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Abstract

Motivation: Volcano plots are used to select the most interesting discoveries when too many discoveries remain after
application of Benjamini–Hochberg’s procedure (BH). The volcano plot suggests a double filtering procedure that selects
features with both small adjusted P-value and large estimated effect size. Despite its popularity, this type of selection
overlooks the fact that BH does not guarantee error control over filtered subsets of discoveries. Therefore the selected subset
of features may include an inflated number of false discoveries. Results: In this paper, we illustrate the substantially
inflated type I error rate of volcano plot selection with simulation experiments and RNA-seq data. In particular, we show
that the feature with the largest estimated effect is a very likely false positive result. Next, we investigate two alternative
approaches for multiple testing with double filtering that do not inflate the false discovery rate. Our procedure is
implemented in an interactive web application and is publicly available.

Introduction
Advances in DNA sequencing technology allow simultaneous
measurement for thousands of features in one study. Generally,
the goal is to compare the expression level of mRNAs/genes
between two conditions (e.g. healthy vs. diseased) and identify
differentially expressed features. In such high-dimensional set-
tings, the chance of committing type I errors increases as well as
the expected number of such false discoveries. This is a well-
known issue and multiple testing procedures are adopted to
avoid it. Popular multiple testing procedures control the false
discovery rate (FDR), which is the expected proportion of type
I errors among the discoveries. The most widely used such
method in genomics is the Benjamini–Hochberg (BH) procedure
[2]. BH provides a set of discoveries that maintains a prespecified
FDR level, typically 0.05. FDR-based methods are generally more
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powerful than their competitors, making them a favorable choice
for exploratory research.

Once the features are tested and multiple testing corrections
are applied, the resulting list of potentially interesting discov-
eries can be rather long, so that researchers want to reduce
it. It is not always desirable to prioritize the features merely
based on the P-values, so researchers additionally use the esti-
mated effect size (or fold-change) for post hoc filtering of the
discoveries. This is known as a ‘double filtering’ procedure [22],
where the results are first filtered based on significance and then
according to the magnitude of change. The most famous double
filtering tool in genomics is the volcano plot [6], that is widely
used to visualize the results of genomic experiments. The vol-
cano plot is a scatter-plot of the statistical significance (− log10

p-values on Y-axis) against the magnitude of effect (estimated
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Figure 1. Example volcano plot. Points on top-right and top-left corners are considered the most promising findings.

effect size or fold change on X-axis). As shown in Figure 1, the
most strongly up/down-regulated features lie towards the tails of
X-axis and the most statistically significant features are towards
the top. Discoveries on the upper-left and upper-right corners are
considered most promising.

The intuition behind volcano plots is simple: it aims to select
features that are not only significant but also carry the largest
effect size. Nevertheless, the reliability of findings, especially in
exploratory studies depends on the adequate control of type I
error. Many researchers believe that the BH method will pro-
vide this necessary error control even when double filtering is
adopted. Unfortunately, this is not true. Although BH controls
the upper-bound for FDR over all rejected features, it provides
no such guarantees over any subset of the features [1, 8, 12].
Consequently, BH is not guaranteed to control FDR after double
filtering. As depicted by the simulations in this paper, the infla-
tion of the type I error may be severe under certain conditions. In
this paper we explain and quantify the problem of inflated type
I error when double filtering with volcano plots. Moreover, we
suggest alternative multiple testing procedures that do preserve
the error control after volcano plot-type filtering. The rest of this
paper is organized in two main sections. In Section 2, we explain
the volcano plot problem and present examples of type I error
inflation using RNA-seq data and simulation experiments. In
Section 3, we introduce solutions for tackling this problem: con-
trolling FDR using focused BH or controlling either the median or
upper-bound of the false discovery proportion (FDP) using closed
testing with Simes local tests. We briefly review the applica-
tion of each method for volcano plot-type selection of findings
and then compare them using simulation studies. Finally, we

introduce Active Volcano Plot, a shiny app designed to create the
volcano plots with valid type I error control.

Volcano plot problem
In this section, we describe and explain the potential problem of
inflated type I error with volcano plots. We illustrate the severity
of the problem using both simulations and real RNA-seq data.

Notation and problem setting

The most commonly adopted analysis pipeline in genomics
includes normalizing expression values, fitting a model to test
the effect of interest for each feature and applying multiple
testing corrections. After multiple testing, if the number of sig-
nificant features, i.e. discoveries, is large, a volcano plot may be
adopted to illustrate the results and select the most relevant
discoveries.

