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Abstract
Purpose Alpha-melanocyte stimulating hormone (α-MSH) is known to have anti-inflammatory effects. However, the anti-
inflammatory properties of α-MSH on normal bronchial epithelial cells are largely unknown, especially in the context of 
in vitro sarcoidosis models.
Methods We evaluated the anti-inflammatory effects of α-MSH on two different in vitro sarcoidosis models (lung-on-
membrane model; LOMM and three-dimensional biochip pulmonary sarcoidosis model; 3D-BSGM) generated from NBECs 
and an in vivo sarcoidosis mouse model.
Results Treatment with α-MSH decreased inflammatory cytokine levels and downregulated type I interferon pathway genes 
and related proteins in LOMM and 3D-BSGM models. Treatment with α-MSH also significantly decreased macrophages 
and cytotoxic T-cells counts in a sarcoidosis mice model.
Conclusion Our results confirm the direct role of type I IFNs in the pathogenesis of sarcoid lung granulomas and highlight 
α-MSH as a potential novel therapeutic agent for treating pulmonary sarcoidosis.
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Introduction

Sarcoidosis is an inflammatory systemic and granulomatous 
disorder commonly affecting the lungs [1]. The incidence 
rate of sarcoidosis ranges from 7.6 to 8.8 per 100,000 per 

Mehdi Mirsaeidi used to work at Miami VA Hospital, Miami, FL, 
when conducting the experiments.

 * Mehdi Mirsaeidi 
 m.mirsaeidi@ufl.edu

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00408-022-00546-x&domain=pdf


464 Lung (2022) 200:463–472

1 3

year in the United States (U.S.) [2], with a mortality rate 
between 2.8 and 7% [1, 3]. Corticosteroids such as pred-
nisone remain the first choice therapy against symptomatic 
pulmonary sarcoidosis [4]. However, high doses of corticos-
teroids used for several months have deleterious side effects 
[5], so it is critical to evaluate other anti-inflammatory 
therapies.

Alpha-melanocyte-stimulating hormone (α-MSH) is an 
endogenous neuropeptide expressed in the pituitary gland 
and responsible for stimulating melanin production in hair 
and skin invertebrates. α-MSH has anti-inflammatory prop-
erties [6]. We recently developed an in vitro granuloma 
model by exposing peripheral blood mononuclear cells 
(PBMCs) from patients with sarcoidosis to microparticles 
generated from the Mycobacterium abscessus (MAB) cell 
wall [7]. The anti-inflammatory role of α-MSH on human 
bronchial epithelial cells (in vitro) or mice lung (in vivo) 
models has not been tested. We aimed to explore the anti-
inflammatory effects of α-MSH treatment on in vitro and 
in vivo models. For in vitro studies, we developed a lung-
on-membrane model (LOMM) using normal bronchial epi-
thelial cells (NBECs) and a three-dimensional biochip for 
the pulmonary sarcoidosis model (3D-BSGM).

Materials and Methods

MAB Microparticle Production

MAB (isolate # CCUG 47942, gift from Dr. Malin Ridell, 
University of Gothenburg, Sweden) was used to isolate the 
cell wall microparticles as described previously by our team 
[8]. We used 100 μL of MAB microparticles diluted to a 
concentration equal to a multiplicity of infection (whole bac-
terium) of 10:1 to treat the developed lung models (bronchial 
epithelial cells side). Supernatant and cells were harvested 
48 h after exposure for different analysis fields[8].

Lung‑on‑Membrane Model (LOMM) Developed 
from NBECs

Our LOMM contains NBECs collected from 5 healthy 
donors (Supplementary Table 1). We generated the lung 
models as we described previously in [8] by culturing 
five ×  105 cells NBECs of each donor (5 donors × 3 repli-
cates for each donor = 15 experiments) on the top side of 
transwell® polyester membrane cell culture inserts and 
human endothelial cells (2 ×  105 cells, Human Lung Micro-
vascular Endothelial Cells, Lonza, Walkersville, MD) 
on the bottom side at the air–liquid interface (ALI). The 
LOMM models were split into a control (unchallenged 
group), challenged LOMM (challenged with MAB micro-
particle), and challenged LOMM + α-MSH (challenged 

with MAB microparticle and treated with 5 μM α-MSH 
(Bachem Americas, Inc, CA USA) every 24 h. In total, five 
LOMM were included in each group. In addition, one group 
received α-MSH (not challenged with MAB microparticles) 
and was another control, only for western blotting analy-
sis of type I IFN proteins (MX1, OSA1, and ISG15). The 
cell culture media of all wells were collected after 48 h for 
measurements.

