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Gene set analysis methods are widely used to provide insight into high-throughput gene

expression data. There are many gene set analysis methods available. These methods

rely on various assumptions and have different requirements, strengths and weaknesses.

In this paper, we classify gene set analysis methods based on their components, describe

the underlying requirements and assumptions for each class, and provide directions for

future research in developing and evaluating gene set analysis methods.
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1. INTRODUCTION

High-throughput technologies such as DNAmicroarrays and RNA-Seq are widely used to monitor
the activity of thousands of genes in a single experiment. The primary challenge to realizing the
potential of these technologies is gaining biological insight from the generated data.

The early approach for analysing gene expression data was single-gene analysis, where
expression measures of each gene for case and control samples are compared using a statistical
test such as t-test or Wilcoxon rank-sum test and a p-value is calculated. Then, in order to reduce
the number of false positives resulting from multiple comparisons, an adjustment for multiple
comparison is made. Next, genes with a adjusted p-value smaller than a given threshold are
predicted as being differentially expressed. Finally, a biological interpretation is attempted using
these genes. This approach suffers from several shortcomings:

• In a high-throughput gene expression study, many single-gene tests are typically performed.
Consequently, adjustment for multiple comparisons is performed for a large number of genes.
Such adjustments may lead to many false negatives by detecting very few or even no gene as
being differentially expressed (Sreekumar et al., 2002; Yang et al., 2002; Mootha et al., 2003). This
issue is more pronounced when using conservative methods, such as Bonferroni and Šídák for
multiple comparison adjustment (Drăghici, 2016).

• In the single-gene approach often researchers use arbitrary cutoff values to choose a reasonable
number of genes for further study and interpretation. Different choices of threshold value may
lead to different biological interpretations (Pan et al., 2005). Conservative threshold values
may cause false negatives and relaxed thresholds may cause false positives (Breslin et al., 2004;
Ben-Shaul et al., 2005).

• Cellular processes are often associated with changes in the expression patterns of groups of genes
that share common biological functions or attributes. A meaningful change in a group of these
genes is more biologically reliable and interpretable than a change in a single gene. A priori
knowledge about some of these sets of genes is available through public online databases such as
GO (Consortium et al., 2015), KEGG (Kanehisa et al., 2015), and OMIM (Amberger et al., 2009).
The single-gene approach disregards this information. Incorporating this information in the data
analysis may provide valuable insight about underlying biological processes or functions.
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• Although high-throughput technologies make the monitoring
of expression of thousands of genes in a single experiment
possible, they introduce a challenge of dealing with high
dimensional data, often referred to as the “curse of
dimensionality” (Berrar et al., 2003). To deal with high
dimensional data, dimensionality reduction methods are
used for downstream analyses and visualizations. Relying on
sets of biologically related genes is the most intuitive and
biologically relevant approach to dimensionality reduction in
high-throughput gene expression studies.

• When differences in measured values for a single-gene
across treatments are subtle, the single-gene approach makes
it difficult to differentiate the true difference in gene
expression from the difference due to biological variability of
samples (Mootha et al., 2003; Subramanian et al., 2005). Gene
set analysis, on the other hand, might be able to detect such
subtle but concordant changes in expression pattern of genes
within a gene set.

• Multi-functional genes, i.e., genes that are involved in multiple
biological activities, are commonplace. For example, Pritykin
et al. (2015) reported that multi-functional genes make
up 24, 26, and 19% of annotated genes in Drosophila
melanogaster, Homo sapiens, and Saccharomyces cerevisiae,
respectively. The presence of such a large number of multi-
functional genes means single-gene analysis may lead to false
or ambiguous conclusions.

• Single-gene approach may report several hundred to a few
thousand genes as being differentially expressed. Interpreting a
long list of differentially expressed genes is a cumbersome task
prone to investigator bias toward a hypothesis of interest.

Gene set analysis, also know as enrichment analysis, is an attempt
to resolve these shortcomings and to gain insight from gene
expression data. The primary aim of gene set analysis is to
identify enrichment or depletion of expression levels of a given
set of genes of interest, referred to as a gene set. In this paper, we
use the phrase “differentially enriched” to describe gene sets that
either are enriched (more expression activity) or depleted (less
expression activity).

Gene sets are defined based on various criteria such
as membership in certain biological pathways or being co-
expressed together under a certain condition. These gene sets
are gathered into collections known as gene set databases.
MSigDB (Subramanian et al., 2005), GeneSigDB (Culhane et al.,
2011), and GeneSetDB (Araki et al., 2012) are three gene set
collections specifically developed for gene set analysis. These
collections of gene sets allow researchers to analyse the activity
of groups of biologically related genes rather than single genes
to determine which of these groups are relevant to a phenotype
of interest. The phenotypes of interest should be two different
conditions, e.g., healthy vs. diseased, or a specific treatment
versus no treatment. There are a large number of gene set
analysis methods available (Huang et al., 2009; Mitrea et al.,
2013), which have been used for a variety applications, including
studying complex diseases (Suárez-Fariñas et al., 2010; Wu et al.,
2016; Noori et al., 2020), drug responses Bateman et al. (2014),
and developmental stages across species (Cardoso-Moreira et al.,

2019) (See Table S1). These methods differ in their various
components such as their underlying assumptions, notion
of enrichment, null hypotheses, and significance assessment
procedures. Study of gene set analysis methods based on their
components helps to understand the strengths and weaknesses
of each category of methods, select an appropriate method for
a given experiment, facilitate the interpretation of the outcomes
of the analysis, and develop new methods with higher sensitivity
and specificity.

Although we provide a list of more than 100 gene set analysis
methods/tools (see Supplementary Materials), the purpose of
this review is not to discuss all tools available for gene set analysis.
Rather, using a representative set of methods, we aim to provide
a modular overview of gene set analysis methods based on their
various components.We highlight the shortcomings of each class
of methods and the challenges they face.

The rest of the paper is organized as follows. In section 2, we
survey most widely used over-representation analysis (ORA) and
functional class scoring (FCS) methods. Different significance
assessment approaches and null hypotheses are covered in
sections 3 and 4, respectively. Pathway topology-based methods
are briefly surveyed in section 5. Section 6 describes the
challenges facing gene set analysis methods. In section 7,
we provide directions for future research in developing and
evaluating gene set analysis methods. Finally, section 8 concludes
the paper with a short summary.

2. GENE SET ANALYSIS

Data from a high-throughput case-control experiment can be
organized in an expression matrix. This matrix is generated by
joining the corresponding expression values for all samples in
the experiment. Each column of the matrix corresponds to the
expression measures for one sample and each row corresponds
to the expression measures for one gene across all samples. This
expression matrix is the input for expression analyses including
single-gene and gene set analysis. Figure 1 shows an expression
matrix with ||C|| control samples and ||T|| case samples.

There are many gene set analysis methods available. Over-
representation analysis, functional class scoring, and pathway
topology-based methods are three main categories of gene set
analysis methods (Khatri et al., 2012). Figure 2 illustrates a
schematic view of univariate and multivariate FCS methods
and also ORA methods. In this paper, we focus on ORA and
FCS methods that comprise the main body of gene set analysis
methods used by researchers (the rest of section 2). We briefly
discuss Pathway topology-based methods in section 5. For a
comprehensive review and a comparison of topology-based
methods see works by Mitrea et al. (2013) and Ihnatova et al.
(2018).

