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ABSTRACT

Droplet-based single cell transcriptome sequencing
(scRNA-seq) technology, largely represented by the
10× Genomics Chromium system, is able to measure
the gene expression from tens of thousands of sin-
gle cells simultaneously. More recently, coupled with
the cutting-edge Cellular Indexing of Transcriptomes
and Epitopes by Sequencing (CITE-seq), the droplet-
based system has allowed for immunophenotyping
of single cells based on cell surface expression of
specific proteins together with simultaneous tran-
scriptome profiling in the same cell. Despite the rapid
advances in technologies, novel statistical methods
and computational tools for analyzing multi-modal
CITE-Seq data are lacking. In this study, we devel-
oped BREM-SC, a novel Bayesian Random Effects
Mixture model that jointly clusters paired single cell
transcriptomic and proteomic data. Through simula-
tion studies and analysis of public and in-house real
data sets, we successfully demonstrated the valid-
ity and advantages of this method in fully utilizing
both types of data to accurately identify cell clus-
ters. In addition, as a probabilistic model-based ap-
proach, BREM-SC is able to quantify the clustering
uncertainty for each single cell. This new method
will greatly facilitate researchers to jointly study tran-
scriptome and surface proteins at the single cell level
to make new biological discoveries, particularly in
the area of immunology.

INTRODUCTION

Revolutionary tools such as Cellular Indexing of Transcrip-
tomes and Epitopes by Sequencing (CITE-Seq) and RNA
expression and protein sequencing assay (REAP-seq) have

been recently developed for measuring single cell surface
protein and mRNA expression level simultaneously in the
same cell (1–3). Oligonucleotide-labeled antibodies are used
to integrate cellular protein and transcriptome measure-
ments. It combines highly multiplexed protein marker de-
tection with transcriptome profiling for thousands of sin-
gle cells. CITE-Seq allows for immunophenotyping of cells
using existing single cell sequencing approaches (3), and
it is fully compatible with droplet-based single cell RNA
sequencing (scRNA-Seq) technology (e.g. 10× Genomics
Chromium system (4)) and utilizes the discrete count of
Antibody-Derived Tags (ADT) as the direct measurement
of cell surface protein abundance. This promising and pop-
ular technology provides an unprecedent opportunity for
jointly analyzing transcriptome and surface proteins at the
single cell level in a cost-effective way.

In CITE-Seq experiment, the abundance of RNA and
surface marker is quantified by Unique Molecular Index
(UMI) and Antibody-Derived Tags (ADT) respectively, for
a common set of cells at the single cell resolution. These two
data sources represent different but highly related and com-
plementary biological components. Classic cell type iden-
tification relies on cell surface protein abundance, which
can be measured individually with flow cytometry. Recently,
scRNA-Seq data are also used to classify cell types, based
on differentially expressed genes among different cell types.
In fact, both data sources have their unique characteristics
and can provide complementary information. For example,
the use of cell surface proteins for cell gating is advanta-
geous in identifying common cell types but may not suc-
cessfully identify some rare cell types due to its low dimen-
sionality. On the other hand, although cell clustering based
on scRNA-Seq could identify more cell types because of its
higher dimensionality, it is less capable to distinguish highly
similar cell types, such as CD4+ T cells and CD8+ T cells,
due to a poor observed correlation between a mRNA and
its translated protein expression in single cell (3,5,6).
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Despite the promise of this new technology, current sta-
tistical methods for jointly analyzing data from scRNA-Seq
and CITE-Seq are still unavailable or immature. A novel
joint clustering approach that fully utilizes the advantages
and unique features of these single cell multi-omics data
will lead to a more powerful tool in identifying rare cell
types or reduce false positives such as doublets. Many sta-
tistical methods have been proposed for clustering scRNA-
Seq data only, such as single cell interpretation via multi-
kernel learning (SIMLR) (7), CellTree (duVerle et al., 2016),
Seurat (8), SC3 (9), DIMM-SC (10) and BAMM-SC (11),
which are either from different clustering approach cate-
gories or recommended by recent reviewers (12,13). In con-
trast, to our best knowledge, there is no published method
tailored for joint clustering multi-omics data from CITE-
Seq. A naı̈ve approach is to do separate analysis on each
data source, which is straightforward but suffering from var-
ious of issues such as lack of power and failing to capture
the associations between transcriptome and expression of
surface proteins. Multimodal data analysis, on the other
hand, is supposed to achieve a more detailed characteriza-
tion of cellular phenotypes than using transcriptome mea-
surements alone.