Development of a Novel Three‑Dimensional Biochip 
Pulmonary Sarcoidosis Model (3D‑BSGM)

PBMCs were isolated from blood samples of 5 healthy 
donors, as we described before [7]. In the meantime, we also 
developed ALI from NBECs and human endothelial cells 
as described in the LOMM development above [7]. A little 
scratch was made on the ALI of the LOMM, and then 50 μL 
of the developed granulomas from PBMCs (2 ×  106 cells) 
were added to ALI on the microchip to develop 3D-BSGM 
as described elsewhere [9]. We designed 3 groups for this 
experiment: control (LOMM + unchallenged PBMCs), 
3D-BSGM (LOMM + challenged PBMCs + saline as treat-
ment), and 3D-BSGM + α-MSH (LOMM + challenged 
PBMCs + α-MSH as treatment). We used NBECs collected 
from 5 donors to develop LOMM and 3D-BSGM (Supple-
mentary Table 1) with two replicates for each donor (2 repli-
cates x NBECs from 5 donors × 3 groups = 30 experiments).

Sarcoidosis Mouse Model

As previously described, we developed a mice granuloma 
model using MAB microparticles [10]. We grouped mice 
(C57Bl/6 male mice, eight weeks old, The Jackson Labora-
tory, ME, USA) into three different groups: control (chal-
lenged with saline), granuloma group (challenged with 
MAB microparticles and treated with saline), and granu-
loma + α-MSH group (challenged with MAB microparticles 
and treated with α-MSH; daily subcutaneously injections of 
10 µg). Each group had four replicates (in total, 12 mice). 
MAB microparticles were administered intratracheally to 
the experimental group. The first dose was 5 ×  108 CFU in 
50 µL. The three subsequent doses were 2 ×  108 CFU in 
20 µL. The control group received only 20 µL of saline. The 
granuloma + α-MSH group also received α-MSH (10 µg) 
subcutaneously daily as treatment, while the granuloma and 
control group received saline. Mice were euthanized on day 
21. We collected their left lungs for pathology after remov-
ing blood. We used H&E staining to determine inflamma-
tory pathology [11]. For IHC, we used primary antibodies 
(CD68, PD-1, PD-L1, CD30) and secondary antibodies, all 
purchased from Cell Signaling Technology, Beverly, MA, 
USA [11]. ABC Elite kit (Cat# PK-6200 Vector Labora-
tories, Inc. Burlingame, CA, USA) was used to detect 
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immunoreaction. We used the CD30 marker to measure 
lymphocyte activation [12], CD68 to quantify macrophages 
[13], and PD1 and PD-L1 markers to evaluate granuloma 
formation [14]. A pathologist evaluated three fields (100X 
power magnification) to score lung inflammation, as we 
reported before [11].

ELISA for Measuring Cytokine Expression

The levels of cytokines (IL-1RA, IL-10, CCL2, IFNα, IFNγ, 
GM-CSF, and TNFα; purchased from Abcam, Cambridge, 
USA) were measured and compared in media collected from 
the LOMM models. For mature IL-1β, we used the IL-1 beta 
Human ELISA Kit (Thermo Fisher Scientific, USA, Cat# 
BMS224-2). We also measure the cytokine level in media 
collected from the 3D-BSGM models per the manufacturers' 
instructions.

RNAseq and Pathway Analysis

Total RNA was extracted from the collected cells from 
3D-BSGM models (treated with α-MSH and not treated with 
α-MSH) separately, as we described previously in [7, 8]. 
Almost 40 million single-end 75 base reads per sample were 
used for differential expression analysis using EdgeR soft-
ware [15] with a false discovery rate p-value (FDR) ≤ 0.05. 
Enrichr online [16] and DAVID bioinformatics resource [17] 
were used for pathway enrichment analyses and to obtain the 
enriched biological processes (B.P.s), respectively. STRING 
version 11 [18] also was used for protein–protein interac-
tion (PPI) network analysis of the dysregulated genes in the 
3D-BSGM Model treated with α-MSH.