2.1. Over-Representation Analysis
ORA is the natural extension of single-gene analysis and one of
the most widely used classes of gene set analysis methods. Due to
its simplicity, well-established underlying statistical model, and
ease of implementation, ORA is available through many tools.
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Huang et al. (2009) listed 68 gene set analysis methods and tools
of which 40 are ORA-based. These tools differ in their various
components such as gene set database, data visualization, and
user interface (Huang et al., 2009). ORA uses a list L of genes
each predicted as being differentially expressed by a single-gene
analysis method.

Given L and a gene set Gi that has n
′

i genes in common
with L, ORA considers Gi as being differentially enriched if

FIGURE 1 | Expression matrix for a pairwise comparison where

A(c1 ), . . . ,A(c||C|| ) columns represent control samples and A(t1 ), . . . ,A(t||T|| )

columns represent case samples. In this figure, g
(cj )

i and g
(tj )

i represent the

expression measures for the ith gene in the cj
th control sample and tj

th case

sample, respectively.

the occurrence of n
′

i differentially expressed genes in Gi is
unlikely to be due to chance. Table 1 illustrates the contingency
table representation for the over-representation of differentially
expressed genes in Gi given L and U, where Gi is the set of all
genes under study that are not members of Gi. The set of n genes
under study is called the reference set or background set and
depicted by U, and Gi is the complement of Gi with respect to U.

Under the null hypothesis that there is no association between
differential expression andmembership inGi, we can assume that
Gi is the result of a simple random sampling of ||Gi|| genes from
U; therefore, the probability of having n

′

i differentially expressed
genes within Gi can be calculated using the hypergeometric
distribution as follows (Drăghici, 2016):

f (n′i; n, ‖Gi‖, ‖L‖) =

(‖Gi‖
n′i

)

×
(n−‖Gi‖
‖L‖−n′i

)

( n
‖L‖

) (1)

TABLE 1 | Representation of ORA as a contingency table.

Genes in L Genes not in L Total

Genes in Gi ni
′ ||Gi || − ni

′ ||Gi ||

Genes in Gi ||L|| − ni
′ n− ||Gi|| − (||L|| − ni

′) n− ||Gi ||

Total ||L|| n− ||L|| n

Each cell contains a count of genes satisfying the conditions associated with the row and

column.

FIGURE 2 | A schematic view of over-representation analysis (ORA) and univariate and multivariate FCS methods.
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The significance of the association between genes in Gi and genes
in L can be assessed using Fisher’s exact test, as follows:

p =

||Gi||
∑

j=ni ′

f (j; n, ||Gi||, ||L||) = 1−
ni

′−1
∑

j=0

f (j; n, ||Gi||, ||L||) (2)

Although Fisher’s exact test gives the exact p-value for both small
and large cell counts in Table 1, the calculation can become
numerically unstable for large cell counts. Therefore, alternatives
are also used to approximate the p-value.

For large values of n, the hypergeometric distribution tends to
the binomial distribution. Therefore, the binomial distribution
can be used to estimate the p-value for Fisher’s exact test
(Drăghici et al., 2003). The binomial estimation of Equation (1)
is as follows:

fb(ni
′; ||L||,

||G||

n
) =

(

||L||

ni′

)

×

(

||Gi||

n

)ni
′

×

(

1−
||Gi||

n

)||L||−ni
′

(3)
Therefore, Equation (2) can be estimated as:

p = 1−
i−1
∑

j=0

fb(j; ||L||,
||Gi||

n
) (4)

where fb in Equation (3) and (4) represents the binomial
distribution density function.

Another alternative to estimate the p-value is the χ2 test for
equality of proportions (Van Belle et al., 2004). This test has also
been used in the context of over-representation analysis (Khatri
et al., 2002; Drăghici et al., 2003; Zhong et al., 2004).

2.2. Functional Class Scoring Methods
The main assumptions of ORA are that genes are independent
and equally effective in biological processes. Although these
assumptions simplify problemmodeling, they are not biologically
valid. It is well-established that genes, proteins, and other
biomolecules often act in concert (Tilford and Siemers, 2009). In
addition, ORA only utilizes differentially expressed genes, which
often are the result of applying a p-value cutoff, and all the
quantitative measures for the rest of the genes are disregarded.
However, a consistent change in the expression of genes—even
those with a p-value slightly greater than the cutoff value—may
contribute to the detection of pathway activities.

In contrast to ORA, the main goal of FCS methods is to
use all information from an expression matrix to address the
enrichment problem without relying on the aforementioned
biologically invalid assumptions. Therefore, FCS methods—
instead of working with a list of differentially expressed genes—
take advantage of an expression matrix of gene expression
measures for all genes to discern differential enrichment of
gene sets.

There are many FCS methods available (see Table S1). These
methods can be categorized into two classes: univariate and
multivariate methods. In univariate FCS methods, usually a
gene score is calculated for each gene using each row of the

expression matrix. Then these gene scores are used to calculate
a gene set score for each gene set. Finally, the significance of the
gene set scores is assessed and differentially enriched gene sets
are reported. Multivariate methods skip the step for calculating
gene scores and directly calculate gene set scores from the
expression matrix.

An FCS method often consists of a set of common
components such as a gene score that is a statistic summarizing
the expression level of a gene across control and case samples,
a gene set score that summarizes the expression level of genes
within a gene set as a single statistic, a procedure for significance
assessment, and an adjustment for multiple comparisons.

2.2.1. Univariate Functional Class Scoring Methods
GSEA (Mootha et al., 2003) is one of the most widely used
univariate FCS methods. It uses a signal-to-noise ratio (SNR)
difference between gene expression measures in control and
case samples to calculate a gene score. The signal-to-noise ratio
difference is as follows (Tamayo et al., 2016):

SNR(gi) =

∑||C||
j=1 g

(cj)

i

||C|| −

∑||T||
j=1 g

(tj)

i

||T||

σ ′
c,i + σ ′

t,i
(5)

σ ′
c,i = Max



σ

(

g
(c1)
i , . . . , g

(c||C||)
i

)

, 0.2×

∑||C||
j=1 g

(cj)
i

||C||





where g
(cj)
i is the gene expression level for gene gi in sample A(cj)

(see Figure 1); σ ′
c,i is the standard deviation of expression levels

for gene gi among control samples; g
(tj)
i and σ ′

t,i are defined
analogously using case samples.

GSEA ranks all genes according to their scores. Then to
measure the association between members of a given gene
set Gi and treatments/phenotypes, it calculates a gene set
score—also referred to as enrichment score (ES) in GSEA
terminology—using a Kolmogorov–Smirnov statistic. The ES
value for Gi, denoted as ES(Gi), is calculated using a running
sum initialized as 0. Assume g1, . . . , gn is the sorted list of all
genes according to SNR difference in decreasing order. For each
gene in the sorted list starting with the first one the running sum

(enrichment score) is updated by adding a value of +
√

n−||Gi||
||Gi||

when the gene belongs to Gi and by subtracting a value of
√

||Gi||
n−||Gi||

when the gene does not belong to Gi (Mootha et al.,

2003). The ES value is calculated “as the maximum observed
positive deviation of the running sum” (Mootha et al., 2003), as
shown in Equation (6).