In this study, we propose BREM-SC, a Bayesian Ran-
dom Effects Mixture Model for joint clustering scRNA-Seq
and CITE-Seq data. Because there is no existing method
tailored for clustering single cell multi-omics data jointly,
we compare the performance of BREM-SC with three pop-
ular single source clustering methods, including K-means
clustering, SC3 (9) and TSCAN (14), and two commonly
used multi-source clustering methods in the engineering
field, including Multi-View Non-negative Matrix Factor-
ization equipped with capped norm (MV-NMF) (15) and
Pair-wised Co-regularized Multi-modal Spectral Clustering
(PC-MSC) (16), in our simulation studies. K-means is one
of the most popular clustering methods and has been used
in the first 10× Genomics publication (4). SC3 and TSCAN
have also been proposed for clustering scRNA-Seq data, but
they fall in different clustering categories. For example, SC3
is a single cell consensus clustering method, where a consen-
sus matrix is calculated using the Cluster-based Similarity
Partitioning Algorithm (CSPA). Unlike SC3, TSCAN per-
forms model-based clustering on the transformed expres-
sion values. We also compared BREM-SC with two exist-
ing methods MV-NMF and PC-MSC, which were devel-
oped for analyzing multi-source data. MV-NMF considers
the non-negative entry constraints in dimension reduction
while preserving the cross-modal consistency for reduced
features, after which a standard K-means is used to final-
ize the clustering. To make the model robust to outliers, a
capped-norm objective is also utilized. Alternatively, PC-
MSC introduces a co-regularization on the spectral clus-
tering. Neither MV-NMF nor PC-MSC has been used in
single cell multi-omics analysis before, but they can be di-
rectly applied to our CITE-seq data. In our real data ap-
plications, we also include Seurat (17,18), one of the most
popular tools for single cell analysis, and DIMM-SC (10),
the single source version of BREM-SC, to benchmark the
performance of single source clustering compared to joint
clustering.

MATERIALS AND METHODS

Statistical model and estimation

The data illustration and general framework of BREM-SC
modeling are shown in Figure 1. Although data from both
sources are count data, there are several major differences
between them. Firstly, the drop-out events are very common
in the transcriptomic data, which are in fact much less fre-
quent in the proteomic data. Therefore, the data matrix for
RNA source is relatively sparse and people usually screen
out genes with low variability in expression before perform-
ing analysis. Secondly, the overall scale of two data sets are
significantly different, where proteomic data have larger val-
ues due to higher abundance of proteins in a cell. Based on
the facts, we propose separate parametric model for each
data source.

Suppose there are C cells generated from CITE-Seq, de-
note by the transcriptomic data a matrix X(1) and its ADT
levels (measurement of surface protein) a matrix X(2). We
use a latent variable vector Z with elements z j to represent
the cell type label for cell j , where j = 1, . . . , C.

For transcriptomic data, each element x(1)
i j in the raw

count matrix represents the number of unique UMIs for
gene i in cell j , where i runs from 1 to the total number
of genes G, and j runs from 1 to the total number of cells
C. We then denote the number of unique UMIs in the j
th single cell by a vector x(1)

j = (x(1)
1 j , x(1)

2 j , . . . , x(1)
G j ) . We as-

sume that x(1)
j follows a multinomial distribution with pa-

rameter vector p(1)
j = (p(1)

1 j , p(1)
2 j , . . . , p(1)

G j ) . For this multi-
nomial distribution, we further assume that the propor-
tion p(1)

j = (p(1)
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G j ) follows a Dirichlet distribu-

tion Dir (α(1)) = Dir (α(1)
1 , α
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2 , . . . , α

(1)
G ), with all the ele-

ments in a(1) being strictly positive. Next, we assume that
the cell population consists of K distinct cell types. To pro-
vide a more flexible modeling framework and allow for un-
supervised clustering, we extend the aforementioned single
Dirichlet prior to a mixture of K Dirichlet distributions, in-
dexed by k = 1, . . . , K and each with parameter α

(1)
(k). For

instance, if cell j belongs to the kth cell type, its gene ex-
pression profile p(1)

j follows a cell-type-specific prior dis-

tribution Dir (α(1)
(k)). The Dirichlet multinomial density for

cell j , as illustrated in DIMM-SC (10), can be obtained
by multiplying the Dirichlet mixture prior by the multino-
mial density and then integrating out p(1)

j , which is derived

as P (x(1)
j |α(1)) = T(1)
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Similarly, we also use the Dirichlet multinomial distribu-

tion to model surface protein (ADT) data. Suppose there
are in total D number of ADT markers, then similarly, the
density of Dirichlet multinomial is derived as P (x(2)
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Figure 1. Core logic of BREM-SC method for joint clustering RNA and ADT single cell data.
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total ADT counts for j th cell.
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To further model the correlation between different data
sources, we introduce cell-specific random effects into our
framework. Since we assume that cells belonging to same
cell type share common Dirichlet parameters, we model
cell heterogeneity by directly multiplying cluster-specific
Dirichlet parameters with the random effects, i.e. α

(1)
j (k) =
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(k) b j and α

(2)
j (k) = α

(2)
(k) b j , where α
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Dirichlet parameters of cell type k for RNA and protein
data, respectively, and b j is the random effects for the
j th cell. Based on the fact that Dirichlet parameters are
strictly positive numbers, we assume that this cell-specific
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We use Gibbs sampler to update z j , and use random walk
Metropolis within Gibbs sampler to iteratively update α

(1)
i (k),

α
(2)
d(k) and b j in (Equation 2) (details can be found in Supple-

mentary Methods).

