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Abstract
High-throughput dynamic imaging of cells and organelles is essential for understanding complex cellular responses. We report Mantis, a 
high-throughput 4D microscope that integrates two complementary, gentle, live-cell imaging technologies: remote-refocus label-free 
microscopy and oblique light-sheet fluorescence microscopy. Additionally, we report shrimPy (Smart High-throughput Robust 
Imaging and Measurement in Python), an open-source software for high-throughput imaging, deconvolution, and single-cell 
phenotyping of 4D data. Using Mantis and shrimPy, we achieved high-content correlative imaging of molecular dynamics and the 
physical architecture of 20 cell lines every 15 min over 7.5 h. This platform also facilitated detailed measurements of the impacts of 
viral infection on the architecture of host cells and host proteins. The Mantis platform can enable high-throughput profiling of 
intracellular dynamics, long-term imaging and analysis of cellular responses to perturbations, and live-cell optical screens to dissect 
gene regulatory networks.
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Significance Statement

Understanding the dynamics and interactions of cellular components is crucial for biological research and drug discovery. Current 
dynamic fluorescence microscopy methods can only image a few fluorescent labels, providing a limited view of these complex proc-
esses. We developed Mantis, a high-throughput 4D microscope that maps interactions among components of dynamic cell systems. 
Mantis combines light-sheet fluorescence imaging of multiple fluorophores with quantitative label-free microscopy and is comple-
mented by Smart High-throughput Robust Imaging and Measurement in Python, our open-source software for high-throughput 
data acquisition and high-performance analysis. Mantis enabled simultaneous 3D time-lapse imaging of 20 cell lines and quantitative 
analysis of responses to perturbations like viral infection at single-cell resolution. This approach can accelerate the analysis of cel-
lular dynamics and image-based drug discovery.
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Introduction
Several open problems in cell biology and drug discovery require 
high-throughput methods to measure, predict, and model the 
dynamic interactions among cells, organelles, and proteins. 
Multiplexed imaging of cellular morphology and machine learn-
ing is increasingly used to predict the effects of genetic and chem-
ical perturbations (1–3) from changes in the cellular architecture. 
High-throughput live-cell imaging, combined with deep learning, 
has enabled systematic analysis of the dynamic mechanisms that 
underpin healthy (4–6) and diseased (7–9) states of cells.

Correlative imaging of the 3D architecture of cells and constitu-
ent components over time (4D imaging) can accelerate discovery 

and dissection of cellular processes. However, 4D imaging of 

more than three organelles with multispectral fluorescence mi-

croscopy (10) remains challenging, because engineering cells 

with multiple fluorescent proteins is labor intensive and the 

wide emission spectra of fluorescent proteins limit the number 

of labels that can be imaged simultaneously. Correlative label- 

free and fluorescence microscopy is a viable strategy to mitigate 

the longstanding multiplexing bottleneck in 4D microscopy, be-

cause label-free imaging captures many cellular structures at 

once. Several cellular landmarks, e.g. nuclei, cell membrane, 

and nucleoli, scatter sufficient visible light and can be consistent-

ly visualized with label-free imaging. Several organelles, 
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e.g. cytoskeleton, endoplasmic reticulum (ER), and Golgi, as well 
as individual proteins need to be labeled with fluorophores for 
consistent visualization as they do not scatter sufficient visible 
light that can be measured in live cells. Correlative label-free 
and fluorescence imaging systems have recently been reported 
(4, 11–14) for 3D imaging of organelles, cells, and tissues.

Building on these advancements, we have developed an auto-
mated microscope, named “Mantis,” that synergizes light-sheet 
and label-free microscopy in multiwell plates. Light-sheet and 
label-free microscopy are both gentle on live samples, as they 
do not require high light doses that can cause phototoxicity. We 
multiplex oblique light-sheet fluorescence microscopy (15–19) 
with remote-refocus (20, 21) quantitative label-free imaging 
with phase and polarization (QLIPP) using distinct wavelengths. 
Mantis enables 4D imaging of three or more fluorescent (i.e. ex-
trinsic) labels and three physical properties of phase, retardance, 
and orientation as described in Ref. (4) at high-speed and in paral-
lel. The large field of view of the microscope and the combination 
of two imaging modalities provide rich phenotypic data on the dy-
namics of specific molecules in the context of the cell architec-
ture. The name “Mantis” is inspired by the high-dimensional 
vision and the quick reflexes of the mantis shrimp.

Automated, robust, and configurable acquisition software is es-
sential for 4D imaging, especially in high-throughput format. 
High-throughput correlative microscopes can produce tens of 
terabytes of data per day. Parallelized, configurable, and reprodu-
cible analysis is essential to leverage the statistical patterns 
captured with these large datasets. We integrate high-throughput 
acquisition and high-performance computing, streamlining 
the process of imaging and profiling at high resolution up to a mil-
lion cells in a single experiment. The acquisition and analysis en-
gine is implemented in Python and is available as an open-source 
repository shrimPy: Smart High-throughput Robust Imaging and 
Measurement in Python on GitHub (22). shrimPy streamlines cali-
bration of the optical path, deconvolution of the specimen proper-
ties from the acquired intensities, and segmentation of single 
nuclei and cells. Instead of experimentally staining nuclei and 
cell membranes, we rely on virtual staining of quantitative phase 
images (4, 23). Virtual staining of nuclei and membrane frees up 
fluorescence channels for imaging of proteins and other organ-
elles, improves the imaging throughput, and counteracts the 
loss of fluorescence due to photobleaching or stochastic labeling. 
The shrimPy analysis engine uses our recent robust models for 
joint virtual staining of nuclei and membrane (23).

We demonstrate the performance and applications of Mantis 
by reporting 3D tracking of organelles and parallel imaging of 20 
cell lines expressing distinct fluorescently tagged intracellular re-
porters—in the context of cellular landmarks that are imaged 
without labels. We illustrate joint virtual staining of nuclei and 
membrane, and accurate single-cell segmentation in multiple 
cell lines. Gentle imaging with Mantis enables analysis of the tem-
poral dynamics of the cell morphology and the localization of key 
host proteins in response to viral infection. Used together, these 
tools enable high-content analysis of the dynamics of intracellu-
lar reporters in the context of the global morphology of the cell.