ES(Gi) = max
1≤l≤n

l
∑

k=1

xk (6)

xk =















+
√

n−||Gi||
||Gi||

Rk ∈ Gi

−
√

||Gi||
n−||Gi||

RK /∈ Gi
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After calculation of the actual ES values for all gene sets, the
method determines the maximum ES, denoted as MES. The
significance of the calculated MES value is assessed using a
permutation test (see section 3). The sample labels are permuted
1,000 times, and for each permutation aMES value is calculated.
Finally, the significance ofMES of the actual data is calculated as
the fraction of permutations that lead to anMES higher than the
MES of the actual data.

It should be mentioned that the significance of the MES does
not provide any insight about the significance of the enrichment
score of a given gene set Gi, although this is the main purpose of
enrichment analysis. In fact, assessing the significance of theMES
tests the null hypothesis that “no gene set is associated with the
class distinction” (Mootha et al., 2003), where the rank ordering
is used as the measure of association. Therefore, rejection of this
null hypothesis only suggests that there is at least one gene set
for which the rank ordering of its members is associated with the
sample classes, i.e., phenotypes.

Since the enrichment score is defined as the “maximum
observed positive deviation of the running sum” (Mootha
et al., 2003), it does not detect differential enrichment of gene
sets that have the majority of their genes up-regulated unless
the phenotypes are swapped and the GSEA procedure is run
again. Hence, this method should be considered as a one-sided
test (Tian et al., 2005). In addition, in order to be able to rely
on the enrichment scores, the significance of each ES should be
assessed. However, themethod tested the null hypothesis that “no
gene set is associated with the class distinction” (Mootha et al.,
2003), which is not extendable to the ES for each gene set.

Damian and Gorfine (2004) raised concerns about the
capabilities of GSEA by way of suggesting a synthesized example.
They showed that GSEA may ignore highly enriched gene sets
solely due to the size of gene sets. In their hypothetical example
they assumed that there is a given dataset of gene expression
values for genes in three gene sets G1, G2, and G3 of size n,
5n, and 4n, respectively, where—after calculation of gene scores
and sorting them—genes in G1 ranked higher than genes in
G2, and genes in G2 ranked higher than genes in G3. Assume
that G1 is the only enriched gene set with all genes being
down-regulated, and G2 and G3 are not differentially enriched.
GSEA assigns enrichment scores of 3n, 4n, and 0, respectively,
to G1, G2, and G3. Therefore, G2 is preferred to G1, although
G1 is the only enriched gene set. Furthermore, Subramanian
et al. (Subramanian et al., 2005) reported that GSEA leads to high
enrichment scores for gene sets clustered around the middle of
the sorted list of all genes. These gene sets are often not associated
with the phenotypes under study (Subramanian et al., 2005).

Considering these shortcomings, Tian et al. (2005) suggested
using the t-test orWilcoxon rank-sum test statistics as alternative
gene set scores instead of the Kolmogorov–Smirnov statistic
in GSEA. They suggested that these scores are able to
detect moderate but coordinated shift from the background
distribution. To generate the background distribution, they used
both gene sampling and phenotype permutation (see section 3).
In fact, instead of testing differences in distribution of gene scores
across treatments, they tested a location change, i.e., shift in mean
or median. The shortcoming of the method is a lack of sensitivity

in detecting differentially enriched gene sets where some of its
genes are up-regulated and some down-regulated (Irizarry et al.,
2009). This is due to the inherent inability of the average to detect
those effects.

PAGE, a parametric method for gene set enrichment
analysis, was proposed as a statistically more sensitive and
computationally less demanding alternative for GSEA (Kim and
Volsky, 2005). PAGE tests the null hypothesis that “all genes in
a given microarray dataset are independent of each other and
identically distributed, that is, they are not co-regulated” (Kim
and Volsky, 2005). It uses fold change between sample groups,
i.e., treatments, to calculate a Z-score for a given gene set Gi.
The significance of this Z-score is then calculated using a normal
distribution. PAGE starts with calculating the fold change value
of each gene as the gene score. Next, it calculates mean (µ) and
standard deviation (σ ) of all fold change values. Then, for a given
gene set Gi, it calculates µi as the average fold change value of
genes in Gi. After that, a score Zi is calculated as follows:

Zi =
µi − µ

σ
||Gi||

(7)

Finally, the significance of Zi is assessed using the standard
normal distribution. The rational behind using the
normal distribution is that according to the Central Limit
Theorem (Freund et al., 2004), the sampling distribution of the
average of an independent random variable for large sample
sizes is normal, regardless of the distribution of the underlying
population. Therefore, the distribution of average fold change
values for gene sets should be normal. This method has been
reported to achieve a high sensitivity while suffering from a low
specificity (Maleki et al., 2019b).

In another attempt to address the aforementioned
shortcomings of GSEA, Subramanian et al. (2005)—almost
the same group who proposed GSEA—adjusted the method
by using a weighted Kolmogorov–Smirnov statistic as gene set
score. They also used False Discovery Rate (FDR) to adjust
for multiple comparisons (Subramanian et al., 2005). First, the
adjusted method calculates the gene score for each gene. Assume
g1, . . . , gn is the list of all genes sorted according to their score;
then for a gene set Gi the gene set score is calculated as follows:

ES(Gi) = max
1≤k≤n

(

Phit(Gi, k)− Pmiss(Gi, k)
)

(8)

Phit(Gi, k) =
∑

gt∈Gi
t≤k

|rt|
p

R(Gi)

R(Gi) =
∑

gt∈Gi

|rt|
p

Pmiss(Gi, k) =
∑

gt /∈Gi
t≤k

1

n− ||Gi||

where p is a positive constant and a parameter of the method;
rt is the gene score for the tth gene in the sorted list. Next, the
significance of the gene set scores is assessed using gene sampling
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or phenotype permutation (see section 3). Finally, adjustment for
multiple comparisons is made.

It should be mentioned that the enrichment score in the
adjusted GSEA is similar to, but not the same as, the enrichment
score in GSEA. To calculate the enrichment scores, both methods
calculate a running sum by traversing the list of all genes ranked
according to their gene scores. For each gene in the list, the
original GSEA method updates the running sum by a constant
value, while the adjusted GSEA increases the running sum with

a value of |rt |
p

∑

gt∈Gi
|rt |p

to increase the effect of genes with higher

absolute value of the gene score (|rt|p), i.e., genes at the beginning
or at the end of the ordered list, and to decrease the effect of genes
in the middle. Hereafter, we use GSEA to refer to the adjusted
GSEA, unless stated otherwise. GSEA is still a one-sided test. In
addition, it is not obvious how GSEA addresses the effect of gene
set size, as it was reported to affect the results of the original
GSEA (Damian and Gorfine, 2004). Further, an ad hoc choice of
1 for p has been used in the updated version of GSEA.