Selection of the number of clusters and initial values

To implement BREM-SC, it is critical to select the total
number of clusters and the initial values for MCMC. Specif-
ically, the number of clusters K can be defined either with
prior knowledge or standard model checking criterion such
as Akaike’s Information Criteria (AIC) or Bayesian Infor-
mation Criteria (BIC). Meanwhile, there are many meth-
ods to determine the initial values of α1, α2, . . . , αG . For
BREM-SC we applied K-means clustering to get a prelimi-
nary clustering result for each data source separately, fol-
lowed by using Ronning’s method (19) to estimate initial
values of α, which is similar to the estimation procedure im-
plemented in DIMM-SC (10).
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Data generation algorithm for simulation studies under
BREM-SC model

Based on different parameter settings in our Dirichlet multi-
nomial models, we simulated RNA expression and ADT
measurements for each single cell. In the simulation set-up,
the two count matrices were sampled from the proposed
Dirichlet mixture models. Specifically, for a fixed number
of cell clusters K , we first pre-defined the values of α

(1)
(k)

and α
(2)
(k) for the kth cell cluster. The random effects b j are

generated from a log-normal distribution with pre-specified
value σ 2

b . We then computed the transcriptomic profile α
(1)
j (k)

for each single cell by multiplying α
(1)
(k) by b j . Similarly, for

cellular protein expression profile, we multiplied α
(2)
(k) by b j

to compute α
(2)
j (k). For the next step, we sampled the clus-

ter proportion p(1)
j (or p(2)

j ) from a Dirichlet distribution

Dir (α(1)
j (k)) (or Dir (α(2)

j (k))). Lastly, we sampled the UMI

count vector x(1)
j for j th cell from multinomial distribution

Multinomial(T(1)
j , p(1)

j ) and sampled the ADT count vec-

tor x(2)
j from Multinomial(T(2)

j , p(2)
j ), where T(1)

j and T(2)
j

are each simulated from truncated normal distribution with
parameters estimated from real data.

Data generation algorithm for simulation studies under model
misspecification

We used R package Splatter (20) to simulate data to
assess robustness of BREM-SC under model misspecifi-
cation. In Splatter, the final data matrix is a synthetic
dataset consisting of counts from a Gamma-Poisson (or
negative-binomial) distribution. Since there is no existing
method for generating single cell surface protein expres-
sion levels from CITE-Seq, we also used Splatter to gen-
erate ADT count for the proteomic data. To make our
simulated gene expression data a good approximation to
the real data, our model parameters (in Splatter) were
estimated from the real data downloaded from 10X Ge-
nomics website (https://support.10xgenomics.com/single-
cell-gene-expression/datasets/1.1.0/b cells). Specifically, for
ADT data, we modified the Splatter parameters such as
dropout rate, library size, expression outlier, and dispersion
across features to make the simulated data more similar to
real observed ADT data regarding the scale. We assumed
all cell types are shared between gene expression and ADT
data, and further specified differential expression parame-
ters to generate scenarios with different magnitude of cell
type differences.

Setup of BREM-SC and competing methods used in this pa-
per

As a Bayesian method, to increase the stability of BREM-
SC and avoid the extreme case of bad initialization, in
practice we recommend running the algorithm with three
to five chains simultaneously (parallel computing imple-
mented within R package) and then choose the chain with
maximum likelihood. In this study, we applied BREM-SC

using three chains in simulation and real data analyses, and
set the number of MCMCs to be 500. On the other hand,
all clustering methods to which BREM-SC compared were
performed under their default settings. Single-source clus-
tering methods including K-means, SC3 and TSCAN were
applied to the pooled data from RNA expression and ADT
with centered log-ratio (clr)-transformation (8) for normal-
ization when applicable while ignoring source specificity.

Metrics for clustering performance

We used adjusted rand index (ARI) (21) and adjusted mu-
tual information (AMI) (22) as the metrics for clustering
performance in our analysis. Both of them are commonly
used metrics to indicate similarity between two clustering
results. In general, ARI is based on pair-counting while
AMI is based on Shannon information theory. ARI ranges
from –1 to 1, where an ARI of value 1 indicates the cluster-
ing result is identical to the underlying truth, 0 indicates a
clustering result by random clustering, and negative num-
ber indicates an even worse result than random clustering.
Similar to ARI, an AMI of value 1 indicates a perfect clus-
tering result while 0 indicates a random clustering result. Al-
though ARI and AMI often agree in most situations, a pre-
vious study found that ARI is preferred when the reference
clustering has relatively equal sized-clusters, while AMI is
recommended when the reference clustering is unbalanced
and thus small clusters could exist (23). Therefore, we used
ARI as the clustering metric in our simulation studies since
we simulated balanced clusters, and we used both ARI and
AMI in our real data applications since the approximated
ground truth cell types are not balanced.