In the next two sections, we will review the analysis pipeline
leading to the volcano plot problem. To keep the notations sim-
ple, we define the problem based on a simple linear regression
model and with BH for multiple testing, but the problem arises
also with more complicated designs or models, and when using
different FDR-controlling methods.

Testing individual features

Let n denote the number of subjects in the study and m the
number of features under investigation. Let, also, ygi and xi

correspond to the gene expression and phenotypic data of gth
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feature of the ith subject, respectively.

Yg = β0g + β1gx + εg, (1)

where β0g is the intercept, x is an n × 1 vector denoting
the phenotype variable and β1g is the corresponding regression
coefficient for gth feature for effect of interest. Also, εg ∼ N(0, σ 2

g )
is the residual error. Here the interest is differential expression
analysis, so the null hypothesis for feature g is

H0g : β1g = 0. (2)

This hypothesis may be tested based on a classical t-test,
where the test statistic is

tg = β̂1g√
σ̂ 2

g /n
, (3)

where β̂1g and σ̂ 2
g are the maximum likelihood estimates. In the

following, we will simply write βg for β1g.
In many genomic studies, n is very small-even as small as 2 or

3, which leads to low power due to lack of degrees of freedom for
the classical t-statistic. A variation of the test, called the mod-
erated t-test, overcomes this by estimating σ 2

g using empirical
Bayes method [21], which shrinks large estimated σ̂ 2

g downward
and small σ̂ 2

g upward. For more details on the moderated t, refer
to the supplementary material.

The FDR inflation mechanism

Once the P-values are calculated for each feature, they need to
be corrected for multiple testing. The most popular procedure for
this is the BH procedure, which controls FDR. Control of FDR at
level α means that the expected proportion of false discoveries
among the discoveries is at most α: most of the discoveries are
correct.

For some studies, BH finds ‘too many’ significant features and
the researcher may want to reduce the number of findings. An
intuitive way to do this is to discard findings with small esti-
mated effect size, since larger effect sizes tend to be biologically
more interesting. This is what is done using the volcano plot:
among the BH-significant findings, the researcher considers
only those findings that have an estimated effect size larger than
some threshold, that is usually chosen after seeing the data.
This double filtering (on P-value and effect size) is illustrated
in Figure 1. First, the features are ordered by their BH-adjusted
P-values, and non-BH-significant ones are discarded. Next, the
features are ordered according to the absolute estimated effect
size (|β̂g|). Then either k features with the largest effect size
estimates or all features with a |β̂g| larger than a certain thresh-
old are selected. This way, researchers aim to target the most
biologically relevant discoveries.

A problem with this procedure is that it ignores the fact that
the guarantee of FDR-control was only over the full BH-corrected
set, and not necessarily over the filtered subset. In general, a
subset of FDR-controlled discoveries is not FDR-controlled [1, 4,
8, 12]. To understand why, note that FDR is the expected False
Discovery Proportion (FDP), which is the ratio of the number
of false discoveries over the total number of discoveries. Fil-
tering reduces the denominator of the FDP, and may reduce
the numerator as well, but not necessarily at the same rate.

To retain FDR control with double filtering, the selection step
should either retain the ratio of false to true discoveries, or
discard false discoveries at a higher rate. Only if the double
selection procedure can guarantee this, then we can guarantee
FDR control over the double filtered results.

Examples of double filtering that are generally valid include
sub-selection by the P-values again, retaining small P-values
only. A valid selection would also be to select on the true effect
size (βg), selecting larger effect sizes. It might seem intuitive that
selection on large estimated effect size would also be valid, but
this is not true. To see this, look at the distribution of β̂g ∼
N(βg, cjσ

2
g ). Large estimated effect sizes |β̂g| occur not only when

|βg| is large, but also when σg is large, since the standard error
of β̂g is large when σg is large. Selecting for large |β̂g| is therefore
not only selecting for large |βg|, but also for large σg. The former
selection will always decrease FDP, but the latter may increase it.

The obvious situation in which selecting for large σg would
increase FDP is when null features tend to have larger variance
than features under the alternative. This may or may not be the
case in practice, but it becomes clear that an assumption for
valid FDR control after double filtering is that such a negative
association between |βg| and σg does not exist. We will see this
clearly in the simulation results. If such a negative association
cannot be excluded, double filtering may result in lack of FDR
control.