Results
Multichannel 4D imaging of cell dynamics
The Mantis microscope is a synergistic combination of oblique 
light-sheet fluorescence microscopy and remote-refocus QLIPP 
as illustrated in Fig. 1a and detailed in Materials and methods. 

The integration of two gentle imaging modalities through wave-
length multiplexing enables simultaneous imaging of both the 
physical and molecular compositions of dynamic biological sam-
ples at high throughput in multiwell plates. The label-free meas-
urements enable gentle imaging of many organelles in terms of 
the distribution of their density and biomolecular orientation. 
Quantitative label-free imaging provides key landmarks for sub-
sequent segmentation and preserves the fluorescence spectrum 
for labeled proteins and organelles.

Long-term imaging of intracellular dynamics and image-based 
screens in a multiwell plate format are key applications of the 
Mantis platform. We chose oblique light-sheet fluorescence mi-
croscopy as it does not impose additional sample mounting re-
quirements, reduces phototoxicity by only illuminating the plane 
in the sample that is being imaged, and enables fast volumetric 
imaging by scanning a galvo mirror (16, 18). The principle of 
remote-refocus microscopy (15, 20, 21) underpins this design— 
the oblique light sheet and detection perpendicular to the light 
sheet are implemented in the remote volume. To enable fast cor-
relative label-free imaging, Mantis speeds up the axial scanning 
in label-free phase and polarization microscopy (4) by an order of 
magnitude using a remote-refocus architecture.

The primary objective of the microscope is a 100× 1.35NA silicone 
immersion lens (O1, Fig. 1a) and is shared by the label-free and 
fluorescence arms. The remote-refocus path in both arms is imple-
mented using 40× 0.95NA air objective (O2 and O4) and suitable 
tube lenses to achieve magnification of 1.4×, equal to the ratio of re-
fractive indices of silicone oil and air, as dictated by the principles of 
remote refocus (20, 21). The remote volume in the fluorescence arm 
is imaged with a “Snouty” objective (O3), which is perpendicular to 
the oblique light sheet (17). The remote-refocus objective (O4) in 
the label-free arm is reused to magnify the remote volume after re-
flection from a scan mirror. A detailed optical schematic and CAD 
models of the microscope are available in Fig. 1—Supplementary 
S1, Fig. 1—Supplementary S2, and Fig. 1—Supplementary S3. In 
this specific configuration, the Mantis microscope enables volumet-
ric imaging of over ∼15 μm depth without moving the primary ob-
jective or the sample because axial scanning is carried out 
entirely in the remote-refocus arms. The current light path can be 
configured to image up to 60 μm deep volumes by changing the an-
gle between light sheet and coverslip, and the corresponding angle 
between the imaging axes of O2 and O3.

Building a microscope that achieves high resolution, high light 
efficiency, and minimal polarization distortions required the de-
velopment of the following optical alignment procedures and op-
tical modules: (i) a method for attaching a glass coverslip to the 
O2 and O4 objectives to compensate for spherical aberrations 
(Fig. 1—Supplementary S4); (ii) a polarized-light analyzer cube 
that is insensitive to birefringence of the dichroic beam splitter 
(Fig. 1—Supplementary S5); (iii) a polarization-based label-free 
remote-refocus path that maximizes light throughput (Fig. 1—
Supplementary S6); (iv) a procedure for calibrating the 3D 
point-spread function (PSF) of the light-sheet path using beads 
distributed in 3D agarose gel (Fig. 1—Supplementary Note 1). 
These procedures correct the majority of the optical aberrations, 
enable the diagnosis of the alignment, and provide the calibration 
data needed to deconvolve any residual aberrations. These proce-
dures play a critical role in enabling high-throughput dynamic im-
aging with diffraction-limited resolution over multiple days, and 
facilitate re-alignment as needed, typically once a month.

We illustrate the channels of information that can be acquired 
with Mantis using A549 cells (Figs. 1b and 1—Supplementary 
Movie 1). We visualized mitochondria and lysosomes by tagging 
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TOMM20 with GFP and staining the cells with LysoTracker Deep 
Red. The phase channel in the same field of view reports the spa-
tial distribution of biomolecular density and visualizes the nuclei, 
nucleoli, plasma membrane, and other dense organelles. The 
orientation channel reports the orientation of angular order (4) 
among biomolecules and visualizes the plasma membrane and 
perinuclear fibers that appear similar to vimentin filaments previ-
ously reported in this cell line at high confluence (24–26). Lastly, 
we used virtual staining to predict nuclei and plasma membrane 
from the phase image (see Virtual staining and segmentation sec-
tion). Virtual staining of these landmark molecular markers can 

enable segmentation and single-cell analysis using existing seg-
mentation models built for fluorescence images (23). All channels 
of information can be acquired in 3D—in Fig. 1b, we show orthog-
onal slices through the cell body with distinct morphological 
structures evident throughout the volume.

We overlay fluorescence and label-free images in Figs. 1c and 
1—Supplementary Movie 2. We show the entire 150 × 150 µm field 
of view of the Mantis microscope in all channels of information in 
Fig. 1—Supplementary S7. We acquired these data at a rate of two 
volumes per minute, which enabled us to do 3D tracking of lyso-
somes (Figs. 1d and 1—Supplementary Movie 3).
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Fig. 1. Overview of the Mantis microscope. a) Schematic of the light path and data acquisition pipeline. Mantis enables high-throughput measurements 
of the physical and molecular composition of dynamic biological samples in multiwell plates by combining remote-refocus label-free microscopy and 
oblique light-sheet fluorescence microscopy. Landmark organelles such as nuclei and membranes are virtually stained from label-free images. b) Images 
of A549 cells in different channels. Fluorescent and virtually stained organelles can be captured in the context of the overall cell architecture. Left to right: 
labeled mitochondria (TOMM20-GFP) and lysosomes (LysoTracker), label-free measurements of phase and molecular orientation, and nuclei and plasma 
membrane virtually stained from the phase channel. Top row shows XZ orthogonal projections of data presented in the bottom row at the location 
indicated by the dotted line. c) Correlative imaging of physical and molecular composition enables 4D imaging of multiple organelles in parallel. Left: 
overlay of mitochondria (magenta), lysosomes (green), nuclei (white), and membrane (orange); right: overlay of phase (grayscale) and orientation (color). 
d) Time-lapse imaging enables tracking of organelles. Line segments show the movement of lysosomes in 3D (depth encoded in color) over time. Circles 
show in-focus spots, and dots show out-of-focus spots.
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High-throughput acquisition and analysis
Robust high-content imaging of multiple proteins in the context of 
the global cell morphology required the development of a dedi-
cated acquisition and analysis engine (Fig. 2) that we named 
shrimPy (22).