Western Blotting

Cells were collected from LOMM and 3D-BSGM models 
separately and performed western blotting as described 
before [7, 8]. For LOMM, the PVDF membrane was probed 
with primary antibodies against 2′-5′-Oligoadenylate Syn-
thetase 1 (OAS1) Rabbit mAb, Interferon-induced GTP-
binding protein Mx1 (MX1) Rabbit mAb, and Interferon-
stimulated gene 15 (ISG15) Rabbit mAb. For 3D-BSGM, 
the PVDF membrane was sequentially probed with primary 
antibodies against ISG15 Rabbit mAb, IL-2 Rabbit mAb, 
IFN-α Rabbit mAb, p-NF-kB Rabbit mAb, and NF-kB Rab-
bit mAb. All antibodies were purchased from Proteintech 
Group, Inc. Rosemont, IL, USA. After adding horseradish 
peroxidase-conjugated goat anti-rabbit antibody, the second-
ary antibodies were detected using enhanced chemilumines-
cence. We used beta-actin as a control.

Flow Cytometry

For each lung sample, a single-cell suspension was pre-
pared by [19]. The cells  (106 cells  mL−1) were resuspended 
in 100 μL protein blocking solution with five μL fluores-
cent-conjugated antibodies against CD3, CD4, CD8, CD45, 
CD68, and PD-L1, Siglec F, CD11b, CD11c, CD64, MHC 
II, Ly6Clo, CD103, and CD24; all purchased for Abcam, 
Cambridge, USA. Samples were analyzed on a BD LSR 
II flow cytometer using BD FACSDiva software, and data 
analysis was performed using Flowjo software (TreeStar, 
Ashland, OR, USA). Cell populations were identified using 
a sequential gating strategy. We also measured the intracel-
lular IFNγ in lung cells using flow cytometry and intracel-
lular staining of IFNγ by Cyto-Fast™ Fix/Perm Buffer Set 
(BioLegend, USA).

We separated alveolar  macrophage (Siglec 
 F+CD11b−CD11c+CD64+) from monocytes/undifferenti-
ated macrophages  (CD11b+ MHC  II−CD64+/−Ly6Clo+) 
as described before [20]. DCs were sorted and defined as 
 CD11c+CD103+CD24+ [20]. CD45-expressed cells were 
sorted using flow cytometry [21]. CD68 (a pan-macrophage 
marker) was used to classify leukocyte subpopulations of 
mice lungs into three groups: CD68 negative  (CD68−), 
CD68 low, and CD68 high [21].

Statistical Analysis

One-way analysis of variance (ANOVA) and nonparametric 
analysis (Friedman and Dunn's multiple comparison tests) 
were used to compare the variation of different cytokine lev-
els among groups using GraphPad Prism 8 software. Data 
were corrected for multiple comparisons using Dunnett cor-
rection. Data represent the mean ± SEM of the replicates. 
Our analysis defined a P-value (two-sided) less than 0.05 as 
statistically significant.

Results

α‑MSH Has Anti‑inflammatory Effects in an In Vitro 
Human Lung‑on‑Membrane Model (LOMM)

We hypothesized that α-MSH downregulates inflamma-
tory cytokines in LOMM after challenge with MAB micro-
particles. LOMM was developed as presented in [8] using 
NBECs (Fig. S1). The MAB particle challenged LOMM 
model showed increases in all measured cytokines and sta-
tistically significant increases in GM-CSF, IL-1RA, IL-10, 
and TNFα compared to the control. There were numeric 
reductions in all measured cytokine concentrations after 
α-MSH treatment (challenged LOMM + α-MSH), with a sta-
tistically significant decrease in GM-CSF, IL-10, and TNFα 
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concentration in comparison to the challenged LOMM not 
treated with α-MSH (Fig. 1).

Anti‑inflammatory Effect of α‑MSH Through IFN 
Type I in LOMM Model

We hypothesized that α-MSH downregulates type I IFN-
induced genes and proteins in LOMM after a challenge 
with MAB microparticles. Transcriptomic analysis (Fig. 2a) 
showed a significant reduction in class I IFN pathway genes 
after treatment with α-MSH. To further test the Effect of 
α-MSH on type I IFN protein expression, we measured the 
relative expressions of RSAD2, MX1, MX2, OSA1, IFI44L, 
and ISG15 proteins as we observed a significant variation 
of type I IFN proteins encoding genes (Fig. 2b). Relative 
expressions of MX1, OSA1, and ISG15 proteins in western 

blotting were significantly decreased in the challenged 
LOMM + α-MSH group compared to the challenged LOMM 
group, as shown in Fig. 3.