Irizarry et al. (2009) proposed the use of a simple parametric
method as an alternative to GSEA. They mentioned that GSEA is
based on a Kolmogorov–Smirnov test which is known for its lack
of sensitivity. In order to avoid using a Kolmogorov–Smirnov test
statistic and also a permutation test, which is computationally
demanding, they suggested using a parametric method that
employs standard normal distribution to assess the significance of
each enrichment score. They used the two-sample t-test statistic
as the gene score to measure the degree of association between
each gene and phenotype. For a given gene g, this value is denoted
by t(g). They evaluated the assumption of normality of t(g) values
for all genes using a Q-Q plot for 8 datasets—all datasets used
by Subramanian et al. (2005) and Mootha et al. (2003). Based on
the observed Q-Q plots, they suggested that assuming standard
normal distribution for distribution of t(g) values in practice is
valid. For a given gene set Gi, they suggested a Z-score as follows:

Z-Score(Gi) =
√

||Gi|| × t̄(Gi) (9)

t̄(Gi) =

∑

g∈Gi
t(g)

||Gi||

By accepting the assumption that the t-test statistic has a
standard normal distribution and also ignoring the correlation
between gene set members, they inferred that the Z-score has
a standard normal distribution as well. Therefore, they assessed
the significance of Z-scores using a standard normal distribution.
Hereafter, we refer to this method as SEA.

Irizarry et al. (2009) admitted that a limitation of the proposed
Z-score is that it may not be able to detect gene sets where
almost half of the genes are up-regulated and the rest are down-
regulated. To deal with this issue, they suggested a standardized
χ2-test score as follows:

χ2-score(Gi) =

∑

g∈Gi

(

t(g)− t̄ (Gi)
)2

− (||Gi|| − 1)

2 (||Gi|| − 1)
(10)

They approximated the distribution of the χ2-score for a gene
set of size 20 or higher using the standard normal distribution to
calculate the significance of the gene set score.

Tamayo et al. (2016) refuted the claim made by Irizarry et al.
(2009) that their simple enrichment analysis method, i.e., SEA,
outperforms GSEA (Subramanian et al., 2005). They focused on
the assumption made by SEA to ignore gene-gene correlation,
questioning its practicality and whether it is realistic. Comparing
the results of SEA and GSEA, they reported that SEA uniformly
produces more significant gene sets. For example, they reported
that for a pancreas dataset (Abdollahi et al., 2007), SEA predicted
42% of gene sets as significantly differentially enriched, a number
almost 5 times more than that from GSEA.

In addition, Tamayo et al. (2016), using the approach of Gatti
et al. (2010), tested the effect of gene-gene correlation on
the results of GSEA and SEA, where there was no significant
correlation structure between gene profiles and phenotypes. In
this regard, for each dataset, they produced results for both
SEA and GSEA for 1,000 datasets resulting from the random
permutation of phenotype labels in an expression profile (see
section 3). Since after random permutations of gene profile labels
there is almost no relation between gene profiles and phenotypes,
we expect almost no significant gene set to be reported as
differentially enriched by gene set enrichment analysis methods.
(Tamayo et al., 2016) reported that while GSEA predicted almost
0% of gene sets as differentially enriched, SEA predicted many
gene sets as differentially enriched.

Jiang and Gentleman (2007) suggested several gene and gene
set scores as extensions to GSEA. They suggested a linear
model for calculating a gene score. Equation (11) shows the
linear model.

Yg,i = µg + βgXi + ǫg,i (11)

where Yg,i is the measured expression value for gene g from the

ith sample. For a given gene g and 1 ≤ i ≤ n, variables ǫg,i are
assumed to be error terms that are independent and normally
distributed with a mean of zero. Xi is a binary variable showing
phenotype, i.e., class, of the ith sample. For a given gene g, µg

represents the mean of expression measures for the phenotype
corresponding to Xi = 0, and βg represents the difference
between the mean of expression measures of g for the phenotype

corresponding to Xi = 1 and µg . They used
β̂g
sg

as the gene score,

where β̂g is the estimate of β and sg is the estimate for standard
deviation of expression measurements for gene g.

In addition, they suggested using median and the sign test,
which is a non-parametric test to assess consistent differences in
paired samples, as alternatives to the gene set statistic. The sign
test was used to assess the prevalence of up- or down-regulation
of genes within a gene set, regardless of the magnitude of this
regulation. They found a lack of sensitivity when using the sign
test as gene set score. Also, they suggested that median is less
susceptible to outlier effects in comparison to using mean as a
gene set score.
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2.2.2. Multivariate Functional Class Scoring Methods
Multivariate FCS methods, unlike single variate FCS methods,
directly calculate gene set scores from expression data and skip
the intermediate step of calculating gene scores (see Figure 2).
Goeman et al. (2004) proposed the Globaltest method, based
on a generalized linear model, to address the question whether
the global expression pattern of genes in a given gene set Gi

is significantly associated with a biological outcome of interest.
The outcome of interest can be a binary group label representing
two experimental conditions or a continuous variable. The idea
behind the Globaltest method is that if genes in a given gene
set Gi can be used to correctly predict a biological outcome,
then genes in Gi should have different expression patterns for
different outcomes. In Globaltest, the expression profile of genes
in Gi across samples is represented using a matrix X, where Xk,j

is the expression value of the jth gene of Gi in the kth sample;
the biological outcome of interest is represented as an n × 1
vector Y , where Yk,1 is the outcome of interest for the kth sample.
In a pairwise comparison of phenotypes, Yk,1 is a binary value
representing the phenotype of the kth sample. In order to model
the relation between X and Y , Globaltest uses the following
generalized linear model:

E(Yi | β) = h−1(α +

m
∑

i=1

βjxi,j) (12)

where βj (1 ≤ j ≤ m) is the regression coefficient for
the expression value of gene gj; α is an intercept value; h is
a link function. h can be the identity function resulting in a
linear regression model, or logit function resulting in a logistic
regression model. In order to test if genes in Gi are able to predict
the biological outcome, the following null hypothesis should
be tested.

H0 :β1 = β2 = · · · = βm = 0

Considering the fact that the number of samples is usually less
than number of variables, i.e., gene set size ||Gi||, this null
hypothesis cannot be tested in a classical way. In order to
address this problem, Goeman et al. accepted the simplifying
assumption that the regression coefficients all come from the
same distribution with a mean of zero and an unknown variance
of τ 2. In this case, the aforementioned null hypothesis is
equivalent to the following null hypothesis:

H0 : τ
2 = 0

An implementation of the Globaltest method is available as
an R-package from Bioconductor (Gentleman et al., 2004).
The implementation uses a diagonal covariance matrix, which
means that the correlation between genes in a given gene set is
ignored (Ackermann and Strimmer, 2009).

Kong et al. (2006) usedHotelling’sT2-test for gene set analysis.
This test is the natural generalization of the t-test for testing the

difference between multivariate means of two populations. The
test statistic for a given gene set Gi is as follows:

T2 = (X̄C − X̄T)
tr(S

n1 + n2

n1n2
)−1(X̄C − X̄T) (13)

where X̄C and X̄T are the mean expression vectors of genes in
the gene set Gi for control and treatment samples, respectively;
n1 and n2 are the number of control and treatment samples,
respectively; tr denotes the matrix transpose operator. Under the
null hypothesis (X̄C = X̄T) and when n > m + 1, the following
statistic follows an F-distribution withm and n−m−1 degrees of
freedom, wherem is the number of genes in Gi and n = n1 + n2:

n−m− 1

(n− 2)m
T2 (14)

Since m, i.e., gene set size, is often bigger than n, i.e., sample
size, Kong et al. (2006) employed single value decomposition for
dimension reduction to be able to use this approach.