The shrimPy acquisition engine orchestrates parallel data acqui-
sition from the label-free and light-sheet arms and carries out smart 
microscopy tasks, such as autofocus and autoexposure. The two 
arms of the microscope run on two instances of Micro-Manager 
(27, 28), which we control using the Pycro-Manager Python bridge 
(29). The shrimPy acquisition engine coordinates their synchronous 
operation using hardware triggering (Fig. 2—Supplementary S1; see 
Microscope automation section).

The acquired multidimensional raw datasets are processed by 
the shrimPy analysis engine to generate registered multimodal 
data that can be used for phenotyping (Fig. 2a). Raw data are first 
converted into the OME-Zarr format (30), which enables efficient 
parallel processing of multiple time points and positions. As de-
scribed below, discrete data volumes then undergo deskewing of 
fluorescence channels, reconstruction of phase and orientation, 
registration, and virtual staining. Parallel processing is acceler-
ated using our high-performance computing cluster (Fig. 2—
Supplementary S2).

Light-sheet volumes are acquired in a skewed frame of refer-
ence due to the oblique illumination and detection (Figs. 2b and 
2—Supplementary S3) and need to be deskewed for visualization 
in the frame of reference of the imaging chamber and for down-
stream analysis alongside the label-free data. Figure 2b shows 
the transformation of a fluorescent sphere target (Argolight) be-
tween skewed (here SCAN—TILT—COVERSLIP) coordinates and 
deskewed (X—Y—Z ) coordinates. After deskewing, the target as-
sumes a spherical shape as expected (Fig. 2—Supplementary 
Movie 1). We also show images of subresolution fluorescent beads 
in both coordinate systems. These data demonstrate optical reso-
lution of 290 nm in SCAN, 260 nm in COVERSLIP, and 290 nm in 
TILT; or 290 nm in X, 260 nm in Y, and 680 nm in Z coordinates 
(see Fig. 2—Supplementary S4 and Fig. 2—Supplementary Movie 
2). We improve our resolution and contrast further by applying a 
bead-based deconvolution routine (see Fig. 2—Supplementary S5), 
where we average beads to measure the microscope PSF, apply a 
Tikhonov-regularized least-squares deconvolution, and then de-
skew the results.

Phase (optical path length), retardance (difference of optical 
path length between the two symmetry axes of the structure), 
and orientation (orientation of the axis along which the biomolec-
ular density is higher) are reconstructed from raw brightfield or 
polarized light images as described earlier (4). The microscope 
was calibrated for polarized light imaging and the acquired 
data reconstructed using the recOrder plugin (31) for napari. 
Figure 2c shows phase and retardance reconstruction of the 
same Argolight sphere. The target has a different refractive 
index than its surrounding medium and is weakly birefringent, 
showing signal in our label-free detection channels. Figure 2—
Supplementary S6 further shows projections of the sphere in the 
three principal planes in each of the three contrast modes. To 
our knowledge, our work reports quantitative imaging with phase 
and polarization using remote-refocus acquisition for the first 
time. In Fig. 2c, glass features of increasing height were imaged 
to demonstrate that the measured phase increases linearly with 
the height of features, i.e. with increasing optical path length, as 
expected. We quantify the transverse (XY) spatial resolution for 
phase imaging to <400 nm (Fig. 2—Supplementary S7)—note 

that as in fluorescence imaging, the ability to resolve objects de-
pends on both their density and the detection signal-to-noise ra-
tio, here governed by the difference in refractive index between 
the objects and their surrounding medium.

Registration between the label-free and fluorescence volumes 
acquired on the two arms of the microscope is critical for correla-
tive data analysis. Although volume registration can be precali-
brated using targets such as Argolight or fluorescent beads 
embedded in agarose gel, the registration between the two arms 
can drift over days. However, the registration remains stable dur-
ing the time required to acquire all positions. To enable robust 
registration from the acquired volumes, we have developed the 
following strategies (Fig. 2d): (i) We include fiducial markers 
such as large fluorescent microspheres that produce strong sig-
nals in both the label-free and fluorescence channels as one pos-
ition in the multiposition acquisition. We used this approach to 
register data shown in Fig. 1. (ii) In some experiments, fiducial 
markers are not needed, because molecular markers present in 
the fluorescence channel can be virtually stained (4, 23) from 
phase volumes. In these cases, nuclei or plasma membranes are 
predicted from phase volumes, and the 3D similarity transform-
ation matrix is computed by maximizing mutual information be-
tween the experimental and virtual stain (Fig. 2—Supplementary 
S9). (iii) In experiments where the fluorescence channel encodes 
membranous organelles, applying image processing filters (e.g. 
edge detection) to both modalities suffices to achieve sufficient 
mutual information for registration.

Enabling long-term experiments requires compensating 
mechanical drift between the image planes of the four objectives 
of the Mantis microscope (Fig. 2e). The primary objective (O1) can 
be kept in focus using the built-in Nikon Perfect Focus System. 
The drift between the O2 and O3 objectives in the light-sheet 
remote-refocus arm (see Fig. 1a) leads to misalignment of the il-
lumination and detection planes, which leads to substantial deg-
radation of image quality. To maintain the alignment between 
the O2 and O3 objectives, an image-based autofocus method 
(Fig. 2—Supplementary S8) is implemented in the shrimPy acqui-
sition engine (Fig. 2e, fluorescence trace). Axial drift between the 
remote-refocusing objective (O4) and the scan mirror was also 
observed in the label-free arm. However, the drift in the label- 
free arm leads to imaging of different depths of the sample rather 
than a loss of image contrast. Therefore, the drift in the label-free 
arm is stabilized as a postprocessing step (Fig. 2e, compare phase 
traces). A hardware image-based autofocus method may also be 
developed in this arm of the microscope to reduce the need for 
imaging outside of the axial region of interest.