α‑MSH Has Anti‑inflammatory Effects in an In Vitro 
Novel Three‑Dimensional Biochip Pulmonary 
Sarcoidosis Model (3D‑BSGM)

The 3D-BSGM Model [9] was used to test the hypoth-
esis that α-MSH reduces inflammatory cytokines in an 
integrated granuloma model with a lung biochip. Our 
previous study developed a new integrated LOMM and 
granuloma called 3D-BSGM using PMBCs exposed 
to MAB microparticles to create a human sarcoid-like 
granulomas Field [9] effectively. This study used MAB 
microparticles to develop 3D-BSGM human sarcoid-like 

Fig. 1  Shows the level of different cytokines measured from 3 dif-
ferent LOMM, including Control, Challenged LOMM, and Chal-
lenged LOMM + α-MSH. Two groups of LOMM were challenged 
with MAB microparticles (Challenged LOMM and Challenged 
LOMM + α-MSH). The challenged LOMM model received saline as 
treatment while the Challenged LOMM + α-MSH received α-MSH as 
treatment. Each LOMM was generated from the NBECs of 5 differ-

ent donors, and each donor had three replicates. The mean value of 
the replicates (n = 3) for each donor was used to generate the graphs. 
In total, five LOMM were included in each group—the mean value 
of replicates. Significant variations are highlighted for each plot. ns: 
no significant variation; *indicates significant variations (*: < 0.05, 
** < 0.005 and ***: < 0.0005)
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granulomas (Fig. S2a). The anti-inflammatory proper-
ties of α-MSH were proven in this complex Model, with 
significant reduction of IL-1β and GM-CSF measured 

from the culture media of the α-MSH-treated group 
(3D-BSGM + α-MSH) in comparison to 3D-BSGM as 
shown in Fig. S2b.

Fig. 2  Heat map of RNA-Seq transcriptome analysis of chal-
lenged LOMM (P1-5; no α-MSH treatment) and challenged 
LOMM + α-MSH (M1-5; after α-MSH treatment). a Genes with sig-
nificant variation in their expression level between two groups (> 2.5-

fold increase; green or decrease; red) are highlighted. The sample size 
was 5 for each group. b Bar graphs also show significant changes in 
type I IFN genes among three LOMM groups; control, challenged, 
and challenged + α-MSH

Fig. 3  Type I IFN proteins 
(MX1, OSA1, and ISG15) were 
expressed in 4 LOMM groups; 
control challenged LOMM and 
LOMM + α-MSH and α-MSH 
only. In total, four LOMM 
(from four different human 
subjects) were included in each 
group. Only two groups, includ-
ing challenged LOMM and 
challenged LOMM + α-MSH, 
were exposed to MAB micro-
particles. Control received only 
saline, while the α-MSH group 
was only treated with α-MSH 
and were used as controls for 
this experiment. Significant 
variations are highlighted for 
each plot
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To test the protein expression of cells in the integrated 
granuloma model (3D-BSGM), we performed western blot-
ting after protein extraction from each chip. As shown in 
Fig. 4, the type I IFN cytokines (ISG15 and IFNα) expres-
sion increased in the granuloma model (3D-BSGM) but 
reduced in the granuloma model after α-MSH treatment 
(3D-BSGM + α-MSH). Similarly, IL-2 expression increased 
in the 3D-BSGM, while treatment with α-MSH significantly 
reduced its expression in the 3D-BSGM + α-MSH group. 
In addition, activated NF-kB (p-NF-kB) expression was 
decreased in 3D-BSGM compared to the control group but 
normalized in the 3D-BSGM + α-MSH group.

Transcriptomics Changes in the 3D‑BSGM Model 
After α‑MSH Treatment

We found that 89 genes were upregulated in 3D-BSGM with-
out α-MSH treatment, while only 11 remained upregulated 
after treatment. Notably, we found that AQP9 (encoding of 
aquaporin-9), MARCO (encoding of macrophage recep-
tor MARCO), and CD53 (encoding of leukocyte surface 
antigen CD53) were upregulated in 3D-BSGM (not treated 
α-MSH); however, their expression was downregulated in 
the 3D-BSGM after α-MSH treatment. Protein–protein 

interaction network analysis of the top 68 dysregulated genes 
in 3D-BSGM treated with α-MSH and biological process 
affected after α-MSH treatment are presented in Fig.S3 and 
S4, respectively. Our analysis revealed 95 unique genes were 
downregulated after using α-MSH treatment in 3D-BSGM 
(Fig.S5).