Public human peripheral blood mononuclear cells (PBMC)
CITE-Seq dataset

To assess the performance of BREM-SC, we used
a published human PBMC CITE-Seq dataset
downloaded from 10X Genomics website (https:
//support.10xgenomics.com/single-cell-gene-expression/
datasets/3.0.0/pbmc 10k protein v3). A total of 7,865 cells
from a healthy donor were stained with 14 TotalSeq-B
antibodies, including CD3, CD4, CD8a, CD14, CD15,
CD16, CD19, CD25, CD45RA, CD45RO, CD56, CD127,
PD-1 and TIGIT. Cell-matched scRNA-Seq data are
available.

In-house human PBMC CITE-Seq dataset

To further evaluate the validity of our method. We gener-
ated an in-house CITE-seq dataset of human PBMC from
a healthy donor under IRB approval from the University
of Pittsburgh. 1372 cells were stained with Totalseq-A from
BioLegend and are prepared using the 10x Genomics plat-
form with Gel Bead Kit V2. The prepared assay is subse-
quently sequenced on an Illumina Hiseq with a depth of
50K reads per cell. Cells in this dataset are measured for
their surface marker abundance through CITE-seq (3). Ten
surface markers are measured for every cell: CD3, CD4,
CD8a, CD11c, CD14, CD16, CD19, CD56, CD127 and
CD154. Cell Ranger 3.0 was used to process the data and
generate UMI matrix for the downstream analysis.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/b_cells
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_protein_v3
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RESULTS

To assess the performance of BREM-SC, we performed
comprehensive simulation studies to compare BREM-SC
with five existing clustering methods, including K-means,
SC3, TSCAN, MV-NMF and PC-MSC, all of which are
hard clustering approaches and thus will assign each cell to
an exclusive cluster. We simulated scRNA-Seq and CITE-
Seq data under both our proposed model and model mis-
specification (using R package Splatter (20)) to assess the
validity and robustness of BREM-SC. For each simulation
scenario, we simulated 100 datasets to assess the variabil-
ity of clustering results for each method. We also applied
BREM-SC on two human peripheral blood mononuclear
cells (PBMC) CITE-Seq datasets to assess the usefulness of
our method in real application.

BREM-SC outperforms other methods in simulation studies
under our proposed model

We designed different simulation scenarios to assess the per-
formance of BREM-SC by varying number of cells in each
cluster, number of clusters, magnitude of cell type differ-
ences (i.e. the magnitude of difference among different clus-
ters), and among-cell variabilities (indicated by the magni-
tude of random effects).

The results of simulation studies under our proposed
model are shown in Figure 2. In general, the performance of
all clustering approaches decreases as the among-cell vari-
ability, indicated by σ 2

b , increases, number of clusters in-
creases, and number of cells decreases. As shown in Fig-
ure 2A, BREM-SC outperformed the other five competing
methods by achieving the highest average ARI among 100
simulations across different levels of among-cell variabili-
ties.

Figure 2B–D list the boxplots of ARI by varying magni-
tude of cell type differences, number of cells in each clus-
ter, and number of clusters, respectively. In Figure 2B, we
considered four scenarios in terms of signal strength from
two data sources. To illustrate the advantage of joint clus-
tering, we also applied K-means, SC3, TSCAN and DIMM-
SC on ADT data alone. When the clustering signal is strong
(i.e. difference among cell clusters is large) in both RNA
expression and ADT data (referred to Both S column),
both BREM-SC and SC3 performed extremely well while
other methods show fair clustering results. However, when
cell clusters are similar in either proteomics (referred to
ADT W/ RNA S column) or transcriptomics data (referred
to ADT S/ RNA W column), K-means and TSCAN pro-
duced less accurate clustering results, while BREM-SC and
SC3 still performed well. As expected, strong clustering sig-
nal leads to higher clustering accuracy and lower cluster-
ing variability. If both RNA expression and ADT data are
alike across different cell types (referred to Both W col-
umn), ARIs of all methods decreased but BREM-SC still
performed the best. This simulation scenario clearly demon-
strated that as long as either of the data source contains
strong clustering signals, our BREM-SC takes full advan-
tage of that and achieves highly satisfactory performance.
In Figure 2C, we observed that more cells can provide more
accurate and robust clustering results, which is as expected.

In Figure 2D, we found that larger number of clusters is as-
sociated with worse clustering performance. Again, in both
scenarios, BREM-SC outperformed the other five methods
across all various settings.

Consistently across all four scenarios shown in Fig-
ure 2, when data are generated from our proposed true
model, BREM-SC outperformed K-means clustering, SC3,
TSCAN, MV-NMF and PC-MSC, suggesting its advan-
tages in fully utilizing both types of data simultaneously.