Live-cell phenotyping
The shrimPy acquisition and analysis engine enables high- 
throughput correlative measurements of physical and molecular 
architecture in a multiwell plate format over several hours. 
Figure 3 shows phase and fluorescence images of 20 cell lines 
from the OpenCell library (32) expressing a unique endogenously 
tagged protein and a CAAX-mScarlet reporter of the plasma 
membrane. Volumetric imaging of fluorescently tagged proteins 
(Fig. 3—Supplementary Movie 1 and Fig. 3—Supplementary 
Movie 2) spanning multiple organelles (nuclei, nucleoli, Golgi, 
ER, endosomes, lysosomes, cytoplasm, stress granules) illustrates 
the ability of Mantis and shrimPy to map the localization of di-
verse targets with single-cell resolution.

Live-cell phenotyping typically requires segmentation of nuclei 
and cytoplasm in order to parse the heterogeneity of cellular 
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Fig. 2. Automation for high-throughput data acquisition and image processing. a) The shrimPy acquisition engine synchronizes data collection from the 
two arms of the microscope, acquiring images over time and positions, and is responsible for autofocus and autoexposure. Raw label-free and light-sheet 
PTCZYX datasets (P: position; T: time; C: channel; Z, Y, and X: three spatial dimensions) are converted to Zarr format for input to the shrimPy analysis 
engine. Light-sheet data are deconvolved and deskewed, label-free data undergo phase and birefringence reconstruction, and cellular landmarks are 
predicted using virtual staining of phase images. The processing of the data is accelerated by a high-performance computing (HPC) cluster. Metadata is 
generated and traced through each step of the pipeline. Data originating from the two arms of the microscope are registered to generate correlative 
multimodal datasets. b) Deskewing of light-sheet fluorescence volumes. Top left: an oblique light sheet illuminates the sample and defines the raw 
fluorescence sampling coordinates; after deskewing, we show data in Cartesian coordinates aligned with the objective optical axis. Middle and right: raw 
and deskewed 3D maximum intensity projections of Argolight sphere target. Bottom: raw and deskewed slices through a representative bead 
point-spread function. c) Reconstruction of label-free volumes. Top: maximum intensity projections of phase and retardance reconstructions of the 
Argolight sphere target. Bottom: quantitative phase reconstructions of 100, 250, and 350 nm high glass features; a linear relationship between feature 
height and reconstructed phase is seen. d) Registration of label-free and fluorescence volumes. Data from different modalities can be registered in 3D by 
incorporating fiducial markers visible in all channels, by virtual staining of structures also visible in the fluorescence channels, or by applying filtering 
operations (e.g. Sobel filter) to both datasets to maximize their mutual information. e) Axial stabilization of the label-free and light-sheet volumes. The 
light-sheet arm is stabilized by a hardware autofocus feedback loop. The label-free arm is stabilized computationally postacquisition by subtracting the 
focus drift estimated from all positions at a given time point (see Materials and methods).
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responses to perturbations. We leverage virtual staining (23, 33) to 
enable image-based phenotyping with single-cell resolution 
(Fig. 4). Recently, generalist models for segmenting nuclei (34–36) 
and membrane (36, 37) of diverse cell types have been developed. 
They perform well for fluorescence images but require substantial 
human annotation to adapt to label-free datasets (38). Optimizing 
these models to segment label-free images would require onerous 
human annotation effort, especially for 3D segmentation. Virtual 
staining bypasses the need for human annotations, instead using 
molecular labels for annotation. We leveraged our recently pub-
lished robust virtual staining model VSCyto3D (23), and CellPose 
(36) for single-cell segmentation (see Virtual staining and segmenta-
tion section).

VSCyto3D model led to reliable prediction of membrane and 
nuclei as illustrated in Figs. 4a and 4—Supplementary Movie 1. 
Note that the VSCyto3D model was trained on deconvolved wide-
field HEK293T volumes, and generalized to HEK293T volumes ac-
quired with the label-free arm of the Mantis microscope. The 

model required fine-tuning with 100 FOVs to generalize to A549 
data shown in Fig. 1. In some cell lines, a fraction of cells had 
lost their fluorescent membrane marker. Experimental and virtu-
ally stained images of one such field of view (FOV) are shown in 
Fig. 4b. The virtual staining model, which learns correlations be-
tween the two imaging modalities, rescued the missing label. By 
the same argument, virtual staining models cannot learn uncor-
related noise. Therefore, virtually stained fluorescence images 
are intrinsically denoised. Thus, virtual staining relaxes the ex-
perimental constraints on cell-line engineering and live-cell 
imaging.

Segmentation of virtually stained nuclei and membranes is 
shown in Fig. 4c and d for five cell lines in which proteins with di-
verse localizations are labeled: GOLGA2 (localized to Golgi), NPM1 
(localized to nucleoli), SEC61B (localized to ER), POLR1A (RNA 
Polymerase, localized to nucleoli), and RAB11A (localized to recyc-
ling endosomes). To confirm the accuracy of segmentation of vir-
tually stained nuclei and membrane, we imaged the HIST2H2BE 

PCNA HIST2H2BE LMNANPM1 POLR1A

G3BP1HSP90ABP1 MAP1LC3B TOMM70AMAP4

KRAS RAC1 RTN4 SEC61B EEA1

LAMP1 DCP1B RAB11A GPR107GOLGA2

10 µm

Fig. 3. High-throughput imaging using the Mantis microscope. Images of 20 OpenCell targets with overlaid phase (grayscale), CAAX-mScarlet labeled 
membrane (magenta), and split-mNeonGreen2 tagged molecular marker (green) channels. Fluorescent channels are shown as a maximum intensity 
projection over a 1.1-μm z-section of the sample.

6 | PNAS Nexus, 2024, Vol. 3, No. 9

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae323#supplementary-data


cell line expressing fluorescently labeled histone and plasma 

membrane markers. As shown in Fig. 4—Supplementary S1, the 

segmentations obtained from the experimental label and virtual 

staining show high correspondence as measured by common 

metrics used to evaluate instance segmentation (see Virtual stain-

ing and segmentation section).
The modular pipeline consisting of reconstruction, virtual 

staining, and segmentation, described above enables the analysis 

of intracellular dynamics across multiple cell lines and perturba-

tions with single-cell resolution.

