac-
tivity in the OF when compared to controls (p = 0.007). In con-
trast to males, this effect was not reversed by voluntary exercise,
but in fact was exaggerated (p < 0.001, compared to controls;
Figure 5). This same trend was observed in terms of time spent in
immobility [F(2, 36) = 7.44, p = 0.001] with ELS females spend-
ing significantly more time in immobility compared to controls
(p = 0.01). Time spent in immobility was exaggerated in exer-
cised females (p < 0.001 compared to controls, data not shown).
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FIGURE 3 | Early life stress (ELS) was associated with a decrease in the

percentage of Fos-positive orexin cells in both male and female rats:

Wheel running protected against these effects in males, but exaggerated

these effects in females. The percentage of Fos-positive orexin cells in the
PFA of the hypothalamus was significantly lower in male ELS rats compared
to controls. Wheel running was protective against the effects of ELS in this
region. This trend was also observed in the LH but failed to reach significance
(p = 0.06; A). As in male animals, ELS-exposed females exhibited a reduced

percentage of Fos-positive orexin cells in the PFA. In contrast to males,
wheel running exacerbated these effects in female rats (B). A similar trend
was observed in the LH (B). Photomicrographs of coronal sections of the PFA
of the hypothalamus immunolabeled for Fos-protein and orexin in males
(C,D,E) and females (F,G,H). Males: No ELS: n = 7; ELS: n = 9; ELS + Ex:
n = 6. Females: No ELS: n = 7; ELS: n = 8, ELS + Ex: n = 7. ∗p < 0.05 vs.
No ELS, ∗∗p < 0.01 vs. No ELS, +p < 0.05 vs. No ELS, +++p < 0.001 vs. No
ELS, ##p < 0.01 vs. ELS, ###p < 0.001 vs. ELS, scale bar, 20 µm.
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FIGURE 4 | Early life stress (ELS) was associated with a decrease in

Fos-immunoreactivity in mpPVN and PVT neurons: Protective effect

of exercise in male but not female rats. ELS resulted in a
non-significant reduction in the percentage of Fos-positive TH cells in the
VTA in male rats. Wheel running appeared to be protective against these
effects. No ELS: n = 6; ELS: n = 6, ELS + Ex: n = 6 (A). In females,
there was no effect of ELS or exercise on the percentage of Fos-positive
TH cells in the VTA. No ELS: n = 7; ELS: n = 7; ELS + Ex: n = 7 (A). In
the PVN, there was an ELS-induced reduction in Fos-positive cells in
males and this effect was reversed by wheel running. There was no

effect of ELS on the number of Fos-positive cells in the PVT in males
however, wheel running was protective against the effects of ELS. No
ELS: n = 7; ELS n = 9; ELS + Ex: n = 6 (B,C). In females, there was no
effect of ELS on the number of Fos-positive cells in the PVN and PVT
however, wheel running did exacerbate the effects of ELS. No ELS: n = 7;
ELS: n = 8; ELS + Ex: n = 7 (B,C). Coronal sections of the PVN (males:
D; females: E) and PVT (males: F; females: G) immunolabeled for
Fos-protein, scale bar 100 µm. ∗∗p < 0.01 vs. No ELS, +p < 0.05 vs. No
ELS, ++p < 0.01 vs. No ELS, +++p < 0.001 vs. No ELS, #p < 0.05 vs.
ELS, ##p < 0.01 vs. ELS, ###p < 0.001 vs. ELS.

FIGURE 5 | Early life stress (ELS) is associated with reduced

locomotor activity in the open field task: Protective effects of

exercise in males, but not in females. In both males and females,
ELS was associated with a significant reduction in the distance traveled
in the open field. Wheel running protected against this effect in male
rats, but exacerbated the ELS effect in female rats (A). In both male

and female rats, there was no effect of treatment or wheel running on
the number of open (B) or closed (C) arm entries across in the
elevated plus maze. Males: No ELS: n = 13; ELS: n = 15; ELS + Ex:
n = 6. Females: No ELS: n = 16; ELS: n = 14; ELS + Ex: n = 9.
∗p < 0.05 vs. No ELS, ∗∗p < 0.01 vs. No ELS, ++p < 0.01 vs. No ELS,
#p < 0.05 vs. ELS.
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With respect to the EPM, there was no effect of treatment
on the number of open [F(2, 15) = 0.382, p = 0.689] or closed
[F(2, 15) = 1.624, p = 0.230] arm entries in males. Similarly,
in females there was no difference between treatment groups
on open [F(2, 21) = 0.617, p = 0.549] or closed arm entries
[F(2, 21) = 0.040, p = 0.961; Figure 5]. Additionally, there was no
effect of treatment on the duration spent in the open arms, closed
arms or the center square, or the latency to enter the open or
closed arms in either males or females (p’s > 0.05).