BREM-SC outperforms other methods in simulation studies
under model misspecification

To evaluate the robustness of BREM-SC when the data
generation model is mis-specified, we simulated additional
datasets using R package Splatter (20), a commonly used
tool to simulate scRNA-Seq data whose underlying mod-
els are completely different from ours. Figure 3 shows the
performance of BREM-SC and other competing methods
under model misspecification. In Figure 3A, we simulated
different signal strength for each data source using Splatter.
Methods such as K-means and MV-NMF produced poor
results across all scenarios even when signal strengths are
large in both data sources. On the other hand, BREM-SC
outperformed all other methods and showed good cluster-
ing performance even when signal strengths are relatively
small in both data sources. In Figure 3B, we assessed the
clustering performance across different probabilities that a
gene is differentially expressed (DE). In general, higher DE
probability indicates easier cell clustering. Again, we found
that BREM-SC outperformed all other competing methods
in terms of clustering accuracy. Therefore, we demonstrated
the strong robustness of BREM-SC under model misspeci-
fication.

Analysis of a public human PBMC CITE-Seq dataset

To evaluate the clustering performance of BREM-SC on
real data, we first used a published human peripheral blood
mononuclear cells (PBMC) CITE-Seq dataset downloaded
from 10× Genomics website. A total of 7865 cells and 14
surface protein markers are included in this dataset in addi-
tion to matched scRNA-Seq data. As a standard approach
of analyzing human PBMC dataset, we extracted the top
1000 highly variable genes using the algorithm implemented
in Seurat that accounts for mean-variance relationship (18).
We identified seven cell types based on the biological knowl-
edge of both protein and gene markers as the approximate
truth, which is illustrated in Supplementary Figure S1. Ex-
amples of such cell type identification procedure are shown
in Supplementary Figure S2. Taken together, >80% of sin-
gle cells can be assigned to a specific cell type. Cells with
uncertain cell types (not identified in the ground truth) were
removed from computing ARIs and AMIs.

We applied eight clustering methods (K-means cluster-
ing, TSCAN, SC3, Seurat, DIMM-SC, MV-NMF, PC-
MSC and BREM-SC) on this dataset and performed both
single source clustering (using ADT or RNA data only)
and multi-source joint clustering, respectively. We ran each
method ten times to evaluate the stability of clustering per-
formance. Note that since TSCAN is a deterministic clus-
tering method and generates identical results, stability of
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Figure 2. Boxplots of ARIs for six clustering methods across 100 simulations, investigating how various among-cell variabilities (A), magnitude of cell type
differences (B), (W refers to weak signals between clusters; S refers to strong signals), number of cells in each cluster (C) and number of clusters (D) affect
the clustering results.

performance cannot be assessed from analyzing a single
dataset for this method. Similar feature is for Seurat with
a fixed resolution parameter. As shown in Table 1, BREM-
SC outperformed other methods for multi-source joint clus-
tering in terms of both ARI and AMI. Also, we observed
that the clustering results based on protein only are bet-
ter than based on RNA only for all methods. For example,
Seurat reached an ARI of 0.726 and AMI of 0.757 in pro-
tein only analysis, but only with ARI of 0.564 and AMI of
0.660 in RNA only analysis. We can explain this observa-
tion by the facts that we used much more protein informa-
tion to build the approximated ground truth, and on the
other hand, the transcriptome and proteome information
are not as highly correlated as people may expect at sin-
gle cell resolution, which has also been observed in other
studies. Further, we used Uniform Manifold Approxima-
tion and Projection (UMAP) plot (24) to visualize the clus-
tering results from BREM-SC. UMAP is a recently devel-
oped non-linear dimension reduction tool for visualization,

but quickly gains popularity among single cell researches
because of its outstanding performance. Figure 4 shows the
UMAP plots with each cell colored by their ground truth
label (Figure 4A) and cluster labels inferred by BREM-SC
(Figure 4B), respectively. In general, the two plots are highly
similar regarding to the distribution of different clusters
(ARI = 0.840), indicating the outstanding performance of
BREM-SC.

‘Soft-clustering’ property of BREM-SC

We further used this public human PBMC CITE-Seq
dataset to illustrate the property of ‘soft-clustering’, that
BREM-SC can provide the posterior probability that a
given cell belongs to a specific cluster in addition to
cell labels. We highlighted the ‘vague’ cells identified by
BREM-SC on UMAP plots. Here ‘vague’ cells refer to
those cells with largest posterior probability smaller than
a pre-specified threshold. By setting up different proba-
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Figure 3. Boxplots of ARIs for six clustering methods across 100 simulations using Splatter. The performance under various magnitude of cell type
differences were investigated. In (A), mean parameters of three cell types were set as (0.15, 0.151, 0.152) and (0.15, 0.2, 0.25) to represent two levels (S
standards small and L standards for large) of cell type difference. In (B), different probabilities that a gene would be selected to be differentially expressed
(DE) were set.