α‑MSH Effects in a Sarcoidosis Mice Model

We developed mice granuloma models using the MAB 
microparticles as previously described (Fig. S6a) [10] to 
test in vivo effects of α-MSH. Mice were exposed to MAB 
microparticles via intratracheal injection to develop granu-
loma. The mice were grouped as control, granuloma, and 
granuloma + α-MSH. The lungs were removed after three 
weeks. Lungs were fixed and stained for CD30, CD68, PD-1, 
and PD-L1 (Fig.S6b). In addition, flow cytometry was per-
formed on single lung cells to evaluate the effects of α-MSH 
on the immune response of the sarcoidosis mice model 
(Fig. 5). In vivo analysis of α-MSH-treated granulomas in 
sarcoidosis mice model revealed a numerical decrease in all 
measured leukocytes and cytokines, with a statistically sig-
nificant reduction in  CD45+CD68 and  CD45+CD3+CD8 in 
granuloma + α-MSH group relative to the granuloma group.

Fig. 4  Shows representative 
western blotting for three 
groups: control, 3D-BSGM, 
and 3D-BSGM + α-MSH. Two 
3D-BSGM groups were chal-
lenged with MAB microparti-
cles to generate granuloma, and 
a group only received saline to 
serve as the control. In addition, 
one of the 3D-BSGM groups 
was treated with α-MSH, but 
the other only received saline 
as treatment. Four 3D-BSGM 
were included in each group, 
generated from 4 different 
donors. Significant variations 
are highlighted for each plot
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Discussion

Granulomatous inflammation in sarcoidosis is believed 
to be caused by a persistent, poorly degradable unknown 
antigen, including mycobacterial antigens, combined with 
a non-resolving host response. As the pathogenesis of sar-
coidosis is not well known, there is no perfect model to 
study sarcoidosis. Therefore, we used MAB microparticles 
as an antigen to stimulate the immune system and generate 
granulomas. As we are using the cell wall of opportunistic 
mycobacteria (MAB), the generated granuloma is less case-
ous than the tuberculosis granuloma and is more like sarcoid 
granuloma. The same concept was suggested by Locke and 
co-workers [22] to develop a sarcoid granuloma.

Inflammatory cytokines and interferon pathways and 
proteins decreased after treatment with α-MSH in both 
LOMM and 3D-BSGM, indicating the anti-inflammatory 
effect of α-MSH; however, we did not measure inflammatory 

cytokines and interferon pathways in the mice model which 
is a limitation of current research. α-MSH significantly 
reduces the inflammatory response in bronchial epithe-
lial cells challenged with MAB microparticles. α-MSH 
treatment also reduces Type I IFN protein expressions. 
α-MSH also shows solid anti-inflammatory properties in a 
complex multilayer in vitro model. α-MSH treatment in a 
mice pulmonary granulomatous model resulted in a statis-
tically significant decrease in inflammatory cell numbers, 
including  CD45+CD68 expression (macrophages) and 
 CD45+CD3+CD8 expression (cytotoxic T-cells).

α-MSH has an anti-inflammatory effect at different 
layers by downstream inhibition of NF-kB nuclear trans-
location [23] or through the calcium signaling pathway 
[24] or mTOR signal pathway [25]. Our previous study on 
PBMCs showed that α-MSH anti-inflammatory properties 
are associated with the increasing competition of phospho-
rylated CREB (p-CREB) with NF-kB to sit on promotors 