DISCUSSION
In the present study we report that ELS-exposed male and female
rats exhibited a “hypoactive” orexin cell response to restraint
stress, as assessed by Fos-like immunoreactivity, particularly in
the PFA. Notably, both male and female animals exposed to
ELS displayed reduced exploratory behavior on the OF following
restraint stress. Interestingly, the ability of exercise to ameliorate
ELS-induced deficits was strongly sex-dependent. A similar level
of sex-specificity was also seen in brain regions that are known
to respond to orexin innervation. Together these results not only
highlight the profound effect that ELS has on orexin function in
adulthood but also the positive effects of exercise on this deficit
and how this differs across sexes.

The primary aim of this study was to assess the impact of
ELS on subsequent orexin cell reactivity to psychological stress
in adulthood. Due to known sex differences in neural responses
to stress, we examined the degree to which orexin cells had
become activated by quantifying the number of orexin cells that
were Fos-positive following psychological stress in adulthood in
both male and female rats. Using this well-characterized strategy,
orexin function in both males and females that were exposed to
ELS was substantially lower than non-ELS controls. ELS-exposed
animals also exhibited significantly lower activity in the OF. These
findings are interesting in light of recent findings from other
preclinical studies that have shown that chronic stress results
in reduced orexin system function and increased depressive-like
behavior (Lutter et al., 2008; Nocjar et al., 2012). Further, recent
human studies have reported an inverse relationship between
CSF orexin peptide levels and symptoms of depression (Brundin
et al., 2007, 2009). With these findings in mind, it is possible
that in our study, reduced orexin activity induced by ELS resulted
in a depressive-like behavioral state that manifested as reduced
exploratory behavior. Future studies should assess whether these
changes in orexin cell function also manifest as deficits in moti-
vated behavior on behavioral assays such as the sucrose preference
test and/or forced swim test. Further investigation is also war-
ranted to understand the relevance of our observation that orexin
hypoactivity was more pronounced in the PFA compared to the
LH, as separate functions have been ascribed to these popula-
tions (stress reactivity and reward-seeking, respectively; Harris
and Aston-Jones, 2006).

Perhaps the most striking observation of the present study was
that behavioral deficits associated with ELS were not observed
in male rats allowed access to voluntary exercise. These find-
ings are consistent with previous studies demonstrating that
voluntary wheel running protects against the expression of
anxiety-like behavior in adult male rats exposed to maternal sep-
aration stress (Maniam and Morris, 2010) or footshock stress in

adulthood (Greenwood et al., 2013). Given that there was a sig-
nificant “wash-out” period between wheel running and restraint,
it is likely that exercise reversed ELS-induced changes in LH-
orexin circuit function rather than prevented the acute effects
of restraint. However, we acknowledge further tests are required
to address this issue. With respect to the sex-specific effects we
observed, our findings are in line with those of Brocardo et al.
(2012) who showed that voluntary exercise had no effect on the
expression of anxiety- and depression-like behaviors in female
rats exposed to ethanol in early life, despite this intervention hav-
ing protective effects in males (Brocardo et al., 2012). Similarly,
findings from the addiction field have yielded differential effects
of voluntary exercise on drug-related behaviors in males and
females, despite being exposed to identical exercise regimes
(Smith et al., 2008; Ehringer et al., 2009; Thanos et al., 2010). Our
findings that exercise actually tended to exacerbate ELS-induced
orexin and behavioral changes in females perhaps points to the
possibility that the increased wheel running observed in females
was actually stress provoking. Exercise-induced corticosterone
secretion may have subsequently influenced orexin cell respon-
sivity (Ford et al., 2005). These findings point to the need for a
greater understanding of how exercise conditions (type, intensity,
duration) can be modified to produce beneficial effects in both
sexes.