However, even if σg varies between features, but is not asso-
ciated with |βg|, we may see lack of FDR control as a result
of double filtering. Large |β̂g| may be caused by either large σg

or large |βg|. If there is large heterogeneity in the values of σg,
then features with large |β̂g| are predominantly features with
large σg. Even when null and non-null features have the same
distribution of σg, a feature with a large σg is more likely a null
feature, simply because there are usually more null than non-
null features. Therefore, within the doubly selected subset of
features, we may see an association between σg and |βg| due
to a collider effect, even if none existed before filtering. Double
filtering can therefore result in lack of FDR control even if there
is no association between σg and |βg|.

These phenomena we have described for the regular t-test.
They are even more severe for the moderated t-test. While the
moderated t-test does not influence the estimation of βg, it does
change the calculation of the P-value. Features with large σg tend
to have large σ̂g, which is shrunk downward by the moderated t-
test, resulting in a larger t-test statistic and a too small P-value,
smaller than the regular t-test. Similarly, features with small σg

tend to have a too large p-value. Under the prior assumptions of
the moderated t-test, the mixture of too small and too large P-
values normally evens out to give valid inference, as explained in
the supplementary material. However, when selecting for large
|β̂g|, which implies selecting for large σg as explained above, the
moderated t-test therefore also inadvertently selects for P-values
that are biased downward. This makes lack of FDR control after
double filtering an even bigger problem with the moderated tests
than with regular tests, and we will see this in the simulation
results.

Problem Illustration 1: Simulation Study

In this section, we will illustrate the potential problem with
volcano plots using simulations. We generate data based on a
linear model and analyze them according to the routine volcano
plot pipeline described earlier. Then the observed proportion of
false discoveries among the volcano plot selected features is
calculated under different simulation scenarios.
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Simulation set-up

To mimic a usual application of volcano plots, we generated
observations for m = 20 000 features from n subjects in two
groups. A set of h features were randomly selected to be truly
differentially expressed (DE). The null hypothesis was true for
the other m − h features.

We generating true variances σ 2
1 , . . . , σ 2

m based on a scaled
inverse chi-squared distribution with degrees of freedom d0 = 4
and scale parameter σ 2

0 = 4. Let rg be the rank of σ 2
g , with rg = 1

for the largest value of σ 2
g and rg = m for the smallest. We

randomly selected the h differentially expressed features based
on a multinomial distribution with weights

wg = (
rg

m + 1
)λ/2(

m + 1 − rg

m + 1
)−λ/2

and without replacement. The weights are defined in such a
way that λ > 0 indicates an over-representation of large val-
ues of σ 2

g among non-null features, λ < 0 indicates an over-
representation of small values of σ 2

g among non-null features,
and finally λ = 0 indicates equal distribution of σ 2

g values among
true and false discoveries. Theoretically, we expect inflation of
type I error to be more prominent with larger λ, as explained
in the previous section. The regression coefficients βg were set
to zero for false discoveries and βg ∼ N(0, γ 2σ 2

0 ) for truly DE
features, where γ is the effect-size. The log-expression values
were generated independently according to the model (1). The
P-values were calculated for both the classical t-test and the
moderated-t statistic.

Once the p-values were corrected for multiple comparisons
using the BH procedure, features with an adjusted P-value < 0.05
were labelled significant. Following the volcano plot selection,
these statistically significant features were sorted by their esti-
mated |β̂g| and those with the largest effect size were selected.
For a selected feature, g, if βg �= 0, it was marked as true discovery
and otherwise it was considered a false discovery.

We repeated the simulation experiment 1000 times for
every combination of the simulation parameters h/m =
(0.01, 0.05, 0.1, 0.15, 0.2, 0.4, 0.8), γ = (1, 1.5, 2), λ = (−2, −1, 0, 1, 2)
and three different sample sizes n = (6, 12, 24). These values
cover a realistic range of parameters in a common genomic
experiment. For each repetition, the empirical FDP was calcu-
lated as the proportion of null features among features selected
by the volcano plot, or 0 if no features were selected. FDR was
calculated as the mean FDP.

Simulation results

For every combination of parameter values in the simulation
experiment, we calculated the FDR for a double filtering proce-
dure that selects the top k = 1, . . . , 100 among the BH-significant
results, i.e. the k BH-significant features with highest ranked
values of |β̂g|. In case there were fewer than 100 features with BH-
adjusted P-value < 0.05, all significant features were selected.
Figure 2 gives the FDR (averaged over repetitions) for one typical
scenario. A frequency plot of original values are presented as
supplementary material (Figures S1-S3).

Generally, when λ > 0 we see inflated FDR for all values of
k, although the severity of the problem clearly decreases with k.
Naturally, as k increases and more features are selected the FDR
converges towards its theoretical level of απ0, where π0 = 1−h/m
is the proportion of truly null features.