Table 1. Performance (ARI and AMI) of different clustering methods from ten times analyses of the public human PBMC real dataset

ARI AMI
Mean (SD), [range] Mean (SD), [range]

Single source clustering - RNA only
K-means 0.524 (0.054), [0.508, 0.562] 0.592 (0.022), [0.579, 0.632]
TSCAN 0.563 (N/A), [N/A] 0.591 (N/A), [N/A]
SC3 0.596 (0.082), [0.456, 0.709] 0.629 (0.060), [0.513, 0.706]
DIMM-SC 0.629 (0.030), [0.590, 0.676] 0.666 (0.018), [0.653, 0.700]
Seurat 0.564 (N/A), [N/A] 0.660 (N/A), [N/A]
Single source clustering - protein only
K-means 0.653 (0.093), [0.436, 0.760] 0.732 (0.048), [0.632, 0.808]
TSCAN 0.691 (N/A), [N/A] 0.717 (N/A), [N/A]
SC3 0.649 (0.045), [0.568, 0.692] 0.722 (0.035), [0.670, 0.777]
DIMM-SC 0.698 (0.046), [0.619, 0.741] 0.744 (0.025) [0.701, 0.766]
Seurat 0.726 (N/A), [N/A] 0.757 (N/A), [N/A]
Multi-source joint clustering
K-means 0.661 (0.107), [0.471, 0.811] 0.723 (0.059), [0.577, 0.781]
TSCAN 0.586 (N/A), [N/A] 0.635 (N/A), [N/A]
SC3 0.679 (0.162), [0.430, 0.911] 0.723 (0.096), [0.595, 0.870]
MV-NMF 0.701 (0.154), [0.380, 0.856] 0.679 (0.098), [0.473, 0.779]
PC-MSC 0.641 (0.029), [0.621, 0.723] 0.679 (0.018), [0.672, 0.729]
BREM-SC 0.728 (0.091), [0.585, 0.840] 0.737 (0.048), [0.674, 0.800]

bility threshold, the number of ‘vague’ cells can be con-
trolled. In Figure 5, we showed the distribution of ‘vague’
cells, which are defined as the lowest 5% cells ranked by the
largest cluster posterior probability, on UMAP plot for the
public PBMC dataset. By comparing with Figure 4A, we
found many of such ‘vague’ cells coincide with either the
unknown cells that we fail to identify based on current bio-
logical knowledge or the cells on the boundary between two
cell types that are closely attached to each other on UMAP
plot. In addition, we observed that a subset of CD8+ T cells
are labeled as ‘vague’ cells, which we suspect to be memory
CD8+ T cells by differential expression analysis with RNA
data. We also plotted the distribution of the top 1%, 2%,
3% and 4% ‘vague’ cells with the lowest certainty in Sup-
plementary Figure S4.

Analysis of an in-house human PBMC CITE-Seq dataset

Because there are limited public datasets of CITE-seq, to
further evaluate our method, we performed a CITE-seq ex-
periment on human PBMCs from a healthy donor with

informed consent and University IRB approval. 10× Ge-
nomics Chromium system was used to generate CITE-Seq
data with 10 cell surface markers designed in the experi-
ment, which yielded a total of 1388 cells. Similarly, we ex-
tracted the top 1000 highly variable genes as we did for the
public human PBMC dataset. For this dataset, we identi-
fied six subtypes of PBMCs based solely on the biological
knowledge of cell-type-specific protein markers (illustrated
in Supplementary Figure S1), and >85% of single cells were
assigned to a specific cell type using these markers. Exam-
ples of such cell type identification procedure are shown in
Supplementary Figure S3. We then used these cell labels as
the approximated ground truth to benchmark the clustering
performance for different clustering methods. Cells with un-
certain cell types were removed when calculating ARIs and
AMIs.

Similar to the analysis of public human PBMC dataset,
we applied eight clustering methods on this in-house PBMC
dataset and repeated each method ten times to evaluate the
stability of its performance. As shown in Figure 6, BREM-
SC performed very well in the human PBMC samples (ARI
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Table 2. Performance (ARI and AMI) of different clustering methods from ten times analyses of the in-house human PBMC real dataset

ARI AMI
Mean (SD), [range] Mean (SD), [range]