Analysis of viral infection dynamics
The speed and gentleness of the Mantis microscope enable mo-
lecular and morphological profiling of cells over long time periods, 
even when subjected to perturbations that induce cell stress. To 
assess this capability, we imaged cells from the OpenCell library 
that were infected with the common cold human coronavirus 
hCoV-OC43 (OC43). We chose OC43 as a model virus due to its dis-
ease relevance and experimental ease of use (39–41), and we chose 
to image from 20 to 50 h postinfection (hpi) because cells undergo 
large molecular changes during those times as measured by 
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membranenucleus
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d NPM1

GOLGA2

POLR1A RAB11A

Fig. 4. Virtual staining and instance segmentation of nuclei and membrane. a) Comparison of membrane stained with CAAX-mScarlet (magenta, 
bottom-left half of FOVs) and virtually stained membrane (orange, top-right half of FOVs) in SEC61B and GOLGA2 cell lines (green) indicates reliable 
virtual staining. Virtually stained nuclei (blue) provide an additional channel of information. b) Virtual staining rescues missing membrane labels. 
Bounding boxes show cells in the GOLGA2 line that do not express the CAAX-mScarlet label, which is rescued by virtual staining of the membrane. c) 
Segmentation of virtually stained nuclei and membrane facilitates single-cell analysis of the localization and expression of fluorescently tagged proteins. 
Contours of the nuclear and membrane masks are shown in cyan and yellow, respectively. d) Examples of virtual staining-based segmentation of nuclei 
and membrane of the cell lines in the OpenCell library.
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comprehensive organellar immunoprecipitation-mass spectrom-
etry (42). In-depth follow-up of these molecular changes, how-
ever, remains challenging due to the phototoxicity induced by 
live-cell imaging using confocal microscopy.

Mantis enables long-term imaging with minimal phototoxic-
ity, and thus allows close monitoring of protein dynamics in re-
sponse to infection and the identification of image-based viral 
infection sensors. Given that coronaviruses use the ER to repli-
cate, which leads to eventual activation of the unfolded protein 
response pathway (40, 41), we monitored protein folding chaper-
ons. We discovered a substantial and consistent change in the lo-
calization of the protein folding chaperon HSP90AB1 during 
infection. We virtually stained cell membrane and nuclei, and 
segmented cells using CellPose (see Fig. 4 and Materials and 
methods). This approach allows image-based profiling of changes 
in protein localization, cell morphology, and cell density with 
single-cell resolution.

Figure 5 shows the impact of OC43 infection on the cell morph-
ology and the localization of HSP90AB1. The phase images show 
that infected HSP90AB1 cells are more condensed and have sharp-
er variations in dry mass (Fig. 5a, 40 hpi), relative to the mock con-
dition. This observation is further supported by a decrease in 
cell number and an increase in the phase interquartile range 
(IQR), which demonstrates condensation of cell mass that is 
typically found in distressed or dying cells (Figs. 5b and 5—
Supplementary Movie 1). In the fluorescence channel, we ob-
served increased protein condensation and formation of puncta, 
which we quantified by measuring the skewness of the fluores-
cence intensity distribution in the cell cytoplasm and the number 
of puncta per cell (see Calculation of phenotypic features section). 
To our knowledge, condensation of HSP90AB1 in infected cells has 
not been directly observed before. The phase IQR and fluorescence 
skewness measurements are positively correlated and allow clu-
string of infected and uninfected cells through straightforward 
Gaussian mixture model using single-cell measurements from 
a short time window (Fig. 5—Supplementary S1). The clustering 
algorithm enables classification of infection state of single cells 
from the phase IQR and fluorescence skewness features across 
the infection time course (Figs. 5c and 5—Supplementary Movie 
2). These data indicate that quantitative phase images and their 
features may enable label-free readout of the cell’s state of infec-
tion, enabling high-throughput quantitative analysis of how or-
ganelles respond to infection.

In addition to the gradual increase in fluorescence skewness 
and phase IQR, multiple fast changes are observed (Fig. 5b). 
These changes may be due to shifts in the infection dynamics or 
measurement uncertainty. The normalized phase IQR of the unin-
fected subpopulation in the multiplicity of infection (MOI) 1 con-
dition (Fig. 5c) is slightly different from the normalized phase 
IQR of the uninfected cells. This change may represent stress re-
sponse in uninfected cells or experimental batch effects across 
two wells. Disentangling biological heterogeneity from measure-
ment heterogeneity is an important area of future investigation.

Discussion
We described an automated imaging and analysis platform for 4D 
high-throughput imaging of molecular components and physical 
properties of cells and organelles. The Mantis imaging system 
consists of wavelength-multiplexed oblique light-sheet fluores-
cence microscopy and remote-refocus quantitative label-free mi-
croscopy. The shrimPy acquisition and analysis engine enables 
high-throughput imaging and profiling of intracellular dynamics. 

We demonstrate the spatial resolution and contrast with test tar-
gets, the temporal resolution with dynamic imaging of A549 cells, 
and the high-throughput imaging capabilities by following 20 cell 
lines from the OpenCell library over time. Correlative data ob-
tained with Mantis and shrimPy can be leveraged for simultan-
eous virtual staining of nuclei and membrane. Virtual staining 
and instance segmentation of nuclei and membrane enabled 
single-cell analysis and relaxed the experimental constraints on 
cell line engineering and live-cell imaging. This platform enabled 
long-term imaging and profiling of changes in protein localization 
and cell morphology under stress induced by viral infection. 
Instrument design specifications as well as software for automa-
tion, image reconstruction, and virtual staining are shared via 
open-source repositories. Next, we discuss how we elected to bal-
ance the design tradeoffs, promising directions for subsequent 
technological developments, and key applications of the platform.

We currently acquire fluorescence channels sequentially. The 
oblique plane illumination geometry maps the oblique slice 
through the sample volume to a short strip of the camera sensor. 
By adding an image splitter before the camera that maps fluores-
cence channels to separate areas of the sensor, two or three 
emission channels can be imaged in parallel, improving the 
throughput and temporal resolution. Furthermore, the light-sheet 
and label-free arms acquire data at the same volumetric rate at 
present. However, the photon budget in the label-free arm is suf-
ficient to operate it 2–5× faster than the light-sheet arm with few 
enhancements in automation. By using fast-switching liquid crys-
tal devices (43) to modulate the polarization state of illumination 
light and improved synchronization sequences, we can drive the 
components of the label-free arm faster than the light-sheet 
arm. Lastly, we opted for a silicone immersion objective to minim-
ize spherical aberrations when imaging deep into biological speci-
mens. We can integrate recent design improvements (44) in 
remote-refocus microscopy for aberration-free imaging with sili-
con or air immersion with small adjustments to the light path.