Successful application of multivariate statistical tests depends
on meeting their stringent underlying requirements such as
normality of data, adequacy of sample size, and equality of
variance (Venter and Maxwell, 2000). It is almost impossible
to meet all of these conditions when testing for differential
enrichment of every gene set. Therefore, methods that are
not robust to violating these assumptions tend to lead to
irreproducible results. This has been a reason why multivariate
gene set analysis methods have not been as widely used compared
to univariate methods.

3. SIGNIFICANCE ASSESSMENT OF GENE
SET SCORE

Based on the approach used for significance assessment, gene
set analysis methods can be classified as parametric and non-
parametric methods. In parametric methods, after calculating
a gene set score for each gene set, a parametric distribution
is used to assess the significance of this score. Non-parametric
approaches, on the other hand, rely on an empirical distribution
to assess the significance of the gene set scores. These methods
often do not make any strong assumptions about the underlying
distribution of the gene set scores. Phenotype permutation and
gene sampling are the main non-parametric approaches used
in gene set analysis. For example, methods such as GSEA
offers both phenotype permutation and gene sampling for
significance assessment.

3.1. Parametric Approach
The parametric approach is another way to assess the significance
of gene set scores (Kim and Volsky, 2005; Irizarry et al., 2009).
In this approach, first, a gene set score is proposed. Then,
under the null hypothesis and by accepting some simplifying
assumptions, a parametric distribution for the gene set statistic
is proposed. Finally, the parametric distribution is used to assess
the significance of gene set statistics.
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Parametric methods are built based on some knowledge or
assumptions about the underlying distribution of the gene set
scores. For example, PAGE assumes that the average fold-change
value of genes within a gene set follows a normal distribution.
SEA, another parametric approach, assumes that its gene set
score—which is a weighted average of the t-test score for each
gene in the gene set—follows a normal distribution. Although
parametric approaches are not computationally demanding, they
have been criticized as being too simplistic and unable to detect
truly differentially enriched gene sets (Tamayo et al., 2016).

3.2. Non-parametric Methods
3.2.1. Gene Sampling
In gene sampling the significance of a gene set score S(Gi) for
a given gene set Gi is assessed by comparing it to the scores of
randomly assembled sets of ||Gi|| genes from the reference set
U, i.e., all genes under study. In gene sampling method, a large
number of random gene sets are assembled, and their scores are
calculated. Then the significance value of the gene set score of Gi

is calculated as the fraction of assembled gene sets that lead to
stronger scores than the score of Gi, where a score in comparison
to another is considered stronger if it is more in favor of rejecting
the null hypothesis of interest.

Since gene sampling does not depend on the number of
samples, it has been widely used for gene set analysis of datasets
with small sample sizes (Subramanian et al., 2005; Tian et al.,
2005; Ackermann and Strimmer, 2009). The main shortcoming
of gene sampling is that it relies on the unrealistic assumption
of independence between genes within a gene set. Usually genes
within a gene set show a highly correlated behavior; therefore,
a gene sampling method may incorrectly predict a gene set as
differentially enriched only because of high correlation between
its genes. In this regard, it may cause false positive predictions.
Another shortcoming of gene sampling is being computationally
demanding. For each gene set Gi, the whole process of gene
set score calculation should be repeated for a large number of
randomly assembled gene sets. In implementations of the gene-
sampling approach, usually the number of assembled gene sets
is an order of magnitude of 1,000. This number of repetitions
makes the significance evaluation computationally demanding.
Moreover, gene sampling may lead to a lack of statistical
reliability of the significance values for large gene sets (Keller
et al., 2007). Even using an order of magnitude of 1,000 assembled
gene sets may not be enough to represent the background
distribution; therefore, the significance value for large gene sets
may not be statistically reliable.

3.2.2. Phenotype Permutation
Phenotype permutation, also known as sample permutation,
assesses the significance of a gene set score of a given gene set
Gi by permuting sample labels.

First, the gene set score of Gi is calculated. Let SGi

denote the gene set score of Gi according to the actual
gene expression profile. Then a large number of expression
profiles are synthesized by permuting the sample labels, i.e.,
the column labels of the actual expression profile. For a
synthesized expression profile, we expect no association between
the expression patterns of genes in Gi and the phenotypes. Next,

for each synthesized expression profile, the gene set score of
Gi is calculated. Finally, the significance of SGi is calculated as
the fraction of the synthesized expression profiles that lead to a
stronger score than SGi , where a score in comparison to another
is considered stronger if it is more in favor of rejecting the null
hypothesis of interest.

Phenotype permutation, unlike gene sampling, does not
rely on the unrealistic assumption of gene independence, but
it requires a large number of samples for each phenotype.
This condition most often is not satisfied. Instead, due to
ethical conduct in animal and human research and limited
budgets, having a large number of samples is not a choice
for many researchers. In some cases, like for rare diseases,
having a large sample size is not possible at all. Therefore,
phenotype permutation is generally not applicable, and some
gene set analysis tools provide gene sampling as an alternative
to phenotype permutation (Subramanian et al., 2005).

3.2.3. Dynamic Programming Approach
Keller et al. (2007) used a dynamic programming approach
to assess the significance of the enrichment score used in the
method proposed by Mootha et al. (2003). Their dynamic
programming approach assessed the significance of the gene
set scores derived from the unweighted Kolmogorov–Smirnov
statistic. For a given array containing n genes and a given
gene set Gi, first, they calculated the gene set score RSGi . Then
they calculated its p-value as the probability of obtaining a
gene set score equal to or greater than RSGi , assuming that
there is no association between the distribution of genes in Gi

and the phenotypes. Since there are n||Gi|| enrichment scores
possible (Keller et al., 2007), they calculated the number of
enrichment scores less than RSGi and then used the following
formula to calculate the p-values:

p-value(RSGi ) =

1−
number of enrichment scores that are less than RSGi

(

n
||Gi||

) (15)

In order to calculate the number of enrichment scores that are
less than RSGi using a dynamic programming approach, they
initialized a 2||Gi||(n − ||Gi|| + 1) × (n + 1) matrix M. Each
row of M, indexed from −(n − ||Gi||) × ||Gi|| to (n − ||Gi||) ×
||Gi||, represents all possible running sum scores. They initialized
M0,0 = 1 and the rest of the elements ofM as 0. Starting from the
second column (k = 1), they updated all elements of the matrix,
column by column, according to Equation (16).

M(j, k) =











M(j− n+ ||Gi||, k− 1)+M(j+ ||Gi||, k− 1)

if − |RSGi | < j < |RSGi |

0 otherwise

(16)

Finally, M(0, n) was reported as the number of enrichment
scores with a maximum deviation smaller than RSGi . Keller
et al. (2007) suggested that their proposed dynamic programming
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approach is more efficient than the permutation approach
and that their method does not suffer from the statistically
unreliable results produced by the permutation method, when
the number of permutations is not large enough. They claimed
that their approach is almost 10 times faster than phenotype
permutation and gene sampling. It should be mentioned that the
main shortcoming of this approach is that, unlike permutation
approach, it is not extendable to other gene set scores such as the
weighted Kolmogorov–Smirnov statistic in GSEA.