Single source clustering - RNA only
K-means 0.547 (0.073), [0.429, 0.681] 0.613 (0.062), [0.474, 0.707]
TSCAN 0.476 (N/A), [N/A] 0.574 (N/A), [N/A]
SC3 0.561 (0.017), [0.540, 0.589] 0.606 (0.022), [0.560, 0.644]
DIMM-SC 0.563 (0.101), [0.366, 0.682] 0.598 (0.069), [0.488, 0.707]
Seurat 0.675 (N/A), [N/A] 0.732 (N/A), [N/A]
Single source clustering - protein only (complete list)
K-means 0.930 (0.120), [0.702, 0.989] 0.931 (0.072), [0.794, 0.968]
TSCAN 0.929 (N/A), [N/A] 0.881 (N/A), [N/A]
SC3 0.921 (0.039), [0.816, 0.951] 0.891 (0.048), [0.760, 0.930]
DIMM-SC 0.988 (0.005), [0.975, 0.993] 0.971 (0.014), [0.935, 0.983]
Seurat 0.996 (N/A), [N/A] 0.976 (N/A), [N/A]
Multi-source joint clustering
K-means 0.718 (0.102), [0.562, 0.805] 0.755 (0.057), [0.659, 0.803]
TSCAN 0.563 (N/A), [N/A] 0.619 (N/A), [N/A]
SC3 0.798 (0.108), [0.620, 0.938] 0.788 (0.068), [0.690, 0.881]
MV-NMF 0.861 (0.115), [0.710, 0.989] 0.871 (0.086), [0.780, 0.969]
PC-MSC 0.703 (0.094), [0.573, 0.950] 0.798 (0.048), [0.705, 0.909]
BREM-SC 0.966 (0.025), [0.917, 0.985] 0.944 (0.039), [0.869, 0.970]

Figure 4. The performance of BREM-SC with the public human PBMC
CITE-Seq dataset (from 10X Genomics). The UMAP projection of cells
are colored by the approximate ground truth (A) and BREM-SC clustering
results (B).

= 0.985), since the UMAP plot with each cell colored by
their cell-type label based on protein markers (Figure 6A)
is highly similar to the plot generated from the cluster-
ing result of BREM-SC (Figure 6B). Clustering results for

Figure 5. Illustration of ‘soft clustering’ property by highlighting ‘vague’
cells (about lowest 5% ranked by the largest cluster posterior probability)
from BREM-SC.

all methods are summarized in Table 2. Again, BREM-
SC outperformed all other competing methods for multi-
source joint clustering based on the average ARI and AMI.
However, it is observed that in general single source clus-
tering with ADT count data performed better than multi-
source joint clustering under this circumstance. The rea-
son for this result is that the approximated ground truth
is built solely based on protein markers, and thus will fa-
vor clustering analyses only using the protein data. Methods
such as K-means and TSCAN performed much worse com-
pared to their corresponding single source analysis results,
indicating that they failed to properly incorporate RNA in-
formation and thus the joint clustering results were highly
compromised by the inclusion of RNA ‘noises’. On the
other hand, BREM-SC, although performed slightly worse
than DIMM-SC with protein only clustering, still gives ex-
tremely satisfactory results (mean ARI = 0.966), indicat-
ing that BREM-SC can handle mRNA–protein association
very well in real data and is robust to ‘noises’ introduced
from one data source.
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Figure 6. The performance of BREM-SC for in-house human PBMC
CITE-Seq dataset. The UMAP projection of cells are colored by the
ground truth (A) and BREM-SC clustering results (B).

Robust performance with incomplete ADT data

In practice, it is common that researchers may have limited
biological information of a specific cell type (especially rare
cell type). As a result, they may fail to include some protein
markers that are specifically differentially expressed in that
rare cell type when they design their CITE-Seq experiments.
In this case, researchers are not able to identify all the cell
types with surface protein data only, and joint clustering
methods will be preferred if they can appropriately incor-
porate RNA data to compensate the ‘loss’ of surface mark-
ers. To mimic the situation where the pre-designed protein
markers cannot capture the characteristics of all cell types,
we removed three protein markers (CD8A, CD16, CD127)
in this human PBMC dataset and re-analyzed the remain-
ing data. The results of this realistic simulation are summa-
rized in Table 3. In general, the results of single source clus-
tering analyses for all methods except for Seurat are much
worse when some important protein markers are missing.
BREM-SC, on the other hand, achieves the highest mean
ARI and mean AMI compared with all other clustering
methods (both single source and multi-source). In addition,
the performance of BREM-SC is only slightly influenced
with missing a few protein markers, which demonstrates the

robustness of BREM-SC and its capability of properly han-
dling the mRNA–protein association.

DISCUSSION

When analyzing data from different data sources, ensemble
clustering may be considered to integrate the separate clus-
ters and determine an overall partition of cells that agrees
the most with the source-specific cluster. However, most of
ensemble clustering methods assume that the separate clus-
ters are known in advance and do not inherently model the
uncertainty (25). At the other extreme, a joint analysis that
ignores the heterogeneity of the data may not capture im-
portant features that are specific to each data source. A fully
integrative clustering approach is necessary to effectively
combine the discriminatory power from transcriptome and
protein measurements. Our probabilistic model provides a
unified framework to jointly analyze multi-source data and
take into account between-source correlation.