Fig. 5  Flow cytometry results of isolated single pulmonary cells from 
3 groups of mice, control, granuloma (challenged with MAB micro-
particles and treated with saline), and granuloma + α-MSH (chal-
lenged with MAB microparticles and treated with daily α-MSH). 
AM alveolar macrophage, DCS dendritic cells. Each Model had four 
mice. Alveolar macrophage and monocytes with internalized IFNγ 

were also presented. Siglec  F+  CD11b−  CD11c+  CD64+ cells were 
identified as alveolar macrophage while  CD11b+ MHC  II−  CD64+/− 
 Ly6Clo+ were grouped as monocytes/undifferentiated. DCs were 
defined as  CD11c+  CD103+  CD24+. Significant variations are high-
lighted for each plot
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of pro-inflammatory genes, including IL-2, IL-6, IL7, IL-
10, TNFα, and IFNγ [7]. p-CREB inhibits phosphoryl-
ated NF-kB (p-NF-kB) bounds to the promotor regions of 
cytokine genes, thereby limiting pro-inflammatory responses 
[26]. In the present study, we observed an anti-inflammatory 
effect of α-MSH through increases in the level of p-NF-
kB. Decreased type I IFNs and pro-inflammatory cytokines 
were consistent with our previous study on PBMCs in the 
granulomatous inflammation [7]. Type I IFNs (IFNα and 
IFNβ) are different from IFNγ, a commonly cited cytokine 
implicated in the granuloma formation [27]. IFNα increases 
the expression of MHC class II antigens and the expres-
sion of IL-12, which work to maintain the lymphocytic Th1 
response in granulomatous inflammation [28]. Type I IFNs-
mediated granuloma formation likely has a high prevalence 
in the lung, secondary to the localized expressions of both 
β1 and β2 subunits of IL-12R in the lung seen on bronchoal-
veolar lavage [29–31].

In vivo mice, the lung model showed decreases in leu-
kocytes  CD45+CD68 (macrophages) and  CD45+CD3+CD8 
(cytotoxic T-cells) after treatment with α-MSH. Mac-
rophages play an essential role in granulomatous inflam-
mation; they release pro-inflammatory cytokines to induce 
T-cell activity. IFNγ, produced by Th cells, activates mac-
rophages (M1 subtype). Activated macrophages fuse into 
phagocytic-multinucleated epithelioid cells to form gran-
ulomas maintained by TNFα [32]. It has been reported 
that α‐MSH suppresses CD14 expression [33] and blocks 
TLR4 signaling, which could suppress macrophage activi-
ties after LPS stimulation. In addition, α‐MSH suppresses 
macrophages through TLR4 [34] or by blocking the activa-
tion of p38 MAPK [35] and NF‐κB [36]. Our results show, 
for the first time, that α‐MSH can decrease the number of 
macrophages in sarcoidosis granuloma.

Our transcriptome analysis revealed that AQP9, CD53, 
and MARCO levels increased in 3D-BSGM (not treated 
α-MSH) after challenging the cells with MAB particles 
while treating the cells with α-MSH decreased the AQP9, 
CD53, and MARCO levels indicating the anti-inflammatory 
property of α-MSH. AQP9 is the central glycerol channel 
that may play a role in specialized leukocyte functions such 
as immunological response to inflammation [37]. CD53 is 
also critical in immune cell adhesion and migration during 
inflammation [38]. In addition, MARCO can be upregulated 
on macrophages after bacterial infection suggesting its role 
in removing pathogens [39].

Very few studies have explored the role of cytotoxic 
T-cells, while the role of helper T-cells is well known in 
sarcoidosis [40]. Cytotoxic T-cells are mainly involved in 
granule-mediated lysis of altered or infected cells by releas-
ing cytolytic effector molecules (granzyme A and B) and 
antimicrobial peptides [41]. Parasa et al. found higher pro-
portions of peripheral cytotoxic T-cells expressing perforin 

and granzyme B (higher level of cytotoxicity) in sarcoidosis 
patients compared to healthy controls [42]. Our data con-
firmed that α‐MSH could decrease the number of cytotoxic 
T-cells in sarcoidosis. Our results show that a α-MSH-
mediated reduction in type I IFNs in vitro modeling cor-
relates with the macrophage and cytotoxic T-cell reduction 
seen in vivo modeling. With minor type I IFN signaling, 
there is less activation of helper T-cells and subsequently 
less IFNγ-mediated activation of macrophages. Similarly, 
with minor type I IFNs signaling, there is less direct activa-
tion of cytotoxic T-cells, the mechanism usually responsible 
for cell lysis.

In conclusion, we have demonstrated that α-MSH is an 
anti-inflammatory effector. Our data also shows that α-MSH 
could be considered a new potential therapy for treating 
pulmonary sarcoidosis via modulation of pro-inflammatory 
cytokines and immune cells in the granuloma.
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