Interestingly, we observed a similar pattern of reactivity in
key orexinergic targets, including the mpPVN, PVT, and VTA
dopamine neurons. With respect to the mpPVN, there is now
considerable evidence that orexin directly modulates the neu-
roendocrine response to stress. The mpPVN is densely inner-
vated by orexinergic terminals and mainly expresses orexin
receptor 2 (Peyron et al., 1998; Trivedi et al., 1998). Further,
central administration of orexin-A induces Fos-protein expres-
sion in corticotropin releasing factor (CRF)-expressing cells in the
mpPVN (Sakamoto et al., 2004) and increases plasma corticos-
terone and adrenocorticoptropin hormone (ACTH) levels (Ida
et al., 2000; Kuru et al., 2000). Whilst we did not directly mea-
sure HPA-axis activity, maternal separation stress has previously
been shown to be associated with impaired mpPVN and HPA-
axis responsivity to stress in adulthood (Plotsky and Meaney,
1993; Ladd et al., 2000; Daniels et al., 2004). Further studies are
required to assess whether this impairment is directly associated
with the reduction in orexin function observed here. With respect
to the PVT, this region is also known to be densely innervated by
orexin terminals (Kirouac et al., 2005) and contains high densities
of both orexin receptors (Marcus et al., 2001). Orexin signaling
in the PVT has recently been shown to be important for both
the neuroendocrine response to stress (Heydendael et al., 2012)
and the expression of stress-related behaviors (Li et al., 2010a,b;
James and Dayas, 2013; Yeoh et al., 2014). Further, stimulation of
the PVT can modulate dopamine release in the nucleus accum-
bens (NAC; Jones et al., 1989; Parsons et al., 2007). Reduced PVT
signaling in ELS animals may therefore contribute to reduced
striatal dopamine release, an outcome consistent with previous
studies showing that hypoactivity of the VTA dopamine-NAC
projection is causally linked to depressive-like behavior following
social defeat (Berton et al., 2006).

One caveat of our experimental design is that OF and EPM
testing were performed after restraint stress. While we attribute
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the pattern of Fos-protein expression observed as a response to
restraint stress, given the time course typically required for maxi-
mal Fos-protein induction (2 h; Kovács, 1998), we cannot exclude
the possibility that OF and EPM testing also influenced the
expression of this immediate early gene. Regardless, these chal-
lenges are typically regarded as psychological stressors, which pro-
duce similar patterns of Fos-protein expression in stress-sensitive
brain regions as restraint stress (Dayas et al., 2001). Further,
no differences were observed in terms of Fos-protein expression
amongst EPM-challenged vs. non-EPM-challenged animals, sug-
gesting that behavioral testing did not have any confounding
effects on Fos expression. It is also important to note that a previ-
ous report failed to observe an increase in Fos-protein expression
in orexin-positive neurons in response to restraint (Furlong et al.,
2009). These experiments however, were carried out in animals
with no prior stress exposure, and the effects observed in our
study may reflect a more important role for orexin signaling in
stress reactivity in chronically stressed animals.

In summary, the present study provides novel evidence that
the orexin system’s response to adult stress is altered by ELS.
Identical effects of ELS on orexin cell activity in stressed adults
were observed in the PFA of male and female rats. These data are
consistent with recent clinical evidence indicating that vulnerabil-
ity to stress-related mood disorders is linked with orexin system
hypofunction (Brundin et al., 2007, 2009). We also show that
exercise was protective against both the behavioral (OF activity)
and neural effects of ELS in male rats, suggesting that the benefi-
cial effects of exercise on stress-related behavior is associated with
a “normalization” of orexin function and that, under some condi-
tions, the orexin system can be modified by non-pharmacological
methods. Surprisingly, female rats exhibited significantly greater
deficits in orexin function following wheel running, suggesting
that while the effects of ELS on orexin function are similar across
sexes, future studies will need to consider alternative approaches
to recover orexin function in female rats. These findings extend
recent studies showing that the orexin system is highly plastic and
is readily modified by environmental events (Yeoh et al., 2012).
More broadly, this study highlights the importance of studying
sex-based differences in stress-related pathology (Clayton and
Collins, 2014).
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