There are several noticeable limitations of this method.
First, BREM-SC uses a computationally intensive MCMC
algorithm, which is roughly linear with the number of cells
and the number of genes used. In practice, it may result in
a high computational cost when applying to large datasets
(e.g. >10 k cells). To increase speed, BREM-SC has been
implemented efficiently through vectorization to accom-
modate data in relatively large scale. We benchmarked the
computational speed as well as memory consumption of
BREM-SC in Supplementary Table S1. Specifically, we var-
ied the number of cells, genes and MCMC iterations in the
benchmark experiment to provide users a general guidance
about computing time of BREM-SC. We also examined the
convergence of MCMC in two real data analyses, and we
found that the log-likelihood converges quite well within
500 interactions (shown in Supplementary Figure S5). We
further developed an alternative approach to reduce run-
ning time by removing the random effects and assume in-
dependency between two data sources (illustrated in Equa-
tion 1). By assuming each of the two data follows separate
multinomial distribution with Dirichlet prior, we derive the
joint likelihood of two data and use E–M algorithm (26) to
update parameters. We named this approach jointDIMM-
SC, as it can be considered as an extension of DIMM-SC
for joint analysis. This method is useful when there are in
fact relatively low among-cell variabilities. We compared
the performance of BREM-SC and jointDIMM-SC on the
two real PBMC datasets. The estimated standard deviation
of random effects for the public PBMC data is 0.7, and
for the in-house data is 1.2. Supplementary Table S2 sum-
marizes the ARI and AMI of each method performed on
each dataset, by which we observed that the performance
of jointDIMM-SC is always worse than BREM-SC, and
such a difference is larger when the estimated variance of
random effects is larger. Supplementary Figures S6 and S7
show the clustering results of jointDIMM-SC on public and
in-house PBMC datasets, respectively, on UMAP plots. Al-
though jointDIMM-SC performs worse than BREM-SC,
still it could beat most of the competing methods currently
available. JointDIMM-SC has also been implemented in
our method as an optional choice. In addition to these, po-
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Table 3. Performance (ARI and AMI) of clustering analysis for the subset of in-house human PBMC real dataset with the removal of three protein
markers (CD8A, CD16, CD127)

ARI AMI
Mean (SD), [range] Mean (SD), [range]

Single source clustering - protein only
K-means (ADT) 0.783 (0.144), [0.671, 0.991] 0.839 (0.091), [0.766, 0.972]
TSCAN (ADT) 0.863 (N/A), [N/A] 0.811 (N/A), [N/A]
SC3 (ADT) 0.757 (0.106), [0.552, 0.840] 0.698 (0.074), [0.524, 0.752]
DIMM-SC (ADT) 0.820 (0.114), [0.681, 0.988] 0.842 (0.067), [0.774, 0.960]
Seurat (ADT) 0.929 (N/A), [N/A] 0.896 (N/A), [N/A]
Multi-source joint clustering
K-means 0.691 (0.131), [0.533, 0.800] 0.728 (0.073), [0.634, 0.789]
TSCAN 0.451 (N/A), [N/A] 0.578 (N/A), [N/A]
SC3 0.771 (0.103), [0.655, 0.948] 0.781 (0.070), [0.675, 0.899]
MV-NMF 0.517 (0.032), [0.485, 0.600] 0.644 (0.024), [0.628, 0.707]
PC-MSC 0.698 (0.092), [0.613, 0.946] 0.786 (0.046), [0.724, 0.893]
BREM-SC 0.925 (0.057), [0.816, 0.975] 0.913 (0.052), [0.803, 0.962]

tential speed-up methods could include using graphics pro-
cessing unit.

Another limitation is that BREM-SC model ignores the
measurement errors and uncertainties buried in count ma-
trices. Multiple factors such as drop-out event, mapping
percentage and PCR efficiency are not considered in the
current model. These limitations can be largely overcome
by extending the method. We will explore these directions
in the near future. Finally, although BREM-SC can allow
some noise between the two data sources, still a key as-
sumption that the two sources are consistent in some level in
terms of cell type classification. Traditionally, biologists de-
fine cell type through the abundance of cell surface markers,
so ADT data are preferred if available. They are in general
consistent with corresponding transcriptomic data, which
may provide additional information on defining sub-cell
types. If the inconsistency is so large as to overwhelm the
cluster-specific signals, then joint clustering methods such
as BREM-SC could fail, and source specific grouping meth-
ods such as Bayesian consensus clustering (27) can be devel-
oped in future studies.

In summary, we provide a novel statistical method,
BREM-SC, for joint clustering scRNA-Seq and CITE-Seq
data, which facilitates rigorous statistical inference of cell
population heterogeneity. Our model-based joint cluster-
ing method can be readily extended to accommodate more
than two data sources or multi-source data from other
fields. In addition, our well-designed in-house CITE-seq
dataset will be valuable to the bioinformatics field for fur-
ther method development. We are confident that BREM-
SC will be highly useful for the fast-growing community of
large-scale single cell analysis.
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