4. NULL HYPOTHESES IN GENE SET
ENRICHMENT ANALYSIS

Defining a null hypothesis is an essential step in conducting
any statistical inference. Different null hypotheses have
been used in gene set enrichment analysis: competitive null
hypothesis (Goeman and Bühlmann, 2007), self-contained
null hypothesis (Goeman and Bühlmann, 2007), and hybrid
null hypothesis (Ackermann and Strimmer, 2009). Visual
representations of these null hypotheses are presented in
Figures 3–5, respectively. Understanding the implications of
these hypotheses is essential for having a valid interpretation of
the results of enrichment analysis. In this section, we discuss the
limitations and requirements of each class of hypotheses.

4.1. Competitive Null Hypothesis
For a given gene set Gi, a competitive null hypothesis states
that genes in Gi do not have a different expression pattern in
comparison to the rest of the genes under study (Ḡi). Gene set
analysis methods differ in the way they measures the expression
pattern of genes in a gene set. Figure 3 illustrates a gene
sampling approach under the competitive null hypothesis for a
hypothetical gene set.

After calculation of a gene set score f (Gi) for a gene set Gi, the
significance of f (Gi) is assessed in an empirical manner through
a gene sampling approach (see section 3.2.1). Consequently,
the competitive approach has been criticized for using genes
as sampling units, whereas the purpose of the experiment is
to detect changes across phenotypes (Goeman and Bühlmann,
2007; Ackermann and Strimmer, 2009). It also has been criticized
for ignoring the correlation between genes within a gene set.
Therefore, methods based on the competitive approach may
detect a gene set as being differentially enriched just because
of the correlation between its genes (Goeman and Bühlmann,
2007; Ackermann and Strimmer, 2009). These methods also
have been reported to be severely effected by inclusion of
irrelevant genes (Tripathi et al., 2013). Consequently, different
procedures used for filtering irrelevant genes lead to different
statistical powers.

4.2. Self-Contained Null Hypothesis
For a given gene set Gi, a self-contained null hypothesis states
that genes in Gi do not have a different expression pattern across
phenotypes. Figure 4 illustrates phenotype permutation under
the self-contained null hypothesis for a hypothetical gene set.

To test the self-contained null hypothesis, a phenotype
permutation approach is used (see section 3.2.2). Consequently,

testing a self-contained null hypothesis leads to preserving the
complex correlation of genes within a gene set. However, it
requires a large number of samples for each phenotype. This
condition may not be met by many biological experiments.

4.3. Hybrid Null Hypothesis
Hybrid null hypotheses concern changes in the relative
expression patterns of genes. These null hypotheses can be
classified as the competitive hybrid null hypothesis or self-
contained hybrid null hypothesis. Methods based on hybrid null
hypotheses calculate a gene set score for a given gene set Gi using
expression measures from all genes, i.e., genes in Gi as well as
genes in Ḡi; then they assess the significance of this score either
using a gene sampling or phenotype permutation approach.
GSEA and its variants, which are based on Kolmogorov–
Smirnov statistic, use hybrid null hypotheses (Mootha et al.,
2003; Subramanian et al., 2005; Hung et al., 2010). For
example, the current version of GSEA (version 4.0.3 which is
available at www.gsea-msigdb.org) offers gene sampling for the
significance assessment of a competitive hybrid null hypothesis
and phenotype permutation for the significance assessment of a
self-contained hybrid null hypothesis.

It should be mentioned that some authors have classified
hybrid methods under competitive or self-contained methods
based on whether they use a sample permutation or a gene
sampling for significance assessment (Das et al., 2020). In self-
contained methods, the calculated gene set score f (Gi) for a gene
set Gi is defined based on the expression values of genes in Gi.
The rest of genes, i.e., genes in Ḡi, do not contribute to this
calculation. However, in a hybrid method, genes in Ḡi can also
contribute to the value of f (Gi). Examples of hybrid methods are
those using variants of Kolmogorov–Smirnov statistics, where
f (Gi) is defined based on the sorted list of all gene scores. Figure 4
illustrates phenotype permutation under self-contained hybrid
null hypothesis for a hypothetical gene set. Figure S1 visualizes
a gene sampling under the competitive hybrid null hypothesis.

5. PATHWAY TOPOLOGY-BASED
METHODS

Not all genes in a pathway play an equally important role in
its activity. The knowledge of pathway topology, such as gene
product interactions, can help in quantifying the importance
of a gene to the pathway activity. Topology information
could potentially improve the accuracy of enrichment analysis.
Topology-based pathway analysis methods incorporate such
information about pathways (Draghici et al., 2007; Emmert-
Streib, 2007). These methods also can be classified as ORA-
based, univariate, and multivariate methods. Also, they test null
hypotheses similar to the manner of other gene set analysis
methods (Bayerlová et al., 2015; Ihnatova et al., 2018), as
described in section 4.

Rahmatallah et al. (2016) proposed GSNCA, a self-contained
multivariate approach for detecting changes in the coexpression
structure between two conditions. GSNCA was designed to
account for all cross-correlations of each gene and to assign
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FIGURE 3 | Visualization of gene sampling under the competitive null hypothesis. In this figure, g
(cj )

i and g
(tj )

i represent the expression measures for the ith gene in the

cj
th control sample and tj

th case sample, respectively. A competitive null hypothesis states that there is no difference between the expression patterns of genes in a

given gene set in comparison to that of the rest of the genes. For example, given a gene set Gi consisting of three genes Gi = {g2,g4, g5}, depicted in green, the

competitive null hypothesis states that there is no difference in the expression pattern of these genes compared to that of the rest of genes, i.e., g1, g3, g6, . . . ,

gm—denoted as Ḡi and depicted in blue. In univariate methods, for each gene gi , a gene score sgi is calculated using the expression measures for gi across control

and case samples. Then a gene set score f (Gi )—which is representative of the difference in the expression pattern of genes in Gi in control samples vs. case

samples—is calculated using the gene scores of genes in Gi . Often a gene sampling approach is used for the significance assessment of the gene set score f (Gi ). In a

multivariate setting, the intermediate step of summarizing expression values for each gene to a gene score sgi is omitted, and f (Gi ) is directly calculated from the

expression values of genes in Gi .

an importance value to each gene in a pathway. They
compared the results of GSNCA with that of GSCA (Choi
and Kendziorski, 2009). Rahmatallah et al. (2016) reported that
GSNCA performed better than GSCA for large gene sets and
for scenarios with a non-uniform change in the expression of
pathway members.

Bayerlová et al. (2015) evaluated three competitive
univariate methods—developed based on Wilcoxon rank-sum,
Kolmogorov–Smirnov, and Fisher’s exact test statistics—with
three topology-based methods including SPIA (Tarca et al.,
2009), CePa (Gu et al., 2012) (both competitive and self-
contained versions), and PathNet (Dutta et al., 2012). They
reported that none of the topology-based methods outperformed
the univariate methods.

In a another study, Ihnatova et al. (2018) using simulated
and real datasets evaluated several pathway analysis methods
including: TAPPA (Gao and Wang, 2007), SPIA, TopologyGSA
Massa et al. (2010), PRS (Ibrahim et al., 2012), CePa, and
Clipper (Martini et al., 2013). Among these methods, TAPPA is

a univariate approach; TopologyGSA and Clipper are considered
multivariate methods; and SPIA, PRS, and CePa are considered
ORA-based methods. They reported that the significance values
reported by all of these methods correlated with pathway sizes,
where large pathways achieved lower p-values in comparison
to the smaller pathways. Also, they reported that multivariable
methods—i.e., TopologyGSA and Clipper—suffered from a very
low specificity, reporting a large number of false positives. In
contrast, ORA-based methods—SPIA, PRS, and CePa—achieved
the highest specificity.