The tight integration between acquisition and image analysis 
creates opportunities for improving the quality and utility of im-
age data with computational microscopy, without increasing the 
complexity of the hardware. We have reported online alignment 
of two objectives in the detection path of the light-sheet arm 
that was essential for keeping the acquisition plane aligned with 
the illuminated plane of the sample. We can extend the approach 
to online label-free selection of fields of view with sufficient cell 
density and long-term tracking of collective cell dynamics.

Although high-throughput analysis is essential for iterative 
pursuit of biological questions, it remains significantly more chal-
lenging than high-throughput imaging. We have made algorith-
mic and engineering design choices in an attempt to make 
high-throughput analysis as tractable as high-throughput im-
aging. We opted for the OME-Zarr format throughout our image 
reconstruction and analysis pipeline to enable parallel processing 
of the data and efficient visualization with N-dimensional visual-
ization tools, such as napari (45). All the steps in our analysis 
workflow are written such that they can be scaled up on a HPC 
cluster. We developed focus estimation algorithms, PSF calibra-
tion algorithms, 3D registration algorithms, and 3D deconvolution 
algorithms. We integrated 3D virtual staining and 2D instance 
segmentation of cells as the first step in single-cell analysis. The 
3D segmentation and tracking of biological structures remain an 
exciting open opportunity. We reported long-term imaging, 
single-cell segmentation, and image-based profiling of infected 
cells. These image-based phenotypes can now be leveraged to 
identify label-free markers of infection.
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The state-of-the-art imaging and analysis throughput of the 
Mantis platform creates new opportunities for systematic map-
ping and analysis of how diseases reprogram cells. For example, 
we are pursuing systematic mapping of how viral infections or 
genetic perturbations reprogram organelles by leveraging a subset 

of fluorescently tagged organelles from the OpenCell library. 
These dynamic measurements, parsed with suitable machine 
learning models that leverage temporal dynamics, can clarify 
mechanisms of disease and lead to informative markers for 
drug screens.
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Fig. 5. Single-cell phenotyping of OC43 infection. a) Infection state prediction in images of phase (bottom row) and fluorescence (top row, maximum intensity 
projection over 4.1 µm z-section) in HSP90AB1 control cells (left, mock infection) and cells infected with OC43 β-coronavirus (right, MOI 1) at 24 and 40 hpi. Cell 
classified as uninfected and infected are marked with blue and red nuclear boundaries, respectively. b) Measurements of phenotypic markers showing changes 
over the time course of infection. Membrane and nuclei of single cells were segmented after virtual staining as in Fig. 4. The membrane mask was used to 
calculate the number of cells, cell confluency, cell area (in µm2), the IQR in phase (in milliradians), and the skewness in fluorescence intensity. We further 
segmented and counted the number of large HSP90AB1 aggregates from fluorescence images (see Materials and methods) and show the average number of 
puncta per cell over time. c) Classification of infected and uninfected population of cells in mock and infected conditions using Gaussian mixture model. 
Uninfected cell population is covered by the blue Gaussian ellipse and marked by “+” marker and infected population by orange ellipse and “o” markers.
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The throughput of the Mantis platform can be adapted for sev-
eral other applications. For example, we and others have shown 
that label-free imaging of antibody-stained (4) and hematoxylin 
and eosin (H&E) –stained (4, 14) tissue sections can improve the re-
liability and speed of imaging the tissue architecture. The high- 
speed correlative imaging capabilities of Mantis platform can ac-
celerate digital pathology studies. Another exciting application is 
correlative analysis of the dynamics of molecules, organelles, and 
cells with subsecond temporal resolution. Correlative imaging of 
signaling dynamics, cell division, and cell differentiation is valu-
able for addressing open questions in developmental and cell biol-
ogy. This adaptation can enable study of outstanding questions in 
how the biological function at higher spatial scales emerges from 
interactions at finer scales.

Conclusion
We report measurements of molecular dynamics in the context of 
biomolecular density and orientation using Mantis, a 4D correla-
tive imaging system that integrates label-free and light-sheet mi-
croscopy. In combination with an integrated acquisition and 
analysis engine (shrimPy), Mantis enables scalable analysis of im-
age data with subcellular resolution. The Mantis platform enables 
longitudinal 3D imaging of multiple cell lines expressing multiple 
molecular markers in the context of the cellular morphology. We 
demonstrate the ability to track 3D dynamics of organelles in live 
cells with high temporal resolution. We also demonstrate long- 
term imaging and quantitative profiling of changes in the protein 
localization and cell morphology of infected cells. We anticipate 
that our approach will enable systematic mapping and analysis 
of biological processes that govern the health and disease states 
of cells in diverse biological systems.

Materials and methods
Microscope layout
The Mantis microscope is built around a Nikon Ti2 microscope 
body. Label-free imaging is performed at 450 nm, and longer 
wavelengths are used for fluorescence excitation and detection. 
The two detection arms of the microscope are separated using 
a dichroic beamsplitter positioned under the objective. The light- 
sheet remote-refocus arm is built following the design in Sapoznik 
et al. (18). The remote-refocus arm for label-free microscopy was 
designed by combining concepts described in Guo et al. (4) and 
Botcherby et al. (20). A detailed optical schematic is provided 
in Fig. 1—Supplementary S1, and the mechanical layout of 
the optical paths is given in Fig. 1—Supplementary S2 and 
Fig. 2—Supplementary S3. For birefringence imaging, the sample 
was illuminated with circularly polarized light using a universal 
polarizer (46) positioned near the back-focal plane of the micro-
scope condenser; when only phase imaging was performed, the 
sample was illuminated with unpolarized light. For inspection of 
the sample before imaging, we used the widefield epi-illumination 
and side detection port built into the microscope body. The pri-
mary (O1) objective was kept at a fixed position, and the desired 
focal plane was selected by moving the sample axially using a pie-
zo plate on the microscope stage or using custom spacers and 
sample holders when larger translation was needed.

Microscope automation
Data acquisition is accomplished using custom Python software (see 
Fig. 2a) (22). The shrimPy acquisition engine coordinated parallel 

acquisition from the two remote-refocus arms of the microscope, 
collecting data over time and positions, and performed smart mi-
croscopy tasks such as autofocus and autoexposure. Each of the 
remote-refocus arms of the microscope was controlled by an inde-
pendent instance of Micro-Manager (27, 28) and Pycro-Manager 
(29), collecting data over channels and z-slices. The two parallel ac-
quisitions were synchronized using trigger pulses generated by a 
National Instruments DAQ card (NI cDAQ-9178). The exposure 
pulses of each camera were routed to a dedicated TriggerScope 
(AVR Optics) which changed the state of hardware associated with 
that acquisition (see Fig. 2—Supplementary S1).