To investigate the way the FDR inflation depends on the
parameters of the simulation we focus on the highest ranked

(‘top’) feature, which we defined as the feature with the largest
|β̂g| among the significant ones, i.e. setting k = 1 in the pre-
vious figure. Figure 3 shows how often a volcano plot-selected
top-feature is a false positive.

As expected from the theory in Section 2.2, FDR inflation is
greater when null genes tend to have large variance (λ > 0),
and mostly absent when the reverse holds (λ < 0). Inflation is
still present when λ = 0. Other relationships we see, is that FDR
inflation tends to increase as the proportion of active features
increases, as well as when the sample size increases. We explain
this by noting that as these parameters increase, there are more
and more BH-rejected features to select from. With very low
sample size and very low effect size, the power is too low to
detect many features as significant, hence few discoveries are
made, both true and false, and there is little selection even if
k is small. Large effect size γ seems to diminish the problem,
perhaps because with very large effect size high |β̂g| will be more
often due to large |βg| than due to large σg.

We have only presented the results for the classical t-test.
A similar pattern was observed for the moderated-t, though
with an even higher FDR inflation, (as expected, see Section 2.2).
These plots are presented in supplementary material. Also in the
Supplementary Material is an small investigation into the double
filtering problem under dependence between features; we see
there that the FDR inflation becomes smaller in some scenarios
if genes are correlated, but the problem does not disappear.

Problem Illustration 2: RNA-seq Study

Here we analyze a real RNA-seq example to portray the volcano
plot-problem in a realistic setting. In real data we cannot tell
the true from the false discoveries, so it is not straightforward
to show that FDR is inflated when volcano plots are used. As
a solution, we adopted a resampling procedure to approximate
the unknown FDP among features with large |β̂g| estimates. In
contrast to the simulation above, this analysis does not impose
effect size, variability in σg or the value of λ, but takes it from
real data. Our point here is to show that FDR inflation due to
volcano plots may also happen in real data settings. Moreover,
the real data also have a realistic correlation structure. We
created several random analysis sets and evaluated the results
based on the results of corresponding validation sets.

RNA-seq data analysis

The data-set includes RNA sequencing on blood samples col-
lected from healthy children and those evaluated with diarrheal
disease where the pathogens present are known. The goal of the
study was to determine host response gene signatures specific
to Salmonella, Shigella and rotavirus that distinguish them from
healthy controls. A detailed description of the data collection
procedure and primary results are available in [7]. Here we
focus on differential expression between the group with Shigella
infection (SH) and healthy controls (HC). RNA-seq counts were
obtained through the recount project with accession number
SRP059039 [9]. The data included raw counts of 58037 features
from 37 SH and 12 HC samples. The corresponding count data
were normalized and low expressed features were removed
using edgeR package [19].

To evaluate the reproducibility of the volcano plot results,
we performed a resampling procedure. At each repetition, 6
subjects were randomly selected from each phenotype group as
the analysis set, the rest were considered as the validation set
of 37 samples. This validation set was used in each repetition
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Figure 2. Simulation result. Observed FDR by selecting top k = 1, 2, . . . , 100 features according to the volcano plot. The data were generated using the procedure

explained in Section 2.3 with γ = 1, h/m = 0.15, n = 12 and (A) λ = 0, (B) λ = 1, (C) λ = 2. The bars represent the mean FDR over simulations and the horizontal lines

indicate the theoretical FDR-level of BH (π0α = 0.043). The volcano plots are single realizations of the 1000 repetitions that are averaged for bar plots at k = 100. The

dark points are BH-selected false discoveries, the white points are BH-selected true discoveries; the gray points are discarded in volcano plot selection when k = 100.

to determine a ground truth of differential expression: all BH-
significant genes (BH-adjusted P-value < 0.05) in the valida-
tion set were considered truly DE. To ensure that putative null
genes were truly null, we permuted the gene expressions of null
genes over the subjects. The same permutation was used for all
null genes to preserve their correlation structure. Based on this
ground truth, false discovery proportions could be determined
for a double filtering procedure on the analysis set. We used
the same double filtering as in the simulation above: to select
top genes, significant genes (BH-adjusted P-value < 0.05) were
sorted by their |β̂g| value and k = 1, 2, . . . , 100 genes with largest
values were selected. Discoveries were classified as true or false
according to the ground truth from the corresponding validation
set. All analyses (in analysis and validation set) were performed
using voom to derive the raw P-value and the estimate β̂g per gene
[18]. The procedure was repeated 1000 times and FDP results
were averaged to derive the FDR estimates.