6. CHALLENGES

There are many gene set analysis methods available with
no consensus about the best practices. One contributing
factor to this lack of consensus is the lack of gold standard
expression datasets. A gold standard dataset for evaluation
of gene set analysis methods requires the enrichment
status of given gene sets to be known a priori. The main
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FIGURE 4 | Visualization of phenotype permutation under the self-contained null hypothesis. In this figure, g
(cj )

i and g
(tj )

i represent the expression measures for the ith

gene in the cj
th control sample and tj

th case sample, respectively. The self-contained null hypothesis states that the expression pattern of genes within a gene set

does not differ between case and control samples. For example, given a gene set Gi consisting of three genes Gi = {g2, g4,g5}, the self-contained null hypothesis

states that there is no difference in the expression pattern of these genes in control samples vs. case samples. It should be noted that the self-contained null

hypothesis does not concern the rest of genes, i.e., genes not in Gi , which are shown in white here. In univariate methods, for each gene gi , a gene score sgi is

calculated using the expression measures for gi across control and case samples. A gene set score f (Gi )—which is representative of the difference in the expression

pattern of genes in Gi in control samples vs. case samples—is calculated using the gene scores of genes in Gi . Often a phenotype permutation approach is used for

significance assessment of the gene set score f (Gi ). In a multivariate setting, the intermediate step of summarizing expression values for each gene to a gene score sgi
is omitted, and f (Gi ) is directly calculated from the expression values of genes in Gi .

challenges facing gene set analysis, such as the lack of
reproducibility, specificity, and/or sensitivity, are rooted
in the lack of gold standard datasets. If available, gold
standard datasets could help with detecting and addressing
these challenges.

Despite having a well-established underlying statistical model,
ORA suffers from several shortcomings. ORA relies on the gene-
gene independence assumption that is known to be biologically
invalid (Gatti et al., 2010; Tarca et al., 2013). Also, ORA uses a
list of differentially expressed genes as input and treats all genes
equally regardless of their magnitude of differential expression.
Moreover, differentially expressed genes are determined using
a single-gene analysis method, where the use of arbitrary
thresholds is often a common practice. It has been shown that the
choice of these thresholds might affect the result of downstream
analysis (Pan et al., 2005). ORA is also incapable of detecting low
but concordant signals, i.e., below the used threshold, from genes
within a gene set. These concordant signals are believed to be
biologically important (Mootha et al., 2003; Subramanian et al.,
2005).

FCS methods aim at solving some of these problems. There
are many FCS methods available, but there is no consensus
among researchers about the method of choice for a given
experiment (Goeman and Bühlmann, 2007; Liu et al., 2007;
Ackermann and Strimmer, 2009; Irizarry et al., 2009; Fridley
et al., 2010; Hung et al., 2011; Tamayo et al., 2016; Zyla et al.,
2019). Maleki et al. (2019b) proposed a systematic methodology
for evaluation of 13 gene set analysis methods using real
expression datasets. They showed that there is little to no overlap
between the results of these methods. Also, some methods
reported a large number of gene sets as being differentially
enriched and some methods reported very few. This indicates
that most methods either suffer from a lack of specificity (large
number of false positives) or a lack of sensitivity (large number of
false negatives).

Lack of specificity of gene set analysis methods is the main
hindrance to gaining insight from the results of gene set analysis.
For example, assume that the null hypothesis for a self-contained
method is that there is no difference in the average expression
of genes in a gene set between case and control samples. Then a
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FIGURE 5 | Visualization of phenotype permutation under the self-contained hybrid null hypothesis. This type of hypothesis states that the relative expression pattern

of genes within a gene set is not differentially associated with phenotypes. For example, given a gene set Gi consisting of three genes Gi = {g2, g4, g5}, the hybrid null

hypothesis states that there is no difference in the relative expression pattern of these genes between phenotypes. In this figure, sgi represents the gene score for the

gene gi . Unlike the sample permutation approach used under a self-contained null hypothesis, not only do gene scores for genes in Gi contribute to the calculation of

f (Gi ) but also gene scores for genes in Ḡi can contribute to this calculation. For example, the distribution of gene scores for genes in Ḡi can affect the enrichment

score of Gi calculated by GSEA. The contribution of genes in Gi and genes in Ḡi are depicted with solid green lines and dashed blue lines, respectively. See Figure S1

for a visualization of gene sampling under the competitive hybrid null hypothesis.

significant change in the expression of a single gene can cause any
gene set containing that gene to be reported as being differentially
enriched. The problem arises in the presence of gene set overlap,
where some genes may occur in several gene sets. Due to the
presence of multifunctional genes (i.e., genes that play a role
in several biological functions or molecular processes), and also
the parent-child structure of some gene sets (e.g., gene sets
extracted from GO), gene set overlap is an integral part of gene
set databases (Maleki and Kusalik, 2019). However, most gene set
analysis methods completely ignore this overlap. Hence, gene
set overlap seems to be an important challenge that needs to
be addressed. There have been several attempts to alleviate the
effect of gene set overlap (Tarca et al., 2012; Simillion et al., 2017).
Although these methods lead to higher specificity, they suffer
from low sensitivity.

A limitation of self-contained methods is that they require
a large number of samples per group, as they use phenotype
permutation for significance assessment. This means that many
of the high-throughput datasets available are not appropriate for
use with these types of methods. Alternatively, competitive gene

set analysis methods are used for datasets with small sample
sizes. Competitive gene set analysis methods rely on gene
sampling for the significance assessment. Gene sampling is based
on the assumption that genes are independent. This assumption
is known to be biologically invalid and may cause some gene
sets to be predicted as being differentially enriched solely due
to the correlations between its genes. This issue introduces
false positives and decreases the specificity. Therefore, gene-gene
correlations should be considered in the design and evaluation of
gene set analysis methods.

It has been shown that for many gene set analysis methods,
whether competitive or self-contained, the results of the analysis
are not reproducible for small sample sizes (Maleki et al., 2019a).
However, regardless of this issue, studies with small sample
sizes (n < 5 per group) continue to be analyzed using these
methods (Dumesic et al., 2019; Weinberg et al., 2019; Tan et al.,
2020). Therefore, it should be stressed that the size of a dataset
is an important consideration when deciding on an appropriate
gene set analysis method or whether it is appropriate to use gene
set analysis at all. Also, when developing new gene set analysis

Frontiers in Genetics | www.frontiersin.org 12 June 2020 | Volume 11 | Article 654

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Maleki et al. Gene Set Analysis

methods, their sensitivity to sample size should be investigated as
part of the evaluation process.

Evaluation of gene set analysis methods has become an
important area of research (Rahmatallah et al., 2016; Zyla et al.,
2017, 2019; Mathur et al., 2018; Nguyen et al., 2019; Geistlinger
et al., 2020). Gene set analysis methods have been evaluated based
on real and simulated expression datasets.