Sample preparation and imaging
The Argolight target used in this study was model Argo-SIM. The 
quantitative phase target was purchased from Benchmark 
Technologies and immersed in water for imaging. To measure the 
microscope PSF 0.1 μm FluoSpheres beads (Thermo Fisher 
Scientific, F8803) embedded in 0.5% low melting point agarose 
(Sigma-Aldrich, A2576) dissolved in 50% (w/w) glycerol in water 
(47) were excited at 488 nm and imaged using a 525/45-nm bandpass 
filter.

CRISPR/Cas9 was used to generate endogenously tagged A549 
TOMM20-GFP cell line (Fig. 1). Briefly, wild-type A549 cells (ATCC 
CCL-185) were electroporated with a mixture of Streptococcus pyo-
genes Cas9 protein (Macrolab), sgRNA targeting the protein of inter-
est (PMID: 35271311 (32), GAGCTTGGCTGAAGATGATG, IDT) and a 
double-stranded homology-directed repair donor (42) using Amaxa 
96-well shuttle nucleofector (Lonza) according to the manufac-
turer’s protocol. Cells were allowed to recover in media with 1 µM 
nedisertib (M3814; Selleckchem # S8586) for 2 days. 
Electroporated cells were then expanded and sorted using SONY 
FACS to sort GFP-positive cells.

HEK293T cell lines from the OpenCell (32) library were labeled 
with H2B-mIFP and CAAX-mScarlet using standard lentivirus 
transduction protocols.

Engineered HEK293T and A549 cells were cultured in 37 °C and 
5% CO2 and maintained between 20 and 90% confluency. Cells 
were routinely grown in DMEM with GlutaMAX (Thermo Fisher 
Scientific, 10566024), 10% fetal bovine serum (Omega Scientific, 
FB-11), and 100 U/mL penicillin/streptomycin (Thermo Fisher 
Scientific, 15140163). For imaging, HEK293T cells were seeded on 
96-well glass-bottom plates (Greiner Bio One, 655891) coated 
with 50 µg/mL fibronectin (Corning, 356008, following manufac-
turer’s protocol); A549 cells were seeded on 12-well glass-bottom 
plates (Cellvis, P12-1.5H-N).

Prior to imaging, the microscope PSF was benchmarked as de-
scribed in Fig. 1—Supplementary Note 1, and the O1 correction 
collar was adjusted to minimize the PSF full width at half- 
maximum. Optionally, we collected datasets of immobilized 
beads and fluorescein solution for fluorescence deconvolution 
and flatfield correction.

Cells were imaged in DMEM media without phenol red (Thermo 
Fisher Scientific, 21063029) supplemented with 10% fetal bovine 
serum, 5 mM L-glutamine (Thermo Fisher Scientific, 25-030-081), 
and 100 U/mL penicillin/streptomycin. Cells were maintained at 
37 °C and 5% CO2 using an OkoLab stage-top environmental 
chamber (H301-K-FRAME). Prior to imaging, the cell culture media 
was supplemented with ProLong Live antifade reagent (Thermo 
Fisher Scientific, P36975) at 1:66 ratio. A549 cells were stained 
with 100 nM LysoTracker Deep Red (Thermo Fisher Scientific, 
L12492). We used polydimethylsiloxane oil with 12500 cSt viscos-
ity (MicroLubrol) as immersion medium for the primary (O1) 
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objective as it provided better coating of the sample chambers. 
A549 cells were imaged using elliptically polarized light with swing 
of 0.05 waves as described in (4); HEK293T cells were imaged using 
unpolarized illumination to reconstruct the quantitative phase.

Virus propagation and infection
OC43 (ATCC, VR-1558) was propagated in Huh7.5.1 cells at 34 °C. 
To determine viral titers, 800,000 BHK-T7 cells per well were 
seeded in 6-well plates for 24 h at 34 °C. Virus stocks were then 
10-fold serially diluted and applied to cells for 2 h at 34 °C. 
Media was then replaced with DMEM containing 1.2% Avicel 
RC-591. Infected cells were incubated for 6 days at 34 °C, then 
fixed with 4% formaldehyde, and stained with crystal violet for 
plaque counting. All experiments were performed in a biosafety 
level 2 laboratory. Aliquots of OC43 stored in −80 °C were used 
to infect HEK293T cells with a target MOI of 1. One day prior to in-
fection, 8,000 HEK293T cells were seeded on 96-well glass-bottom 
plates (Greiner Bio One, 655891) coated with 50 µg/mL fibronectin 
(Corning, 356008, following manufacturer’s protocol) in DMEM 
with GlutaMAX (Thermo Fisher Scientific, 10566024), 10% fetal bo-
vine serum (Omega Scientific, FB-11), and 100 U/mL penicillin/ 
streptomycin (Thermo Fisher Scientific, 15140163). On the day of 
infection, media was replenished with the same growth media 
with or without OC43 (viruses were thawed on ice). For MOI calcu-
lation, cells were assumed to have tripled. The final volume in a 
96-well plate well was 100 µL.

Image processing
Raw fluorescence data were deskewed by applying an affine trans-
formation with trilinear interpolation resampling (Fig. 2—
Supplementary S3). The affine transformation was parameterized 
by two quantities: the ratio of the object-space pixel width to the 
object-space scan step and the light-sheet tilt angle. These param-
eters were estimated in three different ways: (i) for Fig. 1 and the 
beads in Fig. 2b, we used a bead sample imaged before and after 
known stage motions along the X and Z axes, (ii) for the Argolight 
target in Fig. 2b, we chose the affine transformation that restored 
the spherical shape of the target (Fig. 2—Supplementary S6), and 
(iii) for the remaining figures, we used the transformation esti-
mated from the Argolight target followed by an axial rescaling to 
account for the mismatched RI = 1.52 index of refraction. Imaging 
into an index-mismatched target like the Argolight sphere leads 
to depth-dependent axial scaling (48), so we empirically measured 
our axial rescaling factor to be ∼1.3. Following deskewing, every 
three axial slices were averaged, improving SNR without losing 
resolution (Fig. 2—Supplementary S3).