RNA-seq data results

As above, the bar plot presented in Figure 4 portrays the esti-
mated FDR by selecting 1 up to 100 features with the largest
|β̂g| values. The average proportion of discoveries was 0.004 and
0.071 for analysis and validation sets, respectively. On average,

the top feature (k = 1) in the analysis set is not significant
in the validation set 16% of the time. To take a closer look,
we plotted the volcano plot of both the analysis and validation
sets for one replication in Figure 5. For this specific repetition,
the validation set included 3357 (10%) significant genes with
BH-adjusted P-value < 0.05. In the corresponding analysis set,
there were 546 (2%) significant features after BH adjustment,
and further selection with |β̂g| > 1 resulted in 420 top genes.
The estimated FDR for top genes is much higher than expected
nominal level, which is (1 − 0.1) × 0.05 = 0.045 for this example.
Namely, 17% of genes selected by volcano plot in the analysis set
(black dots in Figure 5 A) were not significant in the validation set
(black dots in Figure 5 B). Once again, these results confirm that
filtering the findings may lead to an inflation of FDP and that
large effect size does not necessarily imply that the finding is a
true positive. In fact, our results suggest that a high |β̂g| may be
an indication of a false positive result.

Volcano plots with Type I error control
Despite the potential type I error inflation, volcano plots do
have desirable properties. It is easy to create a volcano plot for
almost any study design and it illustrates two attributes at the
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Figure 3. Simulation result. How often is the most highly ranked feature selected by volcano plot a type I error? This value can be as high as 0.77 for small sample size

(= 24) and small effect size (= 1). Note that the type I error rate is largest when the variance of null features is higher (λ > 0) but also happens when there is no such

association (λ = 0). It tends to get smaller as the effect of non-null features gets stronger.

Figure 4. RNA-seq data analysis. FDR when selecting top 1, 2, . . . , 100 features

with BH-adjusted P-value< 0.05.Bars represent the mean FDP over 1000 simula-

tions and the dashed horizontal line is the average expected FDR of regular BH

at π0α = 0.046. The curves are the average values of FDP (—) and mFDP(−. − .) as

defined in Section 3.1.

same time: evidence for the presence of an effect and its esti-
mated magnitude. Here, we suggest two alternative approaches
to create a volcano plot, which will maintain the type I error
control over the selected discoveries: controlling the FDP based
on closed testing and controlling FDR based on focused BH (fBH).
First, we briefly introduce each of the methods, and review

their application in the volcano plot setting. Then we investigate
the close relationship between the methods and compare their
performance using simulation studies.

FDP control

A recent multiple comparisons procedure to limit the number
of false discoveries is to control the False Discovery Proportion.
[11] introduced a closed testing procedure [16] that controls
FDP over all possible subsets of the collection of hypotheses.
For any chosen set of discoveries D, the method provides an
estimate along with a confidence bound for the FDP of any such
subset. These confidence bounds bound the true FDP value with
probability at least 1 − α. As the bounds are simultaneous over
all 2m possible sets D, post hoc choice or modification of D will
not change the confidence level of the simultaneous bound. This
feature makes FDP estimation an attractive alternative to FDR-
correction when the volcano plots are used, since it promises
FDP control, regardless of the way the discoveries have been
selected. [13] introduced a shortcut to estimate the bounds in
linear time when Simes local tests [20] are adopted. Here we
focus on application of this procedure for volcano plots.

Let M = {1, . . . , m} be the index set of the features. Let TDE ⊆ M
denote the unknown index set of the truly active features. Then
the proportion of false discoveries in a set D ⊆ M is given by

FDP(D) = 1 − t(D)
|D| ,
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Figure 5. RNA-seq data analysis. A) Volcano plot of a single sub-sampled analysis set, black points are the genes that are both significant (small BH-adjusted P-value)

and highly regulated (large β̂). B) Scatter plot of the corresponding validation set where the significant genes are denoted by dark gray. Black points represent the points

selected by volcano plot in the analysis set. Some of the black dots are labelled to illustrate how the results change for the same feature in the validation set.