Real datasets with presumed enrichment status for gene sets
are commonly used for the evaluation of gene set analysis
methods (Tarca et al., 2013; Zyla et al., 2017). Unfortunately,
assumptions about the enrichment status of the gene sets cannot
be confidently justified. Consequently, this uncertainty in the
enrichment status of gene sets also leads to uncertainty in the
outcome of the evaluation.

Due to the lack of gold standard datasets for the evaluation
of gene set analysis methods, simulated expression datasets
have been used (Efron and Tibshirani, 2007; Nam and Kim,
2008; Ackermann and Strimmer, 2009). These datasets have
been developed using normally distributed expression values,
with constant means and standard deviations. Also, these
simulated datasets either assume no gene-gene correlation (Efron
and Tibshirani, 2007; Nam and Kim, 2008) or constant
correlations (Ackermann and Strimmer, 2009) between genes in
gene sets. However, in practice, expression data rarely follows
a normal distribution. Also, gene-gene correlation is known to
be present in real expression data and has been reported to
have a profound impact on the results of enrichment analysis
methods (Tamayo et al., 2016). These oversimplifications might
lead to evaluations that are biased in favor of some gene
set analysis methods. For instance, Ackermann and Strimmer
(2009) simulated expression datasets using a multivariate normal
distribution with variances of 1. They simulated the expression
value of non-informative genes using a standard multivariate
normal distribution. They modeled differentially enriched gene
sets using constant change in mean expression values and
constant gene-gene correlations. Since the expression values for
the non-informative genes, which comprised the majority of the
dataset, followed a standard multivariate normal distribution,
competitive methods and parametric methods were able to
easily detect the enrichment status of gene sets. This makes
the result of evaluation biased in favor of these methods. Also,
normally distributed values with constant mean and standard
deviation ignores heterogeneity of variance in high-throughput
data (Maleki and Kusalik, 2015).

Gene set collections have also been simulated to be a small
number of non-overlapping sets of equal size, a situation that
is substantially different from the real gene set databases. Due
to oversimplifying assumptions, evaluation of gene set analysis
using these datasets has led to inconsistent and contradictory
results (Maciejewski, 2013).

Tripathi et al. (2013), using a bootstrapping approach,
evaluated the robustness and power of competitive gene set
analysis methods and parametric methods. They showed that
the presence of unrelated genes could substantially affect the
results of these methods. This is because adding unrelated genes
changes the distribution of background genes. In competitive
methods, the significance of a gene set score S(Gi) is calculated

by comparison against gene set scores derived from randomly
assembled gene sets of the same size as Gi. Adding unrelated
genes increases the difference between S(Gi) and the scores
derived from the randomly assembled sets of genes, as unrelated
genes often show a weak and non-concordant expression pattern.
They also reported that GAGE, a non-parametric method,
achieves a higher power when unrelated genes are added to the
expression dataset. This can also be explained by the way GAGE
calculates its gene set scores, which is a function of the difference
between average expression values of the gene within the gene set
and average expression values of the rest of the genes. By adding
unrelated genes, which often show smaller average expression
values, more extreme gene set scores are achieved, which in
turn leads to a misleading boost in power. Tripathi et al. (2013)
strongly discouraged using competitive methods such as GSEA
(with gene sampling) and also GAGE.

7. FUTURE DIRECTIONS

Due to the lack of gold standard datasets, simulated datasets
using normally distributed values with zero or constant gene-
gene correlations have been widely used to evaluate gene set
analysis methods (Efron and Tibshirani, 2007; Nam and Kim,
2008; Ackermann and Strimmer, 2009). Biological and technical
variability alongside complex gene-gene correlation patterns
cannot be modeled using such oversimplified approaches.
Synthesizing datasets that preserve the true nature of gene
expression data and gene set databases is an essential step
in the evaluation of new and existing gene set analysis
methods. More specifically, developing benchmark datasets that
reflect the true nature of real datasets would be of great
value for evaluation of current and new gene set analysis
methods. Such a benchmark is currently absent and we suggest
developing such public benchmark datasets as future research.
These benchmark datasets, if publicly available, could facilitate
evaluating available gene set analysis methods and facilitate
developing new approaches.

One important factor that should be considered in developing
gene set analysis methods is their capability in dealing with
gene set overlap, which has contributed to the lack of specificity
of some methods (Simillion et al., 2017; Maleki and Kusalik,
2019). Current approaches that aim at addressing gene set overlap
sacrifice sensitivity and therefore introduce false negatives.
Developing methods that address gene set overlap and achieve a
high specificity without sacrificing sensitivity is an active research
area (Tiong and Yeang, 2019; Wiebe et al., 2020) and remains as
an avenue for future research.

Also, in the evaluation of gene set analysis methods, simulated
gene set databases consisting of non-overlapping gene sets of
equal sizes have been used. Such a setting disregards the true
nature of gene set databases that have different degrees of gene
set overlap and different gene set sizes, which have been reported
to affect the results of gene set analysis methods (Damian and
Gorfine, 2004; Simillion et al., 2017). To evaluate gene set analysis
methods in a realistic context, we strongly discourage the use
of such artificial gene set databases. In cases where simulated
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expression datasets are used, we recommend the exploration of
using real gene names/IDs in the simulated expression data. This
makes it possible to use real gene set databases alongside the
simulated expression data. Such a small step could show the
behavior of a method in addressing gene set overlap and different
gene set sizes during evaluation.

Tripathi et al. (2013) showed that some competitive gene
set analysis methods are sensitive to the existence of unrelated
genes. When applying the competitive gene set analysis methods,
we suggest following the guidelines provided by Tripathi et al.
(2013). In addition, new procedures for gene set analysis should
be designed to be robust against the changes in the background
distribution due to the existence of unrelated genes.

Moreover, different distributions of up- and down-regulated
genes in gene sets, various gene set sizes, different levels of
differential expression, different sample sizes, and an imbalanced
number of samples per group might affect the result of a gene
set analysis method (Irizarry et al., 2009). Therefore, we suggest
any attempt for evaluation or development of gene set analysis
methods to consider these factors.

The quantitative study of several well-established gene set
databases, which are used as input to gene set analysis methods,
has shown that the choice of gene set database might have a
profound impact on the results of gene set analysis (Maleki et al.,
2019c). Also, genes associated with some known phenotypes are
not well-represented, if at all. Therefore, regardless of the choice
of gene set analysis method, gene set analysis of such phenotypes
will miss those known associations. A systematic study for
choosing an appropriate gene set database prior to conducting
gene set analysis is another avenue for future research.

8. CONCLUSION

In this paper, we reviewed a set of well-established gene set
analysis methods. We discussed the shortcomings and strengths
of these methods based on their various components such as

their gene set score, null hypothesis, and methods of significance
assessment. We also provided direction for conducting further
research in gene set analysis.

To resolve the lack of consensus about the method of choice
for a given experiment, a systematic methodology for evaluating
gene set analysis methods should be utilized. Developing
benchmark datasets for facilitating such a method comparison
would highly benefit the research community. The benchmark
expression datasets should represent the characteristics of real
expression data and avoid using oversimplifying assumptions
such as normally distributed data with zero or constant gene-
gene correlation. Also, non-overlapping genes sets of equal size
must be avoided as well.

Despite the numerous gene set analysis methods and tools
available, due to the complex nature of the problem, developing
methods with high specificity and high sensitivity remains a
challenge and an active research area.
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