Optionally, we applied a bead-based deconvolution to our 
fluorescence data to improve resolution and contrast (Fig. 2—
Supplementary S5). As a calibration step, we acquired a volume of 
beads, found bead patches, and averaged these patches into a single 
PSF. We then used the averaged PSF to apply a Tikhonov-regularized 
least-squares deconvolution to our data before deskewing. We show 
deconvolved and deskewed results in Fig. 1, Fig. 1—Supplementary 
Movie 1, Fig. 1—Supplementary Movie 2, Fig. 1—Supplementary 
Movie 3, and Fig. 2—Supplementary S5; elsewhere, we show results 
without deconvolution. We find our simple bead-averaging method 
for estimated PSFs performs well on the datasets we tested, but we 
expect performance to degrade in very dim and sparse samples 
where inverse modeling techniques are more suitable (49).

Label-free data were reconstructed using recOrder (31). We 
generated a physics-informed model of the label-free image for-
mation process, providing linear mappings between object 

properties (phase, retardance, and orientation) and the measured 
image intensities (4). Retardance and orientation were estimated 
by applying a pseudoinverse algorithm to five intensity measure-
ments acquired under different polarized illuminations. For A549 
data shown in Fig. 1, retardance and orientation were further 
processed using a 3 × 3 × 5 median filter. Phase was estimated us-
ing a Tikhonov-regularized least-squares inverse algorithm ap-
plied to brightfield volumes.

Label-free and deskewed fluorescence volumes were registered by 
choosing the 3D similarity transformation (translation, rotation, and 
scaling) that maximized the mutual information between virtually 
stained nuclei or membrane and the corresponding fluorescent target 
using the Advanced Normalization Tools (ANTS) library (50). The 
optimization algorithm was initialized with a coarse manually chosen 
transformation (Fig. 2—Supplementary S9). The resulting transform-
ation was then applied to all label-free volumes in the dataset.

We used a stabilization procedure to eliminate undesired mo-
tion in the registered image volumes over time. Label-free vol-
umes were stabilized axially by finding in-focus slices by 
maximizing the transverse mid-band power for each time point 
and position, averaging over positions, then applying the averaged 
shift to each volume (Fig. 2e).

Virtual staining and segmentation
The virtual staining of nuclei and cell membrane from phase was 
done using the VSCyto3D model (23, 33) fine-tuned using the man-
tis A549 cells. The fine-tuning dataset was composed of 100 FOVs 
of (9, 147, and 124 µm) ZYX volumes or (40,985,835) pixels. The 
model checkpoint with the lowest validation loss value was 
used for prediction and evaluation. Phase images were normal-
ized to zero median and unit IQR prior to inference. The volumes 
were predicted in five z-slice sliding windows, and then blended by 
computing the mean of all windows. We share the models we 
have used for virtual staining and instance segmentation of nuclei 
and membrane via our GitHub repository, VisCy (33).

The nuclei and membranes of HEK293T cells were segmented 
using CellPose, a generalist algorithm for cellular segmentation. 
The 2D segmentation of the membrane was done using the 
built-in “cyto2” CellPose model without modifications by providing 
both the membrane and the nucleus as input channels. The 2D 
segmentation of the nucleus was done by extending the built-in 
CellPose “nuclei” model. Our model, “CP_20220902_NuclFL,” uses 
additional manual annotations on fluorescence images of 
HEK293T and A549 cells with Hoecht stain (51).

We confirmed the performance of virtual staining models for the 
segmentation tasks by comparing the instance segmentations of 
the experimentally labeled nuclei and cell membrane and the virtu-
ally stained nuclei and cell membrane (Fig. 4—Supplementary S1). 
We used a cell line labeled with HIST2H2BE-mNeonGreen and 
CAAX-mScarlet. We computed DICE coefficient per FOV to assess 
the degree of overlap between segmented nuclei and segmented 
cell membrane. We also computed average precision of detecting 
instances of nuclei or cells for each FOV. In some FOVs, the average 
precision was found to be low, which turned out to be the FOVs in 
which some cells were missing the HIST2H2BE-mNeonGreen or 
CAAX-mScarlet label. Subsequently, these models were applied to 
segment virtually stained nuclei and membrane and perform 
single-cell analysis (Figs. 4 and 5).

Calculation of phenotypic features
Phenotypic features shown in Fig. 5 were calculated based on 
the cell membrane mask and image quantities in the phase or 
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fluorescence channels. The number of cells was calculated as the 
total count of membrane masks in the nine FOVs acquired for 
each condition. The confluency was calculated as the fraction of 
image size covered by membrane masks. Cell area was calculated 
on a per-cell basis using the membrane mask and averaged across 
all cells. Fluorescence skewness and phase IQR were similarly cal-
culated on a per-cell basis from the respective channels and aver-
aged across all cells. Puncta in the fluorescence images were 
detected by intensity thresholding, erosion of the binary mask to 
exclude very small regions, and applying a determinant of 
Hessian blob detector using scikit-image.

Infection state classification
Cell infection state, as shown in Fig. 5, was predicted using a 
Gaussian mixture model. Single-cell HSP90AB1 skew and phase 
IQR were computed from 4.1 μm maximum intensity projections 
of the HSP90AB channel and a single slice from phase volumes. 
Single-cell information was achieved by combining the cell seg-
mentation information for each FOV of imaging, and each condi-
tion of imaging.

The Gaussian mixture model was trained on normalized 
HSP90AB1 skew and normalized phase IQR data from the MOI 1 
condition between 41.5 and 43.5 hpi. Gaussian fitting on infected 
and uninfected cell populations in mock and MOI 1 conditions 
was performed at the training window (Fig. S5). The infection class 
was predicted for every cell on images from the training window 
to visually validate the results.

The model was applied to time indices 24 and 40 hpi (Fig. 5) on 
mock and MOI 1 conditions. Gaussian fitting of the infected and 
uninfected populations was also performed on both conditions 
at both time points. Single cells were labeled as infected or unin-
fected based on the output of the Gaussian mixture model.

Tracking
The tracking of lysosomes, shown in Fig. 1, was performed using 
TrackMate 7 in Fiji (52). We used a Laplacian of Gaussians spot de-
tector and the Simple LAP tracker to generate lysosome 
trajectories.
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