Figure 6. Simulation study 1. Number of discoveries made by controlling the FDP bound FDP (-.-.), mFDP (—) and FDPfBH (......) is compared to the actual number of

discoveries (-.-.). Discoveries are selected based on a predefined τ and the P-value threshold is chosen by each method to restrict FDP at level α = 0.05. There are six

samples in each group.
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Figure 7. Simulation study 2. FDP is estimated based on the FDP bound FDP (-.-.), mFDP (—) and FDPfBH (......) for the set of discoveries selected based on thresholds

τ = 3 and P = 0.001. The actual value of FDP is also shown (—–). There are six samples in each group.

where t(D) = |TDE ∩ D|, and | · | denotes the size of a set.
As shown by [13], closed testing can be adopted to build

simultaneous confidence bounds for FDP such that

P(FDP(D) ≥ FDP(D) for all D) ≥ 1 − α.

The bound FDP(D) is given by

FDP(D) = 1 − t̄(D)
|D| ,

where t̄(D) is the (1−α) lower confidence bound for t(D), given by

t̄(D) = max
1≤u≤|D|

1 − u + {g ∈ D : hαpg ≤ uα}, (1)

where

hα = max{i ∈ {0, ..., m} : ip(m−i+j) > jα, for j = 1, ..., i}.

The ‘midpoint’ of the confidence interval, i.e. the lower con-
fidence bound at α = 0.5, can be used as a point estimate for the
proportion of false discoveries in each set. We will denote this

median point estimate by mFDP(D), found by choosing α = 0.5.
Note that mFDP(D) is also calculated based on a simultaneous
confidence bounds and hence it is robust against choosing set D
interactively on the basis of the data. This procedure is imple-
mented in the R-package hommel [10]. Given the raw p-vales
for all features, users can calculate the mFDP estimate and the
corresponding confidence bound for any subset of features.

In the case of volcano plots, we can write D = {g : |β̂g| ≥
τ & pg ≤ p} to denote the set of features selected by volcano plot.
Note that τ can be adjusted so that D is the set of top k features.
Both mFDP and FDP can be estimated for various choices of D for
various values of τ and P. In case a certain FDP value is of interest
the researcher is free to adjust τ and P thresholds such that
either the bound or the median FDP of the selected discoveries
are below that level, without compromising the validity of these
bounds. For instance, the user can freely tune the thresholds to
select such that the final set of discoveries has mFDP less than
or equal to 0.1. The set D of discoveries may depend on the data,
and the way the set depends on the data does not have to be
predefined.

Focused BH

Focused BH [15] is a variant of the classical BH procedure that
guarantees FDR-control over a subset of discoveries selected in
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Figure 8. Simulation study 3. FDP is estimated using the FDP bound FDP (-.-.), mFDP (—) and FDPfBH (......) for the selected discoveries. 50 discoveries with the largest β̂

values were selected among features with P-value ≤ 0.001. The actual value of FDP is also shown (-.-.). There are 6 samples in each group.

a predefined way. We will denote this subset by the index set F.
The FDPfBH estimate can be presented as a function of r ∈ [0, 1],

FDPfBH(r) = m · r
|{g ∈ F : pg ≤ r}| · (2)

Let r∗ be the maximum value of r for which FDPfBH(r) ≤ α. It
has been shown that the set D = {g ∈ F : pg ≤ r∗} is the set
of discoveries with FDR-control over the subset F, under various
conditions on the filter.

In the case of volcano plots, two type of filters are relevant.
The first is a filter that selects only the features with estimated β̂g

above a pre-chosen threshold τ . The second is a filter that selects
the k features with the largest estimated |β̂g|, where k is chosen
a priori. Although these filters are of the general type explored in
[15], neither one fulfills the conditions for which FDR control has
been proven. We will investigate the performance of the method
using these filters empirically.

Similarities between the methods

These two alternative methods essentially adopt two very differ-
ent strategies to select the set D of top features but interestingly,
they are still related. If Bγ was the set of discoveries given by fBH

at level γ , then it can be shown that

α FDPα(Bγ ) ≤ γ FDPα(M). (3)

Now by replacing γ with αγ , we have P(FDP(Bαγ ) > γ ) ≤ α. So by
increasing the fBH error rate by a factor α, we can control the 95%
upper quantile of FDP at level α. Furthermore, we can simplify
the inequality in terms of mFDP. Given that 0 ≤ FDP(M) ≤ 1, the
following holds,

0 ≤ mFDP(Bγ ) ≤ 2γ FDP1/2(M) ≤ 2γ . (4)

Indicating that the estimated FDP is at most 2γ . Given that in
genomics FDP(M) is rarely close to 1, the actual value can even
be smaller. This loss of power is very small given the added
flexibility that the mFDP is simultaneously estimated for all
2m − 1 subsets and not only the Bγ subset. A formal proof of this
inequality is provided in the supplementary material.

We note that while the corollary (4), viewed simply as a
property of fBH, could also have been proven directly using
Markov’s inequality, the underlying result (3) is a much more
fundamental result on the similarity between the two methods
[compare 13,discussion of Lemma 5].
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Simulation study: comparing solutions

Direct comparison of mFDP and fBH results is not straightfor-
ward. We have designed three simulation studies, where the
resulting set of discoveries or its properties are comparable
across the approaches. For all simulations, the data are gener-
ated based on the linear model described in Section 2.3, but the
procedure to select top discoveries D is different.

Simulation Study 1

The aim of this study was to compare the number of of dis-
coveries made by the methods while each is controlling their
respective error rate. Values of τ and α were pre-specified and
discoveries were selected by choosing the P-value threshold P
for features with |β̂g| ≥ τ , such that FDP, mFDP or FDPfBH was
controlled at level α. Results for τ = 3, α = 0.05 and n = 12 are
presented in Figure-6, plots for other scenarios are provided as
supplementary material.

The three approaches have very similar results when the
actual number of discoveries is low (small sample size, small γ ,
few truly active features). As expected, all methods underesti-
mate the number of discoveries when λ > 0, and controlling FDP
is always more conservative than controlling mFDP or fBH. For
λ < 0 or large n (n = 24), the estimation bias for all methods
including FDP is close to zero. In general, mFDP and fBH are
similar but for λ > 0, the number of discoveries made by fBH
is slightly higher compared to mFDP.

Simulation Study 2

The aim of this study was to compare the proportion of truly
active features estimated by each approach. We defined the set D
by fixing the τ and P thresholds, then calculated FDP(D), mFDP(D)
and FDPfBH(D). Here the goal was not controlling the error rates
at a certain level but rather comparing the FDP estimate of the
same set of discoveries based on different approaches. Simula-
tions were repeated for different values of τ and P.

Figure-7 illustrates the estimates for τ = 3 and P = 0.001
and a sample size of 12; other conditions are presented as
supplementary.

For relatively large effect sizes, fBH and mFDP are close to
each other and both conservative when λ ≥ 0. The FDP bound
is very conservative except for either a large sample size, large
γ or λ < 0. Although mFDP overestimates the true FDP in most
cases, it starts to be less conservative with a more stringent P
threshold (as can be seen in plots in supplementary e.g. Figure
S17 and S14). It may even underestimate the FDP, when h/m is
very small and both P and τ are small. This is not the case with
FDP. fBH slightly overestimates the FDP but is less biased than
mFDP. Nevertheless, fBH has an inter-related association with P
and τ thresholds. Similar to mFDP, the estimate gets closer to
truth as the P threshold decreases. More specifically, when the P
threshold is very low, fBH severely overestimates the FDP and is
more conservative than FDP in some cases. On the other hand, if
τ becomes very large, fBH starts to overestimate again, likely due
to the fact that only a few features are selected. This is explained
by the formula presented in (2); FDPfBH(D) increases as the size of
filter decreases relative to mt.

Simulation Study 3

Here again, the aim of the study was to compare the propor-
tion of truly active features estimated by different approaches.
Threshold α was predefined but instead of fixing τ , we chose k

features with the largest β̂ values, making the value of τ data-
dependent. Then FDP(D) was estimated as before based on the
three approaches. The simulation was repeated for different
values of k and P.

Figure 8 illustrates the estimates for k = 50, P = 0.001 and
n = 12, here again other cases are presented as supplementary.
The general scheme is similar to simulation study 2. As the signal
increases (larger n or γ and larger h/m) both FDP and mFDP
become less conservative. This is not the case for fBH. By def-
inition, for a very small P threshold (r), the numerator of FDPfBH

is very small, hence FDPfBH(D) will underestimate the true FDP as
relatively more features are selected (larger denominator).

RNA-seq data analysis

As an illustration, we will briefly discuss application of mFDP
on the RNA-seq example introduced in the Section 2.4. For each
analysis set, we calculated both mFDP and FDP for k = 1, ..., 100
genes with largest |β̂|. The average over repetitions are plotted in
Figure 4 for both methods. Due to the inflation of type I error, it
is clear that this data set is not a case of λ < 0. As expected both
mFDP and its corresponding bound are conservative, however
they never underestimate the FDP value. Finally mFDP is more
conservative for small values of k, which was also expected
based on the simulation results. As explained earlier this type
of double filtering is data-dependent so we did not apply fBH.

Interactive web application: active volcano plot
We have developed an interactive web application, Active Vol-
cano Plot, through which the researcher can create a Volcano
Plot and get the mFDP and FDP bound estimates for the selected
discoveries. For this, we used the R package Shiny [5], which
enables interactive plotting via a graphic user interface directly
from R code.

The user can freely evaluate various sets of discoveries D
by adjusting τ and P thresholds. The mFDP and FDP values
will update instantly as the thresholds change, hence the word
Active. Active Volcano Plot app is available at https://mebpr.shi
nyapps.io/activevp and the codes are accessible via https://gi
thub.com/mitra-ep/ActiveVolcanoPlot. An interactive interface
requires a method that remains valid when the user adaptively
chooses the set D of discoveries. For this reason only the mFDP
and FDP methods are implemented, and not focused BH.

Upon submission of the current manuscript, we came across
a closely related shiny app developed by Blanchard and others
[3, 17]. This app can be accessed via https://pneuvial.github.io/
sanssouci/.

As an example, we have used the selected analysis set in
Figure 5 to create a volcano plot using this tool. Remember that
the BH procedure at level 0.045 was applied, however, the classic
volcano plot selection resulted in an FDP of 0.17. The screenshot
in Figure 9 shows the same volcano plot where the median
estimate mFDP is 0.12, much closer to the expected value and
FDP is (0,0.76), which includes the true value of FDP.

Discussion
We have shown, using simulation experiments and empirical
analysis of an RNA-seq data, that the features with largest esti-
mated effect size, selected by a Volcano Plot can have an inflated
type I error rate. It is important to stress that the problem occurs
when FDR-controlling procedures such as BH are combined with
double filtering procedure of volcano plots. FDR is a powerful

https://mebpr.shinyapps.io/activevp
https://mebpr.shinyapps.io/activevp
https://github.com/mitra-ep/ActiveVolcanoPlot
https://github.com/mitra-ep/ActiveVolcanoPlot
https://pneuvial.github.io/sanssouci/
https://pneuvial.github.io/sanssouci/
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Figure 9. Shiny App: Active Volcano Plot. A classic volcano plot is made by selecting P = 0.0008 (3.1 in log-scale) and τ = 1. The table above the plot presents the mFDP

estimate along with the corresponding bounds for the selected features.

error rate in genomics studies but it is not suitable for combining
with double filtering, since it does not have the sub-setting
property: FDR control on a set of discoveries does not imply FDR
control on subsets of those discoveries.

FDR inflation due to volcano plots may happen in many
settings, but is especially pronounced when the variance of the
truly differentially expressed features is less than the variance
of the features that are not differentially expressed. There is
no a priori biological reason why null features should have
higher or lower variances than non-null features. We believe
that either may happen, depending on the underlying biology,
making double filtering methods hazardous in practice. We have
shown that the conditions for FDR inflation may occur in real
data settings, but we do not know how often, and we recommend
that this is investigated. We also note that FDR inflation due
to double filtering is aggravated when moderated t-tests are
used instead of regular statistical tests. On the other hand FDR
inflation is less severe if circumstances simultaneously exist in
the data that deflate FDR, such as strong correlations or a low
proportion of null features.

Volcano plots and double filtering should be seen as
exploratory methods that change the collection of discoveries
post hoc. Tailored methods are needed that are able to deal
with such selective inference. FDP control [13] and focused
BH (fBH) [15] are two alternatives to the BH procedure, which
can control type I error even for volcano-plot-selected features,
and in general for filtered discoveries. We have compared these
methods extensively. While fBH may lead to more discoveries

under certain conditions, it is limited to one a priori-chosen filter.
On the other hand, by controlling FDP bound (FDP) or median
FDP (mFDP) the researcher can freely adjust and update the filter,
even after seeing the data. Such interactive use of the method
is implemented for volcano plots in the Active Volcano Plot app.
There is more research to be done developing and comparing
methods in this area. For example, permutation-based versions
of fBH [15] and FDP-bound control [14] are available, may result
in improvement of power, but are not studied here.

Key Points
• Classic volcano plots use double-filtering based on

FDR-adjusted P-values and the estimated effect size,
which can lead to serious inflation of the false discov-
ery rate among selected features.

• Features with the highest fold-change are relatively
more likely to be a false positive discovery.

• Closed testing with Simes local tests and focused-BH
methods allow double filtering while preserving the
false discovery rate.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab053#supplementary-data
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Codes used for simulations and data analysis mentioned in
this manuscript are publicly available via GitHub (https://githu
b.com/mitra-ep/ActiveVolcanoPlot) and are archived on Zenodo
(https://zenodo.org/record/4